From 370a77f8e78e65a8a1339289d684cb43df142f70 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Tue, 21 Nov 2023 19:59:34 +0800 Subject: Option for using fp16 weight when apply lora --- modules/initialize_util.py | 1 + modules/sd_models.py | 14 +++++++++++--- modules/shared_options.py | 1 + 3 files changed, 13 insertions(+), 3 deletions(-) (limited to 'modules') diff --git a/modules/initialize_util.py b/modules/initialize_util.py index 1b11ead6..7fb1d8d5 100644 --- a/modules/initialize_util.py +++ b/modules/initialize_util.py @@ -178,6 +178,7 @@ def configure_opts_onchange(): shared.opts.onchange("gradio_theme", shared.reload_gradio_theme) shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False) shared.opts.onchange("fp8_storage", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) + shared.opts.onchange("cache_fp16_weight", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) startup_timer.record("opts onchange") diff --git a/modules/sd_models.py b/modules/sd_models.py index eb491434..0a7777f1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -413,14 +413,22 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer devices.dtype_unet = torch.float16 timer.record("apply half()") + for module in model.modules(): + if hasattr(module, 'fp16_weight'): + del module.fp16_weight + if hasattr(module, 'fp16_bias'): + del module.fp16_bias + if check_fp8(model): devices.fp8 = True first_stage = model.first_stage_model model.first_stage_model = None for module in model.modules(): - if isinstance(module, torch.nn.Conv2d): - module.to(torch.float8_e4m3fn) - elif isinstance(module, torch.nn.Linear): + if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)): + if shared.opts.cache_fp16_weight: + module.fp16_weight = module.weight.clone().half() + if module.bias is not None: + module.fp16_bias = module.bias.clone().half() module.to(torch.float8_e4m3fn) model.first_stage_model = first_stage timer.record("apply fp8") diff --git a/modules/shared_options.py b/modules/shared_options.py index d27f35e9..eaa9f135 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -201,6 +201,7 @@ options_templates.update(options_section(('optimizations', "Optimizations"), { "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"), "batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"), "fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Dropdown, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."), + "cache_fp16_weight": OptionInfo(False, "Cache FP16 weight for LoRA").info("Cache fp16 weight when enabling FP8, will increase the quality of LoRA. Use more system ram."), })) options_templates.update(options_section(('compatibility', "Compatibility"), { -- cgit v1.2.3