From 79ffb9453f8eddbdd4e316b9d9c75812b0eea4e1 Mon Sep 17 00:00:00 2001 From: space-nuko <24979496+space-nuko@users.noreply.github.com> Date: Fri, 10 Feb 2023 05:27:05 -0800 Subject: Add UniPC sampler settings --- modules/models/diffusion/uni_pc/sampler.py | 5 +++-- modules/models/diffusion/uni_pc/uni_pc.py | 2 +- modules/shared.py | 5 +++++ 3 files changed, 9 insertions(+), 3 deletions(-) (limited to 'modules') diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index 219e9862..e66a21e3 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -3,6 +3,7 @@ import torch from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC +from modules import shared class UniPCSampler(object): def __init__(self, model, **kwargs): @@ -89,7 +90,7 @@ class UniPCSampler(object): guidance_scale=unconditional_guidance_scale, ) - uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) - x = uni_pc.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=3, lower_order_final=True) + uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=shared.opts.uni_pc_thresholding, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) + x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.uni_pc_order, lower_order_final=shared.opts.uni_pc_lower_order_final) return x.to(device), None diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 31ee81a6..df63d1bc 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -750,7 +750,7 @@ class UniPC: if method == 'multistep': assert steps >= order, "UniPC order must be < sampling steps" timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) - print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps") + print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}") assert timesteps.shape[0] - 1 == steps with torch.no_grad(): vec_t = timesteps[0].expand((x.shape[0])) diff --git a/modules/shared.py b/modules/shared.py index 79fbf724..34242073 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -480,6 +480,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), + 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "vary_coeff"]}), + 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}), + 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 150 - 1, "step": 1}), + 'uni_pc_thresholding': OptionInfo(False, "UniPC thresholding"), + 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"), })) options_templates.update(options_section(('postprocessing', "Postprocessing"), { -- cgit v1.2.3