From 4c24347e45776d505937856ab280548d9298f0a8 Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 24 Oct 2022 23:04:50 -0400 Subject: Remove BSRGAN from --use-cpu, add SwinIR --- modules/swinir_model.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'modules/swinir_model.py') diff --git a/modules/swinir_model.py b/modules/swinir_model.py index baa02e3d..facd262d 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -7,8 +7,8 @@ from PIL import Image from basicsr.utils.download_util import load_file_from_url from tqdm import tqdm -from modules import modelloader -from modules.shared import cmd_opts, opts, device +from modules import modelloader, devices +from modules.shared import cmd_opts, opts from modules.swinir_model_arch import SwinIR as net from modules.swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData @@ -42,7 +42,7 @@ class UpscalerSwinIR(Upscaler): model = self.load_model(model_file) if model is None: return img - model = model.to(device) + model = model.to(devices.device_swinir) img = upscale(img, model) try: torch.cuda.empty_cache() @@ -111,7 +111,7 @@ def upscale( img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(device) + img = img.unsqueeze(0).to(devices.device_swinir) with torch.no_grad(), precision_scope("cuda"): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old @@ -139,8 +139,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale): stride = tile - tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] - E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) - W = torch.zeros_like(E, dtype=torch.half, device=device) + E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img) + W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir) with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: for h_idx in h_idx_list: -- cgit v1.2.3 From faed465a0b1a7d19669568738c93e04907c10415 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 25 Oct 2022 02:01:57 -0400 Subject: MPS Upscalers Fix Get ESRGAN, SCUNet, and SwinIR working correctly on MPS by ensuring memory is contiguous for tensor views before sending to MPS device. --- modules/swinir_model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/swinir_model.py') diff --git a/modules/swinir_model.py b/modules/swinir_model.py index facd262d..4253b66d 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -111,7 +111,7 @@ def upscale( img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(devices.device_swinir) + img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir) with torch.no_grad(), precision_scope("cuda"): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old -- cgit v1.2.3 From abfa22c16fb3d9b1ed8d049c7b68e94d1cca5b82 Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 7 Nov 2022 19:25:43 -0500 Subject: Revert "MPS Upscalers Fix" This reverts commit 768b95394a8500da639b947508f78296524f1836. --- modules/swinir_model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/swinir_model.py') diff --git a/modules/swinir_model.py b/modules/swinir_model.py index 4253b66d..facd262d 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -111,7 +111,7 @@ def upscale( img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() - img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir) + img = img.unsqueeze(0).to(devices.device_swinir) with torch.no_grad(), precision_scope("cuda"): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old -- cgit v1.2.3 From 4d5f1691dda971ec7b461dd880426300fd54ccee Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 28 Nov 2022 21:36:35 -0500 Subject: Use devices.autocast instead of torch.autocast --- modules/swinir_model.py | 6 +----- 1 file changed, 1 insertion(+), 5 deletions(-) (limited to 'modules/swinir_model.py') diff --git a/modules/swinir_model.py b/modules/swinir_model.py index facd262d..483eabd4 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -13,10 +13,6 @@ from modules.swinir_model_arch import SwinIR as net from modules.swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData -precision_scope = ( - torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext -) - class UpscalerSwinIR(Upscaler): def __init__(self, dirname): @@ -112,7 +108,7 @@ def upscale( img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() img = img.unsqueeze(0).to(devices.device_swinir) - with torch.no_grad(), precision_scope("cuda"): + with torch.no_grad(), devices.autocast(): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old -- cgit v1.2.3 From b6e5edd74657e3fd1fbd04f341b7a84625d4aa7a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 3 Dec 2022 18:06:33 +0300 Subject: add built-in extension system add support for adding upscalers in extensions move LDSR, ScuNET and SwinIR to built-in extensions --- modules/swinir_model.py | 157 ------------------------------------------------ 1 file changed, 157 deletions(-) delete mode 100644 modules/swinir_model.py (limited to 'modules/swinir_model.py') diff --git a/modules/swinir_model.py b/modules/swinir_model.py deleted file mode 100644 index 483eabd4..00000000 --- a/modules/swinir_model.py +++ /dev/null @@ -1,157 +0,0 @@ -import contextlib -import os - -import numpy as np -import torch -from PIL import Image -from basicsr.utils.download_util import load_file_from_url -from tqdm import tqdm - -from modules import modelloader, devices -from modules.shared import cmd_opts, opts -from modules.swinir_model_arch import SwinIR as net -from modules.swinir_model_arch_v2 import Swin2SR as net2 -from modules.upscaler import Upscaler, UpscalerData - - -class UpscalerSwinIR(Upscaler): - def __init__(self, dirname): - self.name = "SwinIR" - self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ - "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ - "-L_x4_GAN.pth " - self.model_name = "SwinIR 4x" - self.user_path = dirname - super().__init__() - scalers = [] - model_files = self.find_models(ext_filter=[".pt", ".pth"]) - for model in model_files: - if "http" in model: - name = self.model_name - else: - name = modelloader.friendly_name(model) - model_data = UpscalerData(name, model, self) - scalers.append(model_data) - self.scalers = scalers - - def do_upscale(self, img, model_file): - model = self.load_model(model_file) - if model is None: - return img - model = model.to(devices.device_swinir) - img = upscale(img, model) - try: - torch.cuda.empty_cache() - except: - pass - return img - - def load_model(self, path, scale=4): - if "http" in path: - dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") - filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) - else: - filename = path - if filename is None or not os.path.exists(filename): - return None - if filename.endswith(".v2.pth"): - model = net2( - upscale=scale, - in_chans=3, - img_size=64, - window_size=8, - img_range=1.0, - depths=[6, 6, 6, 6, 6, 6], - embed_dim=180, - num_heads=[6, 6, 6, 6, 6, 6], - mlp_ratio=2, - upsampler="nearest+conv", - resi_connection="1conv", - ) - params = None - else: - model = net( - upscale=scale, - in_chans=3, - img_size=64, - window_size=8, - img_range=1.0, - depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], - embed_dim=240, - num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], - mlp_ratio=2, - upsampler="nearest+conv", - resi_connection="3conv", - ) - params = "params_ema" - - pretrained_model = torch.load(filename) - if params is not None: - model.load_state_dict(pretrained_model[params], strict=True) - else: - model.load_state_dict(pretrained_model, strict=True) - if not cmd_opts.no_half: - model = model.half() - return model - - -def upscale( - img, - model, - tile=opts.SWIN_tile, - tile_overlap=opts.SWIN_tile_overlap, - window_size=8, - scale=4, -): - img = np.array(img) - img = img[:, :, ::-1] - img = np.moveaxis(img, 2, 0) / 255 - img = torch.from_numpy(img).float() - img = img.unsqueeze(0).to(devices.device_swinir) - with torch.no_grad(), devices.autocast(): - _, _, h_old, w_old = img.size() - h_pad = (h_old // window_size + 1) * window_size - h_old - w_pad = (w_old // window_size + 1) * window_size - w_old - img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] - img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] - output = inference(img, model, tile, tile_overlap, window_size, scale) - output = output[..., : h_old * scale, : w_old * scale] - output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() - if output.ndim == 3: - output = np.transpose( - output[[2, 1, 0], :, :], (1, 2, 0) - ) # CHW-RGB to HCW-BGR - output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 - return Image.fromarray(output, "RGB") - - -def inference(img, model, tile, tile_overlap, window_size, scale): - # test the image tile by tile - b, c, h, w = img.size() - tile = min(tile, h, w) - assert tile % window_size == 0, "tile size should be a multiple of window_size" - sf = scale - - stride = tile - tile_overlap - h_idx_list = list(range(0, h - tile, stride)) + [h - tile] - w_idx_list = list(range(0, w - tile, stride)) + [w - tile] - E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img) - W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir) - - with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: - for h_idx in h_idx_list: - for w_idx in w_idx_list: - in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] - out_patch = model(in_patch) - out_patch_mask = torch.ones_like(out_patch) - - E[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch) - W[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch_mask) - pbar.update(1) - output = E.div_(W) - - return output -- cgit v1.2.3