From 75c4511e6b81ae8fb0dbd932043e8eb35cd09f72 Mon Sep 17 00:00:00 2001 From: zhaohu xing <920232796@qq.com> Date: Tue, 29 Nov 2022 10:28:41 +0800 Subject: add AltDiffusion to webui Signed-off-by: zhaohu xing <920232796@qq.com> --- modules/sd_hijack.py | 23 +++++++++++++++++------ 1 file changed, 17 insertions(+), 6 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index eaedac13..26280fe4 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -70,14 +70,19 @@ class StableDiffusionModelHijack: embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) def hijack(self, m): - model_embeddings = m.cond_stage_model.transformer.text_model.embeddings + + if shared.text_model_name == "XLMR-Large": + model_embeddings = m.cond_stage_model.roberta.embeddings + model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) + else : + model_embeddings = m.cond_stage_model.transformer.text_model.embeddings + model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embeddings, self) - model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) self.clip = m.cond_stage_model - apply_optimizations() + # apply_optimizations() def flatten(el): flattened = [flatten(children) for children in el.children()] @@ -125,8 +130,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): self.tokenizer = wrapped.tokenizer self.token_mults = {} - self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0] - + try: + self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0] + except: + self.comma_token = None + tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] for text, ident in tokens_with_parens: mult = 1.0 @@ -298,6 +306,9 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count def forward(self, text): + if shared.text_model_name == "XLMR-Large": + return self.wrapped.encode(text) + use_old = opts.use_old_emphasis_implementation if use_old: batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) @@ -359,7 +370,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): z = self.wrapped.transformer.text_model.final_layer_norm(z) else: z = outputs.last_hidden_state - + # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers] batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device) -- cgit v1.2.3 From 52cc83d36b7663a77b79fd2258d2ca871af73e55 Mon Sep 17 00:00:00 2001 From: zhaohu xing <920232796@qq.com> Date: Wed, 30 Nov 2022 14:56:12 +0800 Subject: fix bugs Signed-off-by: zhaohu xing <920232796@qq.com> --- modules/sd_hijack.py | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 3ec3f98a..edb8b420 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -28,7 +28,7 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At # new memory efficient cross attention blocks do not support hypernets and we already # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention -ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention +# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention # silence new console spam from SD2 ldm.modules.attention.print = lambda *args: None @@ -82,7 +82,12 @@ class StableDiffusionModelHijack: def hijack(self, m): - if type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: + if shared.text_model_name == "XLMR-Large": + model_embeddings = m.cond_stage_model.roberta.embeddings + model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) + m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) + + elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) @@ -91,11 +96,7 @@ class StableDiffusionModelHijack: m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) apply_optimizations() - elif shared.text_model_name == "XLMR-Large": - model_embeddings = m.cond_stage_model.roberta.embeddings - model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) - m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - + self.clip = m.cond_stage_model fix_checkpoint() -- cgit v1.2.3 From 4929503258d80abbc4b5f40da034298fe3803906 Mon Sep 17 00:00:00 2001 From: zhaohu xing <920232796@qq.com> Date: Tue, 6 Dec 2022 09:03:55 +0800 Subject: fix bugs Signed-off-by: zhaohu xing <920232796@qq.com> --- modules/sd_hijack.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index edb8b420..cd65d356 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -28,7 +28,7 @@ diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.At # new memory efficient cross attention blocks do not support hypernets and we already # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention -# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention +ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention # silence new console spam from SD2 ldm.modules.attention.print = lambda *args: None -- cgit v1.2.3 From 5dcc22606d05ebe5ae89c990bd83a3eb068fcb78 Mon Sep 17 00:00:00 2001 From: zhaohu xing <920232796@qq.com> Date: Tue, 6 Dec 2022 16:04:50 +0800 Subject: add hash and fix undo hijack bug Signed-off-by: zhaohu xing <920232796@qq.com> --- modules/sd_hijack.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 9b5890e7..9fed1b6f 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -112,7 +112,11 @@ class StableDiffusionModelHijack: self.layers = flatten(m) def undo_hijack(self, m): - if type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: + + if shared.text_model_name == "XLMR-Large": + m.cond_stage_model = m.cond_stage_model.wrapped + + elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: m.cond_stage_model = m.cond_stage_model.wrapped model_embeddings = m.cond_stage_model.transformer.text_model.embeddings -- cgit v1.2.3 From f34c7341720fb2059992926c9f9ae6ff25f7385b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 31 Dec 2022 18:06:35 +0300 Subject: alt-diffusion integration --- modules/sd_hijack.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index bce23b03..edcbaf52 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -5,7 +5,7 @@ import modules.textual_inversion.textual_inversion from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts -from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet +from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr from modules.sd_hijack_optimizations import invokeAI_mps_available @@ -68,6 +68,7 @@ def fix_checkpoint(): ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward + class StableDiffusionModelHijack: fixes = None comments = [] @@ -79,21 +80,22 @@ class StableDiffusionModelHijack: def hijack(self, m): - if shared.text_model_name == "XLMR-Large": + if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) - m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - + m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self) + elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - apply_optimizations() + elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder: m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - apply_optimizations() - + + apply_optimizations() + self.clip = m.cond_stage_model fix_checkpoint() @@ -109,7 +111,7 @@ class StableDiffusionModelHijack: def undo_hijack(self, m): - if shared.text_model_name == "XLMR-Large": + if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: m.cond_stage_model = m.cond_stage_model.wrapped elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: -- cgit v1.2.3 From 21ee77db314ede7ccbb18787962347c09a4df0c7 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Wed, 4 Jan 2023 08:04:38 -0500 Subject: add cross-attention info --- modules/sd_hijack.py | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index edcbaf52..fa2cd4bb 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -35,26 +35,35 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th + + optimization_method = None if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward + optimization_method = 'xformers' elif cmd_opts.opt_split_attention_v1: print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 + optimization_method = 'V1' elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): if not invokeAI_mps_available and shared.device.type == 'mps': print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.") print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 + optimization_method = 'V1' else: print("Applying cross attention optimization (InvokeAI).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI + optimization_method = 'InvokeAI' elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): print("Applying cross attention optimization (Doggettx).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward + optimization_method = 'Doggettx' + + return optimization_method def undo_optimizations(): @@ -75,6 +84,7 @@ class StableDiffusionModelHijack: layers = None circular_enabled = False clip = None + optimization_method = None embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) @@ -94,7 +104,7 @@ class StableDiffusionModelHijack: m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) - apply_optimizations() + self.optimization_method = apply_optimizations() self.clip = m.cond_stage_model -- cgit v1.2.3 From d782a95967c9eea753df3333cd1954b6ec73eba0 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 27 Dec 2022 08:50:55 -0500 Subject: Add Birch-san's sub-quadratic attention implementation --- modules/sd_hijack.py | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 690a9ec2..019a6f3f 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -7,8 +7,6 @@ from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet -from modules.sd_hijack_optimizations import invokeAI_mps_available - import ldm.modules.attention import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.openaimodel @@ -40,17 +38,16 @@ def apply_optimizations(): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward + elif cmd_opts.opt_sub_quad_attention: + print("Applying sub-quadratic cross attention optimization.") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward + ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward elif cmd_opts.opt_split_attention_v1: print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): - if not invokeAI_mps_available and shared.device.type == 'mps': - print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.") - print("Applying v1 cross attention optimization.") - ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 - else: - print("Applying cross attention optimization (InvokeAI).") - ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI + print("Applying cross attention optimization (InvokeAI).") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): print("Applying cross attention optimization (Doggettx).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward -- cgit v1.2.3 From 5deb2a19ccea57a50252e8fcb07b4d17c6599def Mon Sep 17 00:00:00 2001 From: brkirch Date: Fri, 6 Jan 2023 01:33:15 -0500 Subject: Allow Doggettx's cross attention opt without CUDA --- modules/sd_hijack.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index ef25dadb..bd101e5b 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -50,7 +50,7 @@ def apply_optimizations(): print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 optimization_method = 'V1' - elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): + elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()): print("Applying cross attention optimization (InvokeAI).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI optimization_method = 'InvokeAI' -- cgit v1.2.3 From 79e39fae6110c20a3ee6255e2841c877f65e8cbd Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 7 Jan 2023 01:45:28 +0300 Subject: CLIP hijack rework --- modules/sd_hijack.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index fa2cd4bb..71cc145a 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -150,10 +150,10 @@ class StableDiffusionModelHijack: def clear_comments(self): self.comments = [] - def tokenize(self, text): - _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) + def get_prompt_lengths(self, text): + _, token_count = self.clip.process_texts([text]) - return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count) + return token_count, self.clip.get_target_prompt_token_count(token_count) class EmbeddingsWithFixes(torch.nn.Module): -- cgit v1.2.3 From 085427de0efc9e9e7a6e9a5aebc6b5a69f0365e7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 8 Jan 2023 09:37:33 +0300 Subject: make it possible for extensions/scripts to add their own embedding directories --- modules/sd_hijack.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index cfdb09d6..6b0d95af 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -83,10 +83,12 @@ class StableDiffusionModelHijack: clip = None optimization_method = None - embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) + embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() - def hijack(self, m): + def __init__(self): + self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) + def hijack(self, m): if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: model_embeddings = m.cond_stage_model.roberta.embeddings model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) @@ -117,7 +119,6 @@ class StableDiffusionModelHijack: self.layers = flatten(m) def undo_hijack(self, m): - if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: m.cond_stage_model = m.cond_stage_model.wrapped -- cgit v1.2.3 From 924e222004ab54273806c5f2ca7a0e7cfa76ad83 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 18 Jan 2023 23:04:24 +0300 Subject: add option to show/hide warnings removed hiding warnings from LDSR fixed/reworked few places that produced warnings --- modules/sd_hijack.py | 8 -------- 1 file changed, 8 deletions(-) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 6b0d95af..870eba88 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -69,12 +69,6 @@ def undo_optimizations(): ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward -def fix_checkpoint(): - ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward - ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward - ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward - - class StableDiffusionModelHijack: fixes = None comments = [] @@ -106,8 +100,6 @@ class StableDiffusionModelHijack: self.optimization_method = apply_optimizations() self.clip = m.cond_stage_model - - fix_checkpoint() def flatten(el): flattened = [flatten(children) for children in el.children()] -- cgit v1.2.3 From 6073456c8348d15716b9bc5276d994fe8554e4ca Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 19 Jan 2023 20:39:03 +0300 Subject: write a comment for fix_checkpoint function --- modules/sd_hijack.py | 7 +++++++ 1 file changed, 7 insertions(+) (limited to 'modules/sd_hijack.py') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 870eba88..f9652d21 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -69,6 +69,13 @@ def undo_optimizations(): ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward +def fix_checkpoint(): + """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want + checkpoints to be added when not training (there's a warning)""" + + pass + + class StableDiffusionModelHijack: fixes = None comments = [] -- cgit v1.2.3