From a6f840b4dc09bb876060dc2487742fef6dd49feb Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Wed, 9 Aug 2023 08:47:52 +0300
Subject: Split history: mv modules/shared.py modules/shared_options.py
---
modules/shared_options.py | 976 ++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 976 insertions(+)
create mode 100644 modules/shared_options.py
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
new file mode 100644
index 00000000..e9b980a4
--- /dev/null
+++ b/modules/shared_options.py
@@ -0,0 +1,976 @@
+import datetime
+import json
+import os
+import re
+import sys
+import threading
+import time
+import logging
+
+import gradio as gr
+import torch
+import tqdm
+
+import launch
+import modules.interrogate
+import modules.memmon
+import modules.styles
+import modules.devices as devices
+from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args, rng # noqa: F401
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+from ldm.models.diffusion.ddpm import LatentDiffusion
+from typing import Optional
+
+log = logging.getLogger(__name__)
+
+demo = None
+
+parser = cmd_args.parser
+
+script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
+script_loading.preload_extensions(extensions_builtin_dir, parser)
+
+if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
+ cmd_opts = parser.parse_args()
+else:
+ cmd_opts, _ = parser.parse_known_args()
+
+
+restricted_opts = {
+ "samples_filename_pattern",
+ "directories_filename_pattern",
+ "outdir_samples",
+ "outdir_txt2img_samples",
+ "outdir_img2img_samples",
+ "outdir_extras_samples",
+ "outdir_grids",
+ "outdir_txt2img_grids",
+ "outdir_save",
+ "outdir_init_images"
+}
+
+# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
+gradio_hf_hub_themes = [
+ "gradio/base",
+ "gradio/glass",
+ "gradio/monochrome",
+ "gradio/seafoam",
+ "gradio/soft",
+ "gradio/dracula_test",
+ "abidlabs/dracula_test",
+ "abidlabs/Lime",
+ "abidlabs/pakistan",
+ "Ama434/neutral-barlow",
+ "dawood/microsoft_windows",
+ "finlaymacklon/smooth_slate",
+ "Franklisi/darkmode",
+ "freddyaboulton/dracula_revamped",
+ "freddyaboulton/test-blue",
+ "gstaff/xkcd",
+ "Insuz/Mocha",
+ "Insuz/SimpleIndigo",
+ "JohnSmith9982/small_and_pretty",
+ "nota-ai/theme",
+ "nuttea/Softblue",
+ "ParityError/Anime",
+ "reilnuud/polite",
+ "remilia/Ghostly",
+ "rottenlittlecreature/Moon_Goblin",
+ "step-3-profit/Midnight-Deep",
+ "Taithrah/Minimal",
+ "ysharma/huggingface",
+ "ysharma/steampunk"
+]
+
+
+cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
+
+devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
+ (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
+
+devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
+devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
+
+device = devices.device
+weight_load_location = None if cmd_opts.lowram else "cpu"
+
+batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
+parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
+xformers_available = False
+config_filename = cmd_opts.ui_settings_file
+
+os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
+hypernetworks = {}
+loaded_hypernetworks = []
+
+
+def reload_hypernetworks():
+ from modules.hypernetworks import hypernetwork
+ global hypernetworks
+
+ hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+
+
+class State:
+ skipped = False
+ interrupted = False
+ job = ""
+ job_no = 0
+ job_count = 0
+ processing_has_refined_job_count = False
+ job_timestamp = '0'
+ sampling_step = 0
+ sampling_steps = 0
+ current_latent = None
+ current_image = None
+ current_image_sampling_step = 0
+ id_live_preview = 0
+ textinfo = None
+ time_start = None
+ server_start = None
+ _server_command_signal = threading.Event()
+ _server_command: Optional[str] = None
+
+ @property
+ def need_restart(self) -> bool:
+ # Compatibility getter for need_restart.
+ return self.server_command == "restart"
+
+ @need_restart.setter
+ def need_restart(self, value: bool) -> None:
+ # Compatibility setter for need_restart.
+ if value:
+ self.server_command = "restart"
+
+ @property
+ def server_command(self):
+ return self._server_command
+
+ @server_command.setter
+ def server_command(self, value: Optional[str]) -> None:
+ """
+ Set the server command to `value` and signal that it's been set.
+ """
+ self._server_command = value
+ self._server_command_signal.set()
+
+ def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
+ """
+ Wait for server command to get set; return and clear the value and signal.
+ """
+ if self._server_command_signal.wait(timeout):
+ self._server_command_signal.clear()
+ req = self._server_command
+ self._server_command = None
+ return req
+ return None
+
+ def request_restart(self) -> None:
+ self.interrupt()
+ self.server_command = "restart"
+ log.info("Received restart request")
+
+ def skip(self):
+ self.skipped = True
+ log.info("Received skip request")
+
+ def interrupt(self):
+ self.interrupted = True
+ log.info("Received interrupt request")
+
+ def nextjob(self):
+ if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
+ self.do_set_current_image()
+
+ self.job_no += 1
+ self.sampling_step = 0
+ self.current_image_sampling_step = 0
+
+ def dict(self):
+ obj = {
+ "skipped": self.skipped,
+ "interrupted": self.interrupted,
+ "job": self.job,
+ "job_count": self.job_count,
+ "job_timestamp": self.job_timestamp,
+ "job_no": self.job_no,
+ "sampling_step": self.sampling_step,
+ "sampling_steps": self.sampling_steps,
+ }
+
+ return obj
+
+ def begin(self, job: str = "(unknown)"):
+ self.sampling_step = 0
+ self.job_count = -1
+ self.processing_has_refined_job_count = False
+ self.job_no = 0
+ self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
+ self.current_latent = None
+ self.current_image = None
+ self.current_image_sampling_step = 0
+ self.id_live_preview = 0
+ self.skipped = False
+ self.interrupted = False
+ self.textinfo = None
+ self.time_start = time.time()
+ self.job = job
+ devices.torch_gc()
+ log.info("Starting job %s", job)
+
+ def end(self):
+ duration = time.time() - self.time_start
+ log.info("Ending job %s (%.2f seconds)", self.job, duration)
+ self.job = ""
+ self.job_count = 0
+
+ devices.torch_gc()
+
+ def set_current_image(self):
+ """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
+ if not parallel_processing_allowed:
+ return
+
+ if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
+ self.do_set_current_image()
+
+ def do_set_current_image(self):
+ if self.current_latent is None:
+ return
+
+ import modules.sd_samplers
+
+ try:
+ if opts.show_progress_grid:
+ self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
+ else:
+ self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
+
+ self.current_image_sampling_step = self.sampling_step
+
+ except Exception:
+ # when switching models during genration, VAE would be on CPU, so creating an image will fail.
+ # we silently ignore this error
+ errors.record_exception()
+
+ def assign_current_image(self, image):
+ self.current_image = image
+ self.id_live_preview += 1
+
+
+state = State()
+state.server_start = time.time()
+
+styles_filename = cmd_opts.styles_file
+prompt_styles = modules.styles.StyleDatabase(styles_filename)
+
+interrogator = modules.interrogate.InterrogateModels("interrogate")
+
+face_restorers = []
+
+
+class OptionInfo:
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
+ self.default = default
+ self.label = label
+ self.component = component
+ self.component_args = component_args
+ self.onchange = onchange
+ self.section = section
+ self.refresh = refresh
+ self.do_not_save = False
+
+ self.comment_before = comment_before
+ """HTML text that will be added after label in UI"""
+
+ self.comment_after = comment_after
+ """HTML text that will be added before label in UI"""
+
+ def link(self, label, url):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def js(self, label, js_func):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def info(self, info):
+ self.comment_after += f"({info})"
+ return self
+
+ def html(self, html):
+ self.comment_after += html
+ return self
+
+ def needs_restart(self):
+ self.comment_after += " (requires restart)"
+ return self
+
+ def needs_reload_ui(self):
+ self.comment_after += " (requires Reload UI)"
+ return self
+
+
+class OptionHTML(OptionInfo):
+ def __init__(self, text):
+ super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
+
+ self.do_not_save = True
+
+
+def options_section(section_identifier, options_dict):
+ for v in options_dict.values():
+ v.section = section_identifier
+
+ return options_dict
+
+
+def list_checkpoint_tiles():
+ import modules.sd_models
+ return modules.sd_models.checkpoint_tiles()
+
+
+def refresh_checkpoints():
+ import modules.sd_models
+ return modules.sd_models.list_models()
+
+
+def list_samplers():
+ import modules.sd_samplers
+ return modules.sd_samplers.all_samplers
+
+
+hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
+tab_names = []
+
+options_templates = {}
+
+options_templates.update(options_section(('saving-images', "Saving images/grids"), {
+ "samples_save": OptionInfo(True, "Always save all generated images"),
+ "samples_format": OptionInfo('png', 'File format for images'),
+ "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
+
+ "grid_save": OptionInfo(True, "Always save all generated image grids"),
+ "grid_format": OptionInfo('png', 'File format for grids'),
+ "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
+ "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
+ "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
+ "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
+ "font": OptionInfo("", "Font for image grids that have text"),
+ "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
+
+ "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
+ "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
+ "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
+ "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
+ "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
+ "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
+ "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
+ "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
+ "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
+ "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
+ "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
+ "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
+ "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
+
+ "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
+ "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
+ "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
+ "save_init_img": OptionInfo(False, "Save init images when using img2img"),
+
+ "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
+ "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
+
+ "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."),
+}))
+
+options_templates.update(options_section(('saving-paths', "Paths for saving"), {
+ "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
+ "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
+ "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
+ "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
+ "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
+ "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
+ "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
+ "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
+ "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
+}))
+
+options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
+ "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
+ "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
+ "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
+ "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
+}))
+
+options_templates.update(options_section(('upscaling', "Upscaling"), {
+ "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
+ "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
+ "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
+ "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
+}))
+
+options_templates.update(options_section(('face-restoration', "Face restoration"), {
+ "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
+ "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
+ "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
+}))
+
+options_templates.update(options_section(('system', "System"), {
+ "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}),
+ "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(),
+ "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(),
+ "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
+ "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
+ "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
+ "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
+ "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
+ "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
+ "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
+}))
+
+options_templates.update(options_section(('training', "Training"), {
+ "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
+ "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
+ "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
+ "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
+ "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
+ "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
+ "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
+ "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
+ "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
+ "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
+ "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
+}))
+
+options_templates.update(options_section(('sd', "Stable Diffusion"), {
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
+ "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
+ "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
+ "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
+ "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
+ "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(),
+ "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
+ "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
+ "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
+ "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
+ "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
+ "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
+}))
+
+options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
+ "sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
+ "sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
+ "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
+ "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
+}))
+
+options_templates.update(options_section(('vae', "VAE"), {
+ "sd_vae_explanation": OptionHTML("""
+VAE is a neural network that transforms a standard RGB
+image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling
+(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished.
+For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.
+"""),
+ "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+ "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
+ "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
+ "auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
+ "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
+ "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"),
+}))
+
+options_templates.update(options_section(('img2img', "img2img"), {
+ "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
+ "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
+ "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
+ "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
+ "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(),
+ "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(),
+ "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(),
+ "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(),
+ "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
+ "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
+}))
+
+options_templates.update(options_section(('optimizations', "Optimizations"), {
+ "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
+ "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
+ "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
+ "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
+ "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
+}))
+
+options_templates.update(options_section(('compatibility', "Compatibility"), {
+ "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
+ "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
+ "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
+ "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
+ "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
+ "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
+}))
+
+options_templates.update(options_section(('interrogate', "Interrogate"), {
+ "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
+ "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
+ "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
+ "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
+ "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
+ "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
+ "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
+ "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
+ "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
+ "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
+ "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
+ "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
+}))
+
+options_templates.update(options_section(('extra_networks', "Extra Networks"), {
+ "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
+ "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
+ "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
+ "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
+ "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
+ "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
+ "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
+ "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
+ "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
+ "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
+ "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
+}))
+
+options_templates.update(options_section(('ui', "User interface"), {
+ "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
+ "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
+ "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
+ "return_grid": OptionInfo(True, "Show grid in results for web"),
+ "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
+ "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
+ "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
+ "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
+ "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
+ "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
+ "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
+ "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
+ "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(),
+ "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
+ "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
+ "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
+ "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
+ "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
+ "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
+ "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
+ "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
+ "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
+}))
+
+
+options_templates.update(options_section(('infotext', "Infotext"), {
+ "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
+ "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
+ "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
+ "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
+ "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
+ "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""
+- Ignore: keep prompt and styles dropdown as it is.
+- Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).
+- Discard: remove style text from prompt, keep styles dropdown as it is.
+- Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.
+
"""),
+
+}))
+
+options_templates.update(options_section(('ui', "Live previews"), {
+ "show_progressbar": OptionInfo(True, "Show progressbar"),
+ "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
+ "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
+ "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
+ "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
+ "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
+ "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
+ "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
+}))
+
+options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
+ "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
+ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}).info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
+ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}).info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
+ 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}).info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
+ 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
+ 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
+ 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
+ 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
+ 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
+ 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
+ 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
+}))
+
+options_templates.update(options_section(('postprocessing', "Postprocessing"), {
+ 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+}))
+
+options_templates.update(options_section((None, "Hidden options"), {
+ "disabled_extensions": OptionInfo([], "Disable these extensions"),
+ "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
+ "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
+ "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
+}))
+
+
+options_templates.update()
+
+
+class Options:
+ data = None
+ data_labels = options_templates
+ typemap = {int: float}
+
+ def __init__(self):
+ self.data = {k: v.default for k, v in self.data_labels.items()}
+
+ def __setattr__(self, key, value):
+ if self.data is not None:
+ if key in self.data or key in self.data_labels:
+ assert not cmd_opts.freeze_settings, "changing settings is disabled"
+
+ info = opts.data_labels.get(key, None)
+ if info.do_not_save:
+ return
+
+ comp_args = info.component_args if info else None
+ if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ if cmd_opts.hide_ui_dir_config and key in restricted_opts:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ self.data[key] = value
+ return
+
+ return super(Options, self).__setattr__(key, value)
+
+ def __getattr__(self, item):
+ if self.data is not None:
+ if item in self.data:
+ return self.data[item]
+
+ if item in self.data_labels:
+ return self.data_labels[item].default
+
+ return super(Options, self).__getattribute__(item)
+
+ def set(self, key, value):
+ """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
+
+ oldval = self.data.get(key, None)
+ if oldval == value:
+ return False
+
+ if self.data_labels[key].do_not_save:
+ return False
+
+ try:
+ setattr(self, key, value)
+ except RuntimeError:
+ return False
+
+ if self.data_labels[key].onchange is not None:
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
+
+ return True
+
+ def get_default(self, key):
+ """returns the default value for the key"""
+
+ data_label = self.data_labels.get(key)
+ if data_label is None:
+ return None
+
+ return data_label.default
+
+ def save(self, filename):
+ assert not cmd_opts.freeze_settings, "saving settings is disabled"
+
+ with open(filename, "w", encoding="utf8") as file:
+ json.dump(self.data, file, indent=4)
+
+ def same_type(self, x, y):
+ if x is None or y is None:
+ return True
+
+ type_x = self.typemap.get(type(x), type(x))
+ type_y = self.typemap.get(type(y), type(y))
+
+ return type_x == type_y
+
+ def load(self, filename):
+ with open(filename, "r", encoding="utf8") as file:
+ self.data = json.load(file)
+
+ # 1.6.0 VAE defaults
+ if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
+ self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
+
+ # 1.1.1 quicksettings list migration
+ if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
+ self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
+
+ # 1.4.0 ui_reorder
+ if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
+ self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
+
+ bad_settings = 0
+ for k, v in self.data.items():
+ info = self.data_labels.get(k, None)
+ if info is not None and not self.same_type(info.default, v):
+ print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
+ bad_settings += 1
+
+ if bad_settings > 0:
+ print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
+
+ def onchange(self, key, func, call=True):
+ item = self.data_labels.get(key)
+ item.onchange = func
+
+ if call:
+ func()
+
+ def dumpjson(self):
+ d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
+ d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
+ d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
+ return json.dumps(d)
+
+ def add_option(self, key, info):
+ self.data_labels[key] = info
+
+ def reorder(self):
+ """reorder settings so that all items related to section always go together"""
+
+ section_ids = {}
+ settings_items = self.data_labels.items()
+ for _, item in settings_items:
+ if item.section not in section_ids:
+ section_ids[item.section] = len(section_ids)
+
+ self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
+
+ def cast_value(self, key, value):
+ """casts an arbitrary to the same type as this setting's value with key
+ Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
+ """
+
+ if value is None:
+ return None
+
+ default_value = self.data_labels[key].default
+ if default_value is None:
+ default_value = getattr(self, key, None)
+ if default_value is None:
+ return None
+
+ expected_type = type(default_value)
+ if expected_type == bool and value == "False":
+ value = False
+ else:
+ value = expected_type(value)
+
+ return value
+
+
+opts = Options()
+if os.path.exists(config_filename):
+ opts.load(config_filename)
+
+
+class Shared(sys.modules[__name__].__class__):
+ """
+ this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
+ at program startup.
+ """
+
+ sd_model_val = None
+
+ @property
+ def sd_model(self):
+ import modules.sd_models
+
+ return modules.sd_models.model_data.get_sd_model()
+
+ @sd_model.setter
+ def sd_model(self, value):
+ import modules.sd_models
+
+ modules.sd_models.model_data.set_sd_model(value)
+
+
+sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
+sys.modules[__name__].__class__ = Shared
+
+settings_components = None
+"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
+
+latent_upscale_default_mode = "Latent"
+latent_upscale_modes = {
+ "Latent": {"mode": "bilinear", "antialias": False},
+ "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
+ "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
+ "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (nearest)": {"mode": "nearest", "antialias": False},
+ "Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
+}
+
+sd_upscalers = []
+
+clip_model = None
+
+progress_print_out = sys.stdout
+
+gradio_theme = gr.themes.Base()
+
+
+def reload_gradio_theme(theme_name=None):
+ global gradio_theme
+ if not theme_name:
+ theme_name = opts.gradio_theme
+
+ default_theme_args = dict(
+ font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
+ font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
+ )
+
+ if theme_name == "Default":
+ gradio_theme = gr.themes.Default(**default_theme_args)
+ else:
+ try:
+ theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes')
+ theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json')
+ if opts.gradio_themes_cache and os.path.exists(theme_cache_path):
+ gradio_theme = gr.themes.ThemeClass.load(theme_cache_path)
+ else:
+ os.makedirs(theme_cache_dir, exist_ok=True)
+ gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
+ gradio_theme.dump(theme_cache_path)
+ except Exception as e:
+ errors.display(e, "changing gradio theme")
+ gradio_theme = gr.themes.Default(**default_theme_args)
+
+
+class TotalTQDM:
+ def __init__(self):
+ self._tqdm = None
+
+ def reset(self):
+ self._tqdm = tqdm.tqdm(
+ desc="Total progress",
+ total=state.job_count * state.sampling_steps,
+ position=1,
+ file=progress_print_out
+ )
+
+ def update(self):
+ if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.update()
+
+ def updateTotal(self, new_total):
+ if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.total = new_total
+
+ def clear(self):
+ if self._tqdm is not None:
+ self._tqdm.refresh()
+ self._tqdm.close()
+ self._tqdm = None
+
+
+total_tqdm = TotalTQDM()
+
+mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
+mem_mon.start()
+
+
+def natural_sort_key(s, regex=re.compile('([0-9]+)')):
+ return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
+
+
+def listfiles(dirname):
+ filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
+ return [file for file in filenames if os.path.isfile(file)]
+
+
+def html_path(filename):
+ return os.path.join(script_path, "html", filename)
+
+
+def html(filename):
+ path = html_path(filename)
+
+ if os.path.exists(path):
+ with open(path, encoding="utf8") as file:
+ return file.read()
+
+ return ""
+
+
+def walk_files(path, allowed_extensions=None):
+ if not os.path.exists(path):
+ return
+
+ if allowed_extensions is not None:
+ allowed_extensions = set(allowed_extensions)
+
+ items = list(os.walk(path, followlinks=True))
+ items = sorted(items, key=lambda x: natural_sort_key(x[0]))
+
+ for root, _, files in items:
+ for filename in sorted(files, key=natural_sort_key):
+ if allowed_extensions is not None:
+ _, ext = os.path.splitext(filename)
+ if ext not in allowed_extensions:
+ continue
+
+ if not opts.list_hidden_files and ("/." in root or "\\." in root):
+ continue
+
+ yield os.path.join(root, filename)
+
+
+def ldm_print(*args, **kwargs):
+ if opts.hide_ldm_prints:
+ return
+
+ print(*args, **kwargs)
--
cgit v1.2.3
From 386245a26427a64f364f66f6fecd03b3bccfd7f3 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Wed, 9 Aug 2023 10:25:35 +0300
Subject: split shared.py into multiple files; should resolve all circular
reference import errors related to shared.py
---
modules/shared_options.py | 692 ++--------------------------------------------
1 file changed, 16 insertions(+), 676 deletions(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index e9b980a4..7468bc81 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -1,40 +1,12 @@
-import datetime
-import json
-import os
-import re
-import sys
-import threading
-import time
-import logging
-
import gradio as gr
-import torch
-import tqdm
-
-import launch
-import modules.interrogate
-import modules.memmon
-import modules.styles
-import modules.devices as devices
-from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args, rng # noqa: F401
-from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
-from ldm.models.diffusion.ddpm import LatentDiffusion
-from typing import Optional
-
-log = logging.getLogger(__name__)
-
-demo = None
-
-parser = cmd_args.parser
-script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
-script_loading.preload_extensions(extensions_builtin_dir, parser)
-
-if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
- cmd_opts = parser.parse_args()
-else:
- cmd_opts, _ = parser.parse_known_args()
+from modules import localization, ui_components, shared_items, shared, interrogate, shared_gradio_themes
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+from modules.shared_cmd_options import cmd_opts
+from modules.options import options_section, OptionInfo, OptionHTML
+options_templates = {}
+hide_dirs = shared.hide_dirs
restricted_opts = {
"samples_filename_pattern",
@@ -49,302 +21,6 @@ restricted_opts = {
"outdir_init_images"
}
-# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
-gradio_hf_hub_themes = [
- "gradio/base",
- "gradio/glass",
- "gradio/monochrome",
- "gradio/seafoam",
- "gradio/soft",
- "gradio/dracula_test",
- "abidlabs/dracula_test",
- "abidlabs/Lime",
- "abidlabs/pakistan",
- "Ama434/neutral-barlow",
- "dawood/microsoft_windows",
- "finlaymacklon/smooth_slate",
- "Franklisi/darkmode",
- "freddyaboulton/dracula_revamped",
- "freddyaboulton/test-blue",
- "gstaff/xkcd",
- "Insuz/Mocha",
- "Insuz/SimpleIndigo",
- "JohnSmith9982/small_and_pretty",
- "nota-ai/theme",
- "nuttea/Softblue",
- "ParityError/Anime",
- "reilnuud/polite",
- "remilia/Ghostly",
- "rottenlittlecreature/Moon_Goblin",
- "step-3-profit/Midnight-Deep",
- "Taithrah/Minimal",
- "ysharma/huggingface",
- "ysharma/steampunk"
-]
-
-
-cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
-
-devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
- (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
-
-devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
-devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
-
-device = devices.device
-weight_load_location = None if cmd_opts.lowram else "cpu"
-
-batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
-parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
-xformers_available = False
-config_filename = cmd_opts.ui_settings_file
-
-os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
-hypernetworks = {}
-loaded_hypernetworks = []
-
-
-def reload_hypernetworks():
- from modules.hypernetworks import hypernetwork
- global hypernetworks
-
- hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
-
-
-class State:
- skipped = False
- interrupted = False
- job = ""
- job_no = 0
- job_count = 0
- processing_has_refined_job_count = False
- job_timestamp = '0'
- sampling_step = 0
- sampling_steps = 0
- current_latent = None
- current_image = None
- current_image_sampling_step = 0
- id_live_preview = 0
- textinfo = None
- time_start = None
- server_start = None
- _server_command_signal = threading.Event()
- _server_command: Optional[str] = None
-
- @property
- def need_restart(self) -> bool:
- # Compatibility getter for need_restart.
- return self.server_command == "restart"
-
- @need_restart.setter
- def need_restart(self, value: bool) -> None:
- # Compatibility setter for need_restart.
- if value:
- self.server_command = "restart"
-
- @property
- def server_command(self):
- return self._server_command
-
- @server_command.setter
- def server_command(self, value: Optional[str]) -> None:
- """
- Set the server command to `value` and signal that it's been set.
- """
- self._server_command = value
- self._server_command_signal.set()
-
- def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
- """
- Wait for server command to get set; return and clear the value and signal.
- """
- if self._server_command_signal.wait(timeout):
- self._server_command_signal.clear()
- req = self._server_command
- self._server_command = None
- return req
- return None
-
- def request_restart(self) -> None:
- self.interrupt()
- self.server_command = "restart"
- log.info("Received restart request")
-
- def skip(self):
- self.skipped = True
- log.info("Received skip request")
-
- def interrupt(self):
- self.interrupted = True
- log.info("Received interrupt request")
-
- def nextjob(self):
- if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
- self.do_set_current_image()
-
- self.job_no += 1
- self.sampling_step = 0
- self.current_image_sampling_step = 0
-
- def dict(self):
- obj = {
- "skipped": self.skipped,
- "interrupted": self.interrupted,
- "job": self.job,
- "job_count": self.job_count,
- "job_timestamp": self.job_timestamp,
- "job_no": self.job_no,
- "sampling_step": self.sampling_step,
- "sampling_steps": self.sampling_steps,
- }
-
- return obj
-
- def begin(self, job: str = "(unknown)"):
- self.sampling_step = 0
- self.job_count = -1
- self.processing_has_refined_job_count = False
- self.job_no = 0
- self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- self.current_latent = None
- self.current_image = None
- self.current_image_sampling_step = 0
- self.id_live_preview = 0
- self.skipped = False
- self.interrupted = False
- self.textinfo = None
- self.time_start = time.time()
- self.job = job
- devices.torch_gc()
- log.info("Starting job %s", job)
-
- def end(self):
- duration = time.time() - self.time_start
- log.info("Ending job %s (%.2f seconds)", self.job, duration)
- self.job = ""
- self.job_count = 0
-
- devices.torch_gc()
-
- def set_current_image(self):
- """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
- if not parallel_processing_allowed:
- return
-
- if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
- self.do_set_current_image()
-
- def do_set_current_image(self):
- if self.current_latent is None:
- return
-
- import modules.sd_samplers
-
- try:
- if opts.show_progress_grid:
- self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
- else:
- self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
-
- self.current_image_sampling_step = self.sampling_step
-
- except Exception:
- # when switching models during genration, VAE would be on CPU, so creating an image will fail.
- # we silently ignore this error
- errors.record_exception()
-
- def assign_current_image(self, image):
- self.current_image = image
- self.id_live_preview += 1
-
-
-state = State()
-state.server_start = time.time()
-
-styles_filename = cmd_opts.styles_file
-prompt_styles = modules.styles.StyleDatabase(styles_filename)
-
-interrogator = modules.interrogate.InterrogateModels("interrogate")
-
-face_restorers = []
-
-
-class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
- self.default = default
- self.label = label
- self.component = component
- self.component_args = component_args
- self.onchange = onchange
- self.section = section
- self.refresh = refresh
- self.do_not_save = False
-
- self.comment_before = comment_before
- """HTML text that will be added after label in UI"""
-
- self.comment_after = comment_after
- """HTML text that will be added before label in UI"""
-
- def link(self, label, url):
- self.comment_before += f"[{label}]"
- return self
-
- def js(self, label, js_func):
- self.comment_before += f"[{label}]"
- return self
-
- def info(self, info):
- self.comment_after += f"({info})"
- return self
-
- def html(self, html):
- self.comment_after += html
- return self
-
- def needs_restart(self):
- self.comment_after += " (requires restart)"
- return self
-
- def needs_reload_ui(self):
- self.comment_after += " (requires Reload UI)"
- return self
-
-
-class OptionHTML(OptionInfo):
- def __init__(self, text):
- super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
-
- self.do_not_save = True
-
-
-def options_section(section_identifier, options_dict):
- for v in options_dict.values():
- v.section = section_identifier
-
- return options_dict
-
-
-def list_checkpoint_tiles():
- import modules.sd_models
- return modules.sd_models.checkpoint_tiles()
-
-
-def refresh_checkpoints():
- import modules.sd_models
- return modules.sd_models.list_models()
-
-
-def list_samplers():
- import modules.sd_samplers
- return modules.sd_samplers.all_samplers
-
-
-hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
-tab_names = []
-
-options_templates = {}
-
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('png', 'File format for images'),
@@ -412,11 +88,11 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
- "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
+ "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
+ "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in shared.face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
}))
@@ -450,7 +126,7 @@ options_templates.update(options_section(('training', "Training"), {
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints),
"sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
@@ -526,7 +202,7 @@ options_templates.update(options_section(('interrogate', "Interrogate"), {
"interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
- "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
+ "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": interrogate.category_types()}, refresh=interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
"deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
@@ -546,12 +222,12 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
"textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
- "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
"localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
- "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
+ "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
"gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
@@ -568,9 +244,9 @@ options_templates.update(options_section(('ui', "User interface"), {
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
"keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
- "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
- "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
- "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
+ "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
+ "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
"ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
"hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
"hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
@@ -605,7 +281,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(),
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(),
"eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
"eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
@@ -638,339 +314,3 @@ options_templates.update(options_section((None, "Hidden options"), {
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
-
-options_templates.update()
-
-
-class Options:
- data = None
- data_labels = options_templates
- typemap = {int: float}
-
- def __init__(self):
- self.data = {k: v.default for k, v in self.data_labels.items()}
-
- def __setattr__(self, key, value):
- if self.data is not None:
- if key in self.data or key in self.data_labels:
- assert not cmd_opts.freeze_settings, "changing settings is disabled"
-
- info = opts.data_labels.get(key, None)
- if info.do_not_save:
- return
-
- comp_args = info.component_args if info else None
- if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
-
- if cmd_opts.hide_ui_dir_config and key in restricted_opts:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
-
- self.data[key] = value
- return
-
- return super(Options, self).__setattr__(key, value)
-
- def __getattr__(self, item):
- if self.data is not None:
- if item in self.data:
- return self.data[item]
-
- if item in self.data_labels:
- return self.data_labels[item].default
-
- return super(Options, self).__getattribute__(item)
-
- def set(self, key, value):
- """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
-
- oldval = self.data.get(key, None)
- if oldval == value:
- return False
-
- if self.data_labels[key].do_not_save:
- return False
-
- try:
- setattr(self, key, value)
- except RuntimeError:
- return False
-
- if self.data_labels[key].onchange is not None:
- try:
- self.data_labels[key].onchange()
- except Exception as e:
- errors.display(e, f"changing setting {key} to {value}")
- setattr(self, key, oldval)
- return False
-
- return True
-
- def get_default(self, key):
- """returns the default value for the key"""
-
- data_label = self.data_labels.get(key)
- if data_label is None:
- return None
-
- return data_label.default
-
- def save(self, filename):
- assert not cmd_opts.freeze_settings, "saving settings is disabled"
-
- with open(filename, "w", encoding="utf8") as file:
- json.dump(self.data, file, indent=4)
-
- def same_type(self, x, y):
- if x is None or y is None:
- return True
-
- type_x = self.typemap.get(type(x), type(x))
- type_y = self.typemap.get(type(y), type(y))
-
- return type_x == type_y
-
- def load(self, filename):
- with open(filename, "r", encoding="utf8") as file:
- self.data = json.load(file)
-
- # 1.6.0 VAE defaults
- if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
- self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
-
- # 1.1.1 quicksettings list migration
- if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
- self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
-
- # 1.4.0 ui_reorder
- if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
- self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
-
- bad_settings = 0
- for k, v in self.data.items():
- info = self.data_labels.get(k, None)
- if info is not None and not self.same_type(info.default, v):
- print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
- bad_settings += 1
-
- if bad_settings > 0:
- print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
-
- def onchange(self, key, func, call=True):
- item = self.data_labels.get(key)
- item.onchange = func
-
- if call:
- func()
-
- def dumpjson(self):
- d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
- d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
- d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
- return json.dumps(d)
-
- def add_option(self, key, info):
- self.data_labels[key] = info
-
- def reorder(self):
- """reorder settings so that all items related to section always go together"""
-
- section_ids = {}
- settings_items = self.data_labels.items()
- for _, item in settings_items:
- if item.section not in section_ids:
- section_ids[item.section] = len(section_ids)
-
- self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
-
- def cast_value(self, key, value):
- """casts an arbitrary to the same type as this setting's value with key
- Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
- """
-
- if value is None:
- return None
-
- default_value = self.data_labels[key].default
- if default_value is None:
- default_value = getattr(self, key, None)
- if default_value is None:
- return None
-
- expected_type = type(default_value)
- if expected_type == bool and value == "False":
- value = False
- else:
- value = expected_type(value)
-
- return value
-
-
-opts = Options()
-if os.path.exists(config_filename):
- opts.load(config_filename)
-
-
-class Shared(sys.modules[__name__].__class__):
- """
- this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
- at program startup.
- """
-
- sd_model_val = None
-
- @property
- def sd_model(self):
- import modules.sd_models
-
- return modules.sd_models.model_data.get_sd_model()
-
- @sd_model.setter
- def sd_model(self, value):
- import modules.sd_models
-
- modules.sd_models.model_data.set_sd_model(value)
-
-
-sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
-sys.modules[__name__].__class__ = Shared
-
-settings_components = None
-"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
-
-latent_upscale_default_mode = "Latent"
-latent_upscale_modes = {
- "Latent": {"mode": "bilinear", "antialias": False},
- "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
- "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
- "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
- "Latent (nearest)": {"mode": "nearest", "antialias": False},
- "Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
-}
-
-sd_upscalers = []
-
-clip_model = None
-
-progress_print_out = sys.stdout
-
-gradio_theme = gr.themes.Base()
-
-
-def reload_gradio_theme(theme_name=None):
- global gradio_theme
- if not theme_name:
- theme_name = opts.gradio_theme
-
- default_theme_args = dict(
- font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
- font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
- )
-
- if theme_name == "Default":
- gradio_theme = gr.themes.Default(**default_theme_args)
- else:
- try:
- theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes')
- theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json')
- if opts.gradio_themes_cache and os.path.exists(theme_cache_path):
- gradio_theme = gr.themes.ThemeClass.load(theme_cache_path)
- else:
- os.makedirs(theme_cache_dir, exist_ok=True)
- gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
- gradio_theme.dump(theme_cache_path)
- except Exception as e:
- errors.display(e, "changing gradio theme")
- gradio_theme = gr.themes.Default(**default_theme_args)
-
-
-class TotalTQDM:
- def __init__(self):
- self._tqdm = None
-
- def reset(self):
- self._tqdm = tqdm.tqdm(
- desc="Total progress",
- total=state.job_count * state.sampling_steps,
- position=1,
- file=progress_print_out
- )
-
- def update(self):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.update()
-
- def updateTotal(self, new_total):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.total = new_total
-
- def clear(self):
- if self._tqdm is not None:
- self._tqdm.refresh()
- self._tqdm.close()
- self._tqdm = None
-
-
-total_tqdm = TotalTQDM()
-
-mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
-mem_mon.start()
-
-
-def natural_sort_key(s, regex=re.compile('([0-9]+)')):
- return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
-
-
-def listfiles(dirname):
- filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
- return [file for file in filenames if os.path.isfile(file)]
-
-
-def html_path(filename):
- return os.path.join(script_path, "html", filename)
-
-
-def html(filename):
- path = html_path(filename)
-
- if os.path.exists(path):
- with open(path, encoding="utf8") as file:
- return file.read()
-
- return ""
-
-
-def walk_files(path, allowed_extensions=None):
- if not os.path.exists(path):
- return
-
- if allowed_extensions is not None:
- allowed_extensions = set(allowed_extensions)
-
- items = list(os.walk(path, followlinks=True))
- items = sorted(items, key=lambda x: natural_sort_key(x[0]))
-
- for root, _, files in items:
- for filename in sorted(files, key=natural_sort_key):
- if allowed_extensions is not None:
- _, ext = os.path.splitext(filename)
- if ext not in allowed_extensions:
- continue
-
- if not opts.list_hidden_files and ("/." in root or "\\." in root):
- continue
-
- yield os.path.join(root, filename)
-
-
-def ldm_print(*args, **kwargs):
- if opts.hide_ldm_prints:
- return
-
- print(*args, **kwargs)
--
cgit v1.2.3
From 33446acf47a8c3e0c0964782189562df3c4bcf4f Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Thu, 10 Aug 2023 12:41:41 +0300
Subject: face restoration and tiling moved to settings - use "Options in main
UI" setting if you want them back
---
modules/shared_options.py | 2 ++
1 file changed, 2 insertions(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 7468bc81..f72859d9 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -92,6 +92,7 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
+ "face_restoration": OptionInfo(False, "Restore faces").info("will use a third-party model on generation result to reconstruct faces"),
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in shared.face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
@@ -138,6 +139,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
+ "tiling": OptionInfo(False, "Tiling").info("produce a tileable picture"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
--
cgit v1.2.3
From 070b034cd5b49eb5056a18b43f88aa223fec9e0b Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Thu, 10 Aug 2023 16:42:26 +0300
Subject: put infotext label for setting into OptionInfo definition rather than
in a separate list
---
modules/shared_options.py | 56 +++++++++++++++++++++++------------------------
1 file changed, 28 insertions(+), 28 deletions(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index f72859d9..9ae51f18 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -92,7 +92,7 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration": OptionInfo(False, "Restore faces").info("will use a third-party model on generation result to reconstruct faces"),
+ "face_restoration": OptionInfo(False, "Restore faces", infotext='Face restoration').info("will use a third-party model on generation result to reconstruct faces"),
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in shared.face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
@@ -127,7 +127,7 @@ options_templates.update(options_section(('training', "Training"), {
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints),
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext='Model hash'),
"sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
@@ -136,10 +136,10 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
- "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
+ "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}, infotext="Clip skip").link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
- "tiling": OptionInfo(False, "Tiling").info("produce a tileable picture"),
+ "tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
@@ -157,16 +157,16 @@ image into latent space representation and back. Latent space representation is
For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.
"""),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
+ "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
"sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
"auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
- "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
- "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"),
+ "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
+ "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"),
}))
options_templates.update(options_section(('img2img', "img2img"), {
- "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
+ "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Conditional mask weight'),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}, infotext='Noise multiplier'),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
@@ -181,10 +181,10 @@ options_templates.update(options_section(('img2img', "img2img"), {
options_templates.update(options_section(('optimizations', "Optimizations"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
"s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
- "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
+ "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
+ "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
}))
@@ -284,23 +284,23 @@ options_templates.update(options_section(('ui', "Live previews"), {
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(),
- "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
- "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unperdictable results"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; applies to Euler a and other samplers that have a in them"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
- 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}).info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
- 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}).info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
- 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}).info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
- 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
- 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
- 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
- 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
- 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
- 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
- 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
- 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
- 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
- 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
+ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
+ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
+ 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
+ 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
+ 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
+ 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
+ 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
+ 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
+ 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
+ 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
--
cgit v1.2.3
From ac8a5d18d3ede6bcb8fa5a3da1c7c28e064cd65d Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Thu, 10 Aug 2023 17:04:59 +0300
Subject: resolve merge issues
---
modules/shared_options.py | 2 ++
1 file changed, 2 insertions(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 9ae51f18..1e5b64ea 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -140,6 +140,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
"tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
+ "sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext="Refiner").info("switch to another model in the middle of generation"),
+ "sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Refiner switch at').info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
--
cgit v1.2.3
From 64311faa6848d641cc452115e4e1eb47d2a7b519 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Sat, 12 Aug 2023 12:39:59 +0300
Subject: put refiner into main UI, into the new accordions section add VAE
from main model into infotext, not from refiner model option to make scripts
UI without gr.Group fix inconsistencies with refiner when usings samplers
that do more denoising than steps
---
modules/shared_options.py | 2 --
1 file changed, 2 deletions(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 1e5b64ea..9ae51f18 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -140,8 +140,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
"tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
- "sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext="Refiner").info("switch to another model in the middle of generation"),
- "sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Refiner switch at').info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
--
cgit v1.2.3
From 60a74051656e1e430aa7b466cfee8c13c6dc1a12 Mon Sep 17 00:00:00 2001
From: catboxanon <122327233+catboxanon@users.noreply.github.com>
Date: Sun, 13 Aug 2023 08:06:40 -0400
Subject: Update description of eta setting
---
modules/shared_options.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 9ae51f18..96db759b 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -285,7 +285,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(),
"eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unperdictable results"),
- "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; applies to Euler a and other samplers that have a in them"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for k-diffusion samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; currently only applies to ancestral samplers (i.e. Euler a) and SDE samplers"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
--
cgit v1.2.3
From f4757032e7a0663abe2695c95048fdfff3fc5e2f Mon Sep 17 00:00:00 2001
From: catboxanon <122327233+catboxanon@users.noreply.github.com>
Date: Sun, 13 Aug 2023 08:24:28 -0400
Subject: Fix s_noise description
---
modules/shared_options.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 9ae51f18..279e9f54 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -290,7 +290,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'),
'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
--
cgit v1.2.3
From b39d9364d8a3be1ec8a4bae34fc8ae1840609101 Mon Sep 17 00:00:00 2001
From: whitebell
Date: Mon, 14 Aug 2023 15:58:38 +0900
Subject: Fix typo in shared_options.py
unperdictable -> unpredictable
---
modules/shared_options.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 7f6c3658..fc0de61f 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -284,7 +284,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
"hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(),
- "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unperdictable results"),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unpredictable results"),
"eta_ancestral": OptionInfo(1.0, "Eta for k-diffusion samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; currently only applies to ancestral samplers (i.e. Euler a) and SDE samplers"),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
--
cgit v1.2.3
From 371b24b17c1cf98c9068a4b585b93cc1610702dc Mon Sep 17 00:00:00 2001
From: catboxanon <122327233+catboxanon@users.noreply.github.com>
Date: Tue, 15 Aug 2023 02:19:19 -0400
Subject: Add extra img2img noise
---
modules/shared_options.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index fc0de61f..79cbb92e 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -166,7 +166,8 @@ For img2img, VAE is used to process user's input image before the sampling, and
options_templates.update(options_section(('img2img', "img2img"), {
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Conditional mask weight'),
- "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}, infotext='Noise multiplier'),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.0, "maximum": 1.5, "step": 0.001}, infotext='Noise multiplier'),
+ "img2img_extra_noise": OptionInfo(0.0, "Extra noise multiplier for img2img and hires fix", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Extra noise').info("0 = disabled (default); should be lower than denoising strength"),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
--
cgit v1.2.3
From 3ce5fb8e5c3a6577172e89e964d570f8b31a998b Mon Sep 17 00:00:00 2001
From: catboxanon <122327233+catboxanon@users.noreply.github.com>
Date: Thu, 17 Aug 2023 20:03:26 -0400
Subject: Add option for faster live interrupt
---
modules/shared_options.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 79cbb92e..3e4bcaef 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -281,6 +281,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
"show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
+ "live_preview_fast_interrupt": OptionInfo(False, "Return image with chosen live preview method on interrupt").info("makes interrupts faster"),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
--
cgit v1.2.3
From 44d4e7c500a9a6c5cb89db58364d82a886ef2f8c Mon Sep 17 00:00:00 2001
From: catboxanon <122327233+catboxanon@users.noreply.github.com>
Date: Fri, 18 Aug 2023 05:15:30 -0400
Subject: Gallery: Set preview to True, allow custom height
---
modules/shared_options.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 79cbb92e..cdc42b3d 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -232,6 +232,7 @@ options_templates.update(options_section(('ui', "User interface"), {
"localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
"gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
"gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
+ "gallery_height": OptionInfo("", "Gallery height", gr.Textbox).info("an be any valid CSS value").needs_reload_ui(),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
--
cgit v1.2.3
From 76ae1019b96c4673231a116f0b20bb85ebec5666 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Mon, 21 Aug 2023 07:38:07 +0300
Subject: add settings for http/https URLs in source images in api
---
modules/shared_options.py | 6 ++++++
1 file changed, 6 insertions(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 8630d474..5f30e8e9 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -111,6 +111,12 @@ options_templates.update(options_section(('system', "System"), {
"hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
}))
+options_templates.update(options_section(('API', "API"), {
+ "api_enable_requests": OptionInfo(True, "Allow http:// and https:// URLs for input images in API"),
+ "api_forbid_local_requests": OptionInfo(True, "Forbid URLs to local resources"),
+ "api_useragent": OptionInfo("", "User agent for requests"),
+}))
+
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
--
cgit v1.2.3
From b4d21e7113384bbb592bbd79bca06aeb9e4d640a Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Mon, 21 Aug 2023 07:59:57 +0300
Subject: prevent API options from being changed via API
---
modules/shared_options.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 5f30e8e9..6f1a738d 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -112,9 +112,9 @@ options_templates.update(options_section(('system', "System"), {
}))
options_templates.update(options_section(('API', "API"), {
- "api_enable_requests": OptionInfo(True, "Allow http:// and https:// URLs for input images in API"),
- "api_forbid_local_requests": OptionInfo(True, "Forbid URLs to local resources"),
- "api_useragent": OptionInfo("", "User agent for requests"),
+ "api_enable_requests": OptionInfo(True, "Allow http:// and https:// URLs for input images in API", restrict_api=True),
+ "api_forbid_local_requests": OptionInfo(True, "Forbid URLs to local resources", restrict_api=True),
+ "api_useragent": OptionInfo("", "User agent for requests", restrict_api=True),
}))
options_templates.update(options_section(('training', "Training"), {
--
cgit v1.2.3
From dfd6ea3fcaf2eb701af61136a290132303a729d5 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Mon, 21 Aug 2023 15:07:10 +0300
Subject: ditch --always-batch-cond-uncond in favor of an UI setting
---
modules/shared_options.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 6f1a738d..095cf479 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -192,7 +192,8 @@ options_templates.update(options_section(('optimizations', "Optimizations"), {
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
"pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
- "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
+ "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
+ "batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
--
cgit v1.2.3
From 953c3eab7b3b952f7e96d728413a531d7fb521a2 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Mon, 21 Aug 2023 15:54:30 +0300
Subject: forbid Full live preview method for medvram and add a setting to undo
the forbidding
---
modules/shared_options.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 095cf479..88f6b334 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -287,6 +287,7 @@ options_templates.update(options_section(('ui', "Live previews"), {
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
"show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
+ "live_preview_allow_lowvram_full": OptionInfo(False, "Allow Full live preview method with lowvram/medvram").info("If not, Approx NN will be used instead; Full live preview method is very detrimental to speed if lowvram/medvram optimizations are enabled"),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
"live_preview_fast_interrupt": OptionInfo(False, "Return image with chosen live preview method on interrupt").info("makes interrupts faster"),
--
cgit v1.2.3
From 995ff5902fe0567e4cb2aa2e8ac3d554fca7b1ab Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Thu, 24 Aug 2023 10:07:54 +0300
Subject: add infotext for use_old_scheduling option
---
modules/shared_options.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index d1389838..83f56314 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -203,7 +203,7 @@ options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
- "use_old_scheduling": OptionInfo(False, "Use old prompt where first pass and hires both used the same timeline, and < 1 meant relative and >= 1 meant absolute"),
+ "use_old_scheduling": OptionInfo(False, "Use old prompt editing timelines.", infotext="Old prompt editing timelines").info("For [red:green:N]; old: If N < 1, it's a fraction of steps (and hires fix uses range from 0 to 1), if N >= 1, it's an absolute number of steps; new: If N has a decimal point in it, it's a fraction of steps (and hires fix uses range from 1 to 2), othewrwise it's an absolute number of steps"),
}))
options_templates.update(options_section(('interrogate', "Interrogate"), {
--
cgit v1.2.3
From 86708463f1767222262d4b970e01311fe54eb243 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Mon, 28 Aug 2023 07:20:33 +0300
Subject: Merge pull request #12819 from catboxanon/fix/rng-infotext
Add missing infotext for RNG in options
---
modules/shared_options.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 83f56314..0f054f47 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -144,7 +144,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}, infotext="Clip skip").link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
- "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
+ "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}, infotext="RNG").info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
"tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
}))
--
cgit v1.2.3
From 738e133b24e27ac8d7babeb4714053204636d2c8 Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Tue, 29 Aug 2023 08:54:09 +0300
Subject: Merge pull request #12818 from catboxanon/sgm
Add option to align with sgm repo's sampling implementation
---
modules/shared_options.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 0f054f47..78652ea2 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -309,6 +309,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
+ 'sgm_noise_multiplier': OptionInfo(False, "SGM noise multiplier", infotext='SGM noise multplier').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12818").info("Match initial noise to official SDXL implementation - only useful for reproducing images"),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
--
cgit v1.2.3
From 87cca029d7133b4060650b8ec33fc6772cc2f7dd Mon Sep 17 00:00:00 2001
From: AUTOMATIC1111 <16777216c@gmail.com>
Date: Wed, 30 Aug 2023 18:22:50 +0300
Subject: add an option to choose how to combine hires fix and refiner
---
modules/shared_options.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared_options.py')
diff --git a/modules/shared_options.py b/modules/shared_options.py
index 78652ea2..00b273fa 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -146,6 +146,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}, infotext="RNG").info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
"tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
+ "hires_fix_refiner_pass": OptionInfo("second pass", "Hires fix: which pass to enable refiner for", gr.Radio, {"choices": ["first pass", "second pass", "both passes"]}, infotext="Hires refiner"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
--
cgit v1.2.3