From 5a0db84b6c7322082c7532df11a29a95a59a612b Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 6 Aug 2023 17:53:33 +0300 Subject: add infotext add proper support for recalculating conds in k-diffusion samplers remove support for compvis samplers --- modules/sd_samplers_kdiffusion.py | 24 ++++++++++++++++-------- 1 file changed, 16 insertions(+), 8 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 3aee4e3a..46da0a97 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -87,8 +87,9 @@ class CFGDenoiser(torch.nn.Module): negative prompt. """ - def __init__(self): + def __init__(self, sampler): super().__init__() + self.sampler = sampler self.model_wrap = None self.mask = None self.nmask = None @@ -126,11 +127,17 @@ class CFGDenoiser(torch.nn.Module): def update_inner_model(self): self.model_wrap = None + c, uc = self.p.get_conds() + self.sampler.sampler_extra_args['cond'] = c + self.sampler.sampler_extra_args['uncond'] = uc + def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException - sd_samplers_common.apply_refiner(self) + if sd_samplers_common.apply_refiner(self): + cond = self.sampler.sampler_extra_args['cond'] + uncond = self.sampler.sampler_extra_args['uncond'] # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling, # so is_edit_model is set to False to support AND composition. @@ -282,12 +289,12 @@ class TorchHijack: class KDiffusionSampler: def __init__(self, funcname, sd_model): - self.p = None self.funcname = funcname self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) self.extra_params = sampler_extra_params.get(funcname, []) - self.model_wrap_cfg = CFGDenoiser() + self.sampler_extra_args = {} + self.model_wrap_cfg = CFGDenoiser(self) self.model_wrap = self.model_wrap_cfg.inner_model self.sampler_noises = None self.stop_at = None @@ -476,7 +483,7 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x self.last_latent = x - extra_args = { + self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, @@ -484,7 +491,7 @@ class KDiffusionSampler: 's_min_uncond': self.s_min_uncond } - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) if self.model_wrap_cfg.padded_cond_uncond: p.extra_generation_params["Pad conds"] = True @@ -514,13 +521,14 @@ class KDiffusionSampler: extra_params_kwargs['noise_sampler'] = noise_sampler self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ + self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + } + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) if self.model_wrap_cfg.padded_cond_uncond: p.extra_generation_params["Pad conds"] = True -- cgit v1.2.3