From 64311faa6848d641cc452115e4e1eb47d2a7b519 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 12 Aug 2023 12:39:59 +0300 Subject: put refiner into main UI, into the new accordions section add VAE from main model into infotext, not from refiner model option to make scripts UI without gr.Group fix inconsistencies with refiner when usings samplers that do more denoising than steps --- modules/sd_samplers_cfg_denoiser.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules/sd_samplers_cfg_denoiser.py') diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index a532e013..113425b2 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -45,6 +45,11 @@ class CFGDenoiser(torch.nn.Module): self.nmask = None self.init_latent = None self.steps = None + """number of steps as specified by user in UI""" + + self.total_steps = None + """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler""" + self.step = 0 self.image_cfg_scale = None self.padded_cond_uncond = False @@ -56,7 +61,6 @@ class CFGDenoiser(torch.nn.Module): def inner_model(self): raise NotImplementedError() - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] denoised = torch.clone(denoised_uncond) -- cgit v1.2.3 From c1a31ec9f75c8dfe4ddcb0061f06e2704db98359 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 08:59:15 +0300 Subject: revert to applying mask before denoising for k-diffusion, like it was before --- modules/sd_samplers_cfg_denoiser.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules/sd_samplers_cfg_denoiser.py') diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index 113425b2..bc9b97e4 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -56,6 +56,7 @@ class CFGDenoiser(torch.nn.Module): self.sampler = sampler self.model_wrap = None self.p = None + self.mask_before_denoising = False @property def inner_model(self): @@ -104,7 +105,7 @@ class CFGDenoiser(torch.nn.Module): assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" - if self.mask is not None: + if self.mask_before_denoising and self.mask is not None: x = self.init_latent * self.mask + self.nmask * x batch_size = len(conds_list) @@ -206,6 +207,9 @@ class CFGDenoiser(torch.nn.Module): else: denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + if not self.mask_before_denoising and self.mask is not None: + denoised = self.init_latent * self.mask + self.nmask * denoised + self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) if opts.live_preview_content == "Prompt": -- cgit v1.2.3