From 56e557c6ff8a6480887c9c585bf908045ee8e791 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 24 Dec 2022 22:39:00 +0300 Subject: added cheap NN approximation for VAE --- modules/sd_vae_approx.py | 58 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) create mode 100644 modules/sd_vae_approx.py (limited to 'modules/sd_vae_approx.py') diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py new file mode 100644 index 00000000..0a58542d --- /dev/null +++ b/modules/sd_vae_approx.py @@ -0,0 +1,58 @@ +import os + +import torch +from torch import nn +from modules import devices, paths + +sd_vae_approx_model = None + + +class VAEApprox(nn.Module): + def __init__(self): + super(VAEApprox, self).__init__() + self.conv1 = nn.Conv2d(4, 8, (7, 7)) + self.conv2 = nn.Conv2d(8, 16, (5, 5)) + self.conv3 = nn.Conv2d(16, 32, (3, 3)) + self.conv4 = nn.Conv2d(32, 64, (3, 3)) + self.conv5 = nn.Conv2d(64, 32, (3, 3)) + self.conv6 = nn.Conv2d(32, 16, (3, 3)) + self.conv7 = nn.Conv2d(16, 8, (3, 3)) + self.conv8 = nn.Conv2d(8, 3, (3, 3)) + + def forward(self, x): + extra = 11 + x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2)) + x = nn.functional.pad(x, (extra, extra, extra, extra)) + + for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]: + x = layer(x) + x = nn.functional.leaky_relu(x, 0.1) + + return x + + +def model(): + global sd_vae_approx_model + + if sd_vae_approx_model is None: + sd_vae_approx_model = VAEApprox() + sd_vae_approx_model.load_state_dict(torch.load(os.path.join(paths.models_path, "VAE-approx", "model.pt"))) + sd_vae_approx_model.eval() + sd_vae_approx_model.to(devices.device, devices.dtype) + + return sd_vae_approx_model + + +def cheap_approximation(sample): + # https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2 + + coefs = torch.tensor([ + [0.298, 0.207, 0.208], + [0.187, 0.286, 0.173], + [-0.158, 0.189, 0.264], + [-0.184, -0.271, -0.473], + ]).to(sample.device) + + x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs) + + return x_sample -- cgit v1.2.3