From 757dda9ade9d47cb2a755dad0475c8c4fbcaa114 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 27 Jan 2024 22:30:12 +0300 Subject: Add Pad conds v0 option --- modules/sd_samplers_cfg_denoiser.py | 70 ++++++++++++++++++++++++++++++++----- 1 file changed, 61 insertions(+), 9 deletions(-) (limited to 'modules/sd_samplers_cfg_denoiser.py') diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index 6d76aa96..ef237396 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -53,6 +53,7 @@ class CFGDenoiser(torch.nn.Module): self.step = 0 self.image_cfg_scale = None self.padded_cond_uncond = False + self.padded_cond_uncond_v0 = False self.sampler = sampler self.model_wrap = None self.p = None @@ -91,6 +92,62 @@ class CFGDenoiser(torch.nn.Module): self.sampler.sampler_extra_args['cond'] = c self.sampler.sampler_extra_args['uncond'] = uc + def pad_cond_uncond(self, cond, uncond): + empty = shared.sd_model.cond_stage_model_empty_prompt + num_repeats = (cond.shape[1] - cond.shape[1]) // empty.shape[1] + + if num_repeats < 0: + cond = pad_cond(cond, -num_repeats, empty) + self.padded_cond_uncond = True + elif num_repeats > 0: + uncond = pad_cond(uncond, num_repeats, empty) + self.padded_cond_uncond = True + + return cond, uncond + + def pad_cond_uncond_v0(self, cond, uncond): + """ + Pads the 'uncond' tensor to match the shape of the 'cond' tensor. + + If 'uncond' is a dictionary, it is assumed that the 'crossattn' key holds the tensor to be padded. + If 'uncond' is a tensor, it is padded directly. + + If the number of columns in 'uncond' is less than the number of columns in 'cond', the last column of 'uncond' + is repeated to match the number of columns in 'cond'. + + If the number of columns in 'uncond' is greater than the number of columns in 'cond', 'uncond' is truncated + to match the number of columns in 'cond'. + + Args: + cond (torch.Tensor or DictWithShape): The condition tensor to match the shape of 'uncond'. + uncond (torch.Tensor or DictWithShape): The tensor to be padded, or a dictionary containing the tensor to be padded. + + Returns: + tuple: A tuple containing the 'cond' tensor and the padded 'uncond' tensor. + + Note: + This is the padding that was always used in DDIM before version 1.6.0 + """ + + is_dict_cond = isinstance(uncond, dict) + uncond_vec = uncond['crossattn'] if is_dict_cond else uncond + + if uncond_vec.shape[1] < cond.shape[1]: + last_vector = uncond_vec[:, -1:] + last_vector_repeated = last_vector.repeat([1, cond.shape[1] - uncond_vec.shape[1], 1]) + uncond_vec = torch.hstack([uncond_vec, last_vector_repeated]) + self.padded_cond_uncond_v0 = True + elif uncond_vec.shape[1] > cond.shape[1]: + uncond_vec = uncond_vec[:, :cond.shape[1]] + self.padded_cond_uncond_v0 = True + + if is_dict_cond: + uncond['crossattn'] = uncond_vec + else: + uncond = uncond_vec + + return cond, uncond + def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException @@ -162,16 +219,11 @@ class CFGDenoiser(torch.nn.Module): sigma_in = sigma_in[:-batch_size] self.padded_cond_uncond = False + self.padded_cond_uncond_v0 = False if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: - empty = shared.sd_model.cond_stage_model_empty_prompt - num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] - - if num_repeats < 0: - tensor = pad_cond(tensor, -num_repeats, empty) - self.padded_cond_uncond = True - elif num_repeats > 0: - uncond = pad_cond(uncond, num_repeats, empty) - self.padded_cond_uncond = True + tensor, uncond = self.pad_cond_uncond(tensor, uncond) + elif shared.opts.pad_cond_uncond_v0 and tensor.shape[1] != uncond.shape[1]: + tensor, uncond = self.pad_cond_uncond_v0(tensor, uncond) if tensor.shape[1] == uncond.shape[1] or skip_uncond: if is_edit_model: -- cgit v1.2.3