From 5993df24a1026225cb8af89237547c1d9101ce69 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 6 Oct 2022 14:12:52 +0300 Subject: integrate the new samplers PR --- modules/processing.py | 7 +++--- modules/sd_samplers.py | 59 ++++++++++++++++++++++++++------------------------ modules/shared.py | 1 - 3 files changed, 35 insertions(+), 32 deletions(-) (limited to 'modules') diff --git a/modules/processing.py b/modules/processing.py index e01c8b3f..e567956c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -477,7 +477,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.firstphase_height_truncated = int(scale * self.height) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): - self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) if not self.enable_hr: x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) @@ -520,7 +520,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): shared.state.nextjob() - self.sampler = sd_samplers.samplers[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) + noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) # GC now before running the next img2img to prevent running out of memory @@ -555,7 +556,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.nmask = None def init(self, all_prompts, all_seeds, all_subseeds): - self.sampler = sd_samplers.samplers_for_img2img[self.sampler_index].constructor(self.sd_model) + self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model) crop_region = None if self.image_mask is not None: diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 8d6eb762..497df943 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -13,46 +13,46 @@ from modules.shared import opts, cmd_opts, state import modules.shared as shared -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases']) +SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) samplers_k_diffusion = [ - ('Euler a', 'sample_euler_ancestral', ['k_euler_a']), - ('Euler', 'sample_euler', ['k_euler']), - ('LMS', 'sample_lms', ['k_lms']), - ('Heun', 'sample_heun', ['k_heun']), - ('DPM2', 'sample_dpm_2', ['k_dpm_2']), - ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a']), - ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast']), - ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad']), + ('Euler a', 'sample_euler_ancestral', ['k_euler_a'], {}), + ('Euler', 'sample_euler', ['k_euler'], {}), + ('LMS', 'sample_lms', ['k_lms'], {}), + ('Heun', 'sample_heun', ['k_heun'], {}), + ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {}), + ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {}), + ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}), + ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}), + ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}), + ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras'}), + ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras'}), ] -if opts.show_karras_scheduler_variants: - k_diffusion.sampling.sample_dpm_2_ka = k_diffusion.sampling.sample_dpm_2 - k_diffusion.sampling.sample_dpm_2_ancestral_ka = k_diffusion.sampling.sample_dpm_2_ancestral - k_diffusion.sampling.sample_lms_ka = k_diffusion.sampling.sample_lms - samplers_k_diffusion_ka = [ - ('LMS K Scheduling', 'sample_lms_ka', ['k_lms_ka']), - ('DPM2 K Scheduling', 'sample_dpm_2_ka', ['k_dpm_2_ka']), - ('DPM2 a K Scheduling', 'sample_dpm_2_ancestral_ka', ['k_dpm_2_a_ka']), - ] - samplers_k_diffusion.extend(samplers_k_diffusion_ka) - samplers_data_k_diffusion = [ - SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases) - for label, funcname, aliases in samplers_k_diffusion + SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options) + for label, funcname, aliases, options in samplers_k_diffusion if hasattr(k_diffusion.sampling, funcname) ] all_samplers = [ *samplers_data_k_diffusion, - SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), []), - SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), []), + SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), + SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), ] samplers = [] samplers_for_img2img = [] +def create_sampler_with_index(list_of_configs, index, model): + config = list_of_configs[index] + sampler = config.constructor(model) + sampler.config = config + + return sampler + + def set_samplers(): global samplers, samplers_for_img2img @@ -130,6 +130,7 @@ class VanillaStableDiffusionSampler: self.step = 0 self.eta = None self.default_eta = 0.0 + self.config = None def number_of_needed_noises(self, p): return 0 @@ -291,6 +292,7 @@ class KDiffusionSampler: self.stop_at = None self.eta = None self.default_eta = 1.0 + self.config = None def callback_state(self, d): store_latent(d["denoised"]) @@ -355,11 +357,12 @@ class KDiffusionSampler: steps = steps or p.steps if p.sampler_noise_scheduler_override: - sigmas = p.sampler_noise_scheduler_override(steps) - elif self.funcname.endswith('ka'): - sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device) + sigmas = p.sampler_noise_scheduler_override(steps) + elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': + sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=0.1, sigma_max=10, device=shared.device) else: - sigmas = self.model_wrap.get_sigmas(steps) + sigmas = self.model_wrap.get_sigmas(steps) + x = x * sigmas[0] extra_params_kwargs = self.initialize(p) diff --git a/modules/shared.py b/modules/shared.py index 9e4860a2..ca2e4c74 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -236,7 +236,6 @@ options_templates.update(options_section(('ui', "User interface"), { "font": OptionInfo("", "Font for image grids that have text"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), - "show_karras_scheduler_variants": OptionInfo(True, "Show Karras scheduling variants for select samplers. Try these variants if your K sampled images suffer from excessive noise."), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { -- cgit v1.2.3