From 86221269f98ef9b21a6e6c9d04b86e2fb5cb33d3 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Wed, 16 Aug 2023 09:55:35 +0300 Subject: RAM optimization round 2 --- modules/sd_disable_initialization.py | 51 +++++++++++++++++++++++++++++++----- 1 file changed, 44 insertions(+), 7 deletions(-) (limited to 'modules/sd_disable_initialization.py') diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index 695c5736..719eeb93 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -168,22 +168,59 @@ class LoadStateDictOnMeta(ReplaceHelper): device = self.device def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs): - params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta] + used_param_keys = [] + + for name, param in self._parameters.items(): + if param is None: + continue + + key = prefix + name + sd_param = sd.pop(key, None) + if sd_param is not None: + state_dict[key] = sd_param + used_param_keys.append(key) - for name, param in params: if param.is_meta: - self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad) + dtype = sd_param.dtype if sd_param is not None else param.dtype + self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad) + + for name in self._buffers: + key = prefix + name + + sd_param = sd.pop(key, None) + if sd_param is not None: + state_dict[key] = sd_param + used_param_keys.append(key) original(self, state_dict, prefix, *args, **kwargs) - for name, _ in params: - key = prefix + name - if key in sd: - del sd[key] + for key in used_param_keys: + state_dict.pop(key, None) + + def load_state_dict(original, self, state_dict, strict=True): + """torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help + because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with + all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes. + + In _load_from_state_dict, the correct weight will be obtained from a single dict with the right weights (sd). + + The dangerous thing about this is if _load_from_state_dict is not called, (if some exotic module overloads + the function and does not call the original) the state dict will just fail to load because weights + would be on the meta device. + """ + + if state_dict == sd: + state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()} + + original(self, state_dict, strict=strict) + module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs)) + module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs)) linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs)) conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs)) mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs)) + layer_norm_load_from_state_dict = self.replace(torch.nn.LayerNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(layer_norm_load_from_state_dict, *args, **kwargs)) + group_norm_load_from_state_dict = self.replace(torch.nn.GroupNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(group_norm_load_from_state_dict, *args, **kwargs)) def __exit__(self, exc_type, exc_val, exc_tb): self.restore() -- cgit v1.2.3