From c3c8eef9fd5a0c8b26319e32ca4a19b56204e6df Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 20:49:47 +0300 Subject: train: change filename processing to be more simple and configurable train: make it possible to make text files with prompts train: rework scheduler so that there's less repeating code in textual inversion and hypernets train: move epochs setting to options --- modules/textual_inversion/dataset.py | 47 +++++++++++++++++++------- modules/textual_inversion/learn_schedule.py | 37 +++++++++++++++++++- modules/textual_inversion/textual_inversion.py | 35 +++++++------------ 3 files changed, 83 insertions(+), 36 deletions(-) (limited to 'modules/textual_inversion') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index f61f40d3..67e90afe 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -11,11 +11,21 @@ import tqdm from modules import devices, shared import re -re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") +re_numbers_at_start = re.compile(r"^[-\d]+\s*") + + +class DatasetEntry: + def __init__(self, filename=None, latent=None, filename_text=None): + self.filename = filename + self.latent = latent + self.filename_text = filename_text + self.cond = None + self.cond_text = None class PersonalizedBase(Dataset): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): + re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None self.placeholder_token = placeholder_token @@ -42,9 +52,18 @@ class PersonalizedBase(Dataset): except Exception: continue + text_filename = os.path.splitext(path)[0] + ".txt" filename = os.path.basename(path) - filename_tokens = os.path.splitext(filename)[0] - filename_tokens = re_tag.findall(filename_tokens) + + if os.path.exists(text_filename): + with open(text_filename, "r", encoding="utf8") as file: + filename_text = file.read() + else: + filename_text = os.path.splitext(filename)[0] + filename_text = re.sub(re_numbers_at_start, '', filename_text) + if re_word: + tokens = re_word.findall(filename_text) + filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens) npimage = np.array(image).astype(np.uint8) npimage = (npimage / 127.5 - 1.0).astype(np.float32) @@ -55,13 +74,13 @@ class PersonalizedBase(Dataset): init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = init_latent.to(devices.cpu) + entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent) + if include_cond: - text = self.create_text(filename_tokens) - cond = cond_model([text]).to(devices.cpu) - else: - cond = None + entry.cond_text = self.create_text(filename_text) + entry.cond = cond_model([entry.cond_text]).to(devices.cpu) - self.dataset.append((init_latent, filename_tokens, cond)) + self.dataset.append(entry) self.length = len(self.dataset) * repeats @@ -72,10 +91,10 @@ class PersonalizedBase(Dataset): def shuffle(self): self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] - def create_text(self, filename_tokens): + def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", ' '.join(filename_tokens)) + text = text.replace("[filewords]", filename_text) return text def __len__(self): @@ -86,7 +105,9 @@ class PersonalizedBase(Dataset): self.shuffle() index = self.indexes[i % len(self.indexes)] - x, filename_tokens, cond = self.dataset[index] + entry = self.dataset[index] + + if entry.cond is None: + entry.cond_text = self.create_text(entry.filename_text) - text = self.create_text(filename_tokens) - return x, text, cond + return entry diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index db720271..2062726a 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -1,6 +1,12 @@ +import tqdm -class LearnSchedule: + +class LearnScheduleIterator: def __init__(self, learn_rate, max_steps, cur_step=0): + """ + specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000 + """ + pairs = learn_rate.split(',') self.rates = [] self.it = 0 @@ -32,3 +38,32 @@ class LearnSchedule: return self.rates[self.it - 1] else: raise StopIteration + + +class LearnRateScheduler: + def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True): + self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step) + (self.learn_rate, self.end_step) = next(self.schedules) + self.verbose = verbose + + if self.verbose: + print(f'Training at rate of {self.learn_rate} until step {self.end_step}') + + self.finished = False + + def apply(self, optimizer, step_number): + if step_number <= self.end_step: + return + + try: + (self.learn_rate, self.end_step) = next(self.schedules) + except Exception: + self.finished = True + return + + if self.verbose: + tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}') + + for pg in optimizer.param_groups: + pg['lr'] = self.learn_rate + diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c5153e4a..fa0e33a2 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -11,7 +11,7 @@ from PIL import Image, PngImagePlugin from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset -from modules.textual_inversion.learn_schedule import LearnSchedule +from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, @@ -172,8 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn - -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -205,7 +204,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -221,32 +220,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(schedules) - print(f'Training at rate of {learn_rate} until step {end_step}') - - optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, (x, text, _) in pbar: + for i, entry in pbar: embedding.step = i + ititial_step - if embedding.step > end_step: - try: - (learn_rate, end_step) = next(schedules) - except: - break - tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') - for pg in optimizer.param_groups: - pg['lr'] = learn_rate + scheduler.apply(optimizer, embedding.step) + if scheduler.finished: + break if shared.state.interrupted: break with torch.autocast("cuda"): - c = cond_model([text]) + c = cond_model([entry.cond_text]) - x = x.to(devices.device) + x = entry.latent.to(devices.device) loss = shared.sd_model(x.unsqueeze(0), c)[0] del x @@ -268,7 +259,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') - preview_text = text if preview_image_prompt == "" else preview_image_prompt + preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, @@ -314,7 +305,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(text)}
+Last prompt: {html.escape(entry.cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}