From 247f58a5e740a7bd3980815961425b778d77ec28 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 17 Sep 2022 12:05:04 +0300 Subject: add support for switching model checkpoints at runtime --- modules/sd_models.py | 148 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 148 insertions(+) create mode 100644 modules/sd_models.py (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py new file mode 100644 index 00000000..036af0e4 --- /dev/null +++ b/modules/sd_models.py @@ -0,0 +1,148 @@ +import glob +import os.path +import sys +from collections import namedtuple +import torch +from omegaconf import OmegaConf + + +from ldm.util import instantiate_from_config + +from modules import shared + +CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash']) +checkpoints_list = {} + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + + from transformers import logging + + logging.set_verbosity_error() +except Exception: + pass + + +def list_models(): + checkpoints_list.clear() + + model_dir = os.path.abspath(shared.cmd_opts.ckpt_dir) + + def modeltitle(path, h): + abspath = os.path.abspath(path) + + if abspath.startswith(model_dir): + name = abspath.replace(model_dir, '') + else: + name = os.path.basename(path) + + if name.startswith("\\") or name.startswith("/"): + name = name[1:] + + return f'{name} [{h}]' + + cmd_ckpt = shared.cmd_opts.ckpt + if os.path.exists(cmd_ckpt): + h = model_hash(cmd_ckpt) + title = modeltitle(cmd_ckpt, h) + checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h) + elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: + print(f"Checkpoint in --ckpt argument not found: {cmd_ckpt}", file=sys.stderr) + + if os.path.exists(model_dir): + for filename in glob.glob(model_dir + '/**/*.ckpt', recursive=True): + h = model_hash(filename) + title = modeltitle(filename, h) + checkpoints_list[title] = CheckpointInfo(filename, title, h) + + +def model_hash(filename): + try: + with open(filename, "rb") as file: + import hashlib + m = hashlib.sha256() + + file.seek(0x100000) + m.update(file.read(0x10000)) + return m.hexdigest()[0:8] + except FileNotFoundError: + return 'NOFILE' + + +def select_checkpoint(): + model_checkpoint = shared.opts.sd_model_checkpoint + checkpoint_info = checkpoints_list.get(model_checkpoint, None) + if checkpoint_info is not None: + return checkpoint_info + + if len(checkpoints_list) == 0: + print(f"Checkpoint {model_checkpoint} not found and no other checkpoints found", file=sys.stderr) + return None + + checkpoint_info = next(iter(checkpoints_list.values())) + if model_checkpoint is not None: + print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr) + + return checkpoint_info + + +def load_model_weights(model, checkpoint_file, sd_model_hash): + print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") + + pl_sd = torch.load(checkpoint_file, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + + model.load_state_dict(sd, strict=False) + + if shared.cmd_opts.opt_channelslast: + model.to(memory_format=torch.channels_last) + + if not shared.cmd_opts.no_half: + model.half() + + model.sd_model_hash = sd_model_hash + model.sd_model_checkpint = checkpoint_file + + +def load_model(): + from modules import lowvram, sd_hijack + checkpoint_info = select_checkpoint() + + sd_config = OmegaConf.load(shared.cmd_opts.config) + sd_model = instantiate_from_config(sd_config.model) + load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) + else: + sd_model.to(shared.device) + + sd_hijack.model_hijack.hijack(sd_model) + + sd_model.eval() + + print(f"Model loaded.") + return sd_model + + +def reload_model_weights(sd_model): + from modules import lowvram, devices + checkpoint_info = select_checkpoint() + + if sd_model.sd_model_checkpint == checkpoint_info.filename: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print(f"Weights loaded.") + return sd_model -- cgit v1.2.3