From 1fbb6f9ebe48326a3b12ecf611105dbc4a46891e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 9 Jan 2023 23:35:40 +0300 Subject: make a dropdown for prompt template selection --- modules/textual_inversion/textual_inversion.py | 35 ++++++++++++++++++++------ 1 file changed, 27 insertions(+), 8 deletions(-) (limited to 'modules/textual_inversion') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 14be2c96..5420903f 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -2,6 +2,7 @@ import os import sys import traceback import inspect +from collections import namedtuple import torch import tqdm @@ -15,12 +16,26 @@ from modules import shared, devices, sd_hijack, processing, sd_models, images, s import modules.textual_inversion.dataset from modules.textual_inversion.learn_schedule import LearnRateScheduler -from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64, - insert_image_data_embed, extract_image_data_embed, - caption_image_overlay) +from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay from modules.textual_inversion.logging import save_settings_to_file +TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"]) +textual_inversion_templates = {} + + +def list_textual_inversion_templates(): + textual_inversion_templates.clear() + + for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for fn in fns: + path = os.path.join(root, fn) + + textual_inversion_templates[fn] = TextualInversionTemplate(fn, path) + + return textual_inversion_templates + + class Embedding: def __init__(self, vec, name, step=None): self.vec = vec @@ -274,7 +289,7 @@ def write_loss(log_directory, filename, step, epoch_len, values): }) -def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"): +def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): assert model_name, f"{name} not selected" assert learn_rate, "Learning rate is empty or 0" assert isinstance(batch_size, int), "Batch size must be integer" @@ -284,8 +299,9 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat assert data_root, "Dataset directory is empty" assert os.path.isdir(data_root), "Dataset directory doesn't exist" assert os.listdir(data_root), "Dataset directory is empty" - assert template_file, "Prompt template file is empty" - assert os.path.isfile(template_file), "Prompt template file doesn't exist" + assert template_filename, "Prompt template file not selected" + assert template_file, f"Prompt template file {template_filename} not found" + assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist" assert steps, "Max steps is empty or 0" assert isinstance(steps, int), "Max steps must be integer" assert steps > 0, "Max steps must be positive" @@ -296,10 +312,13 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" -def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): + +def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 - validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") + template_file = textual_inversion_templates.get(template_filename, None) + validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding") + template_file = template_file.path shared.state.job = "train-embedding" shared.state.textinfo = "Initializing textual inversion training..." -- cgit v1.2.3