From 12c4d5c6b5bf9dd50d0601c36af4f99b65316d58 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 7 Oct 2022 23:22:22 +0300 Subject: hypernetwork training mk1 --- modules/hypernetwork.py | 88 ------------ modules/hypernetwork/hypernetwork.py | 267 +++++++++++++++++++++++++++++++++++ modules/hypernetwork/ui.py | 43 ++++++ modules/sd_hijack.py | 4 +- modules/sd_hijack_optimizations.py | 3 +- modules/shared.py | 13 +- modules/textual_inversion/ui.py | 1 - modules/ui.py | 58 +++++++- 8 files changed, 374 insertions(+), 103 deletions(-) delete mode 100644 modules/hypernetwork.py create mode 100644 modules/hypernetwork/hypernetwork.py create mode 100644 modules/hypernetwork/ui.py (limited to 'modules') diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py deleted file mode 100644 index c7b86682..00000000 --- a/modules/hypernetwork.py +++ /dev/null @@ -1,88 +0,0 @@ -import glob -import os -import sys -import traceback - -import torch - -from ldm.util import default -from modules import devices, shared -import torch -from torch import einsum -from einops import rearrange, repeat - - -class HypernetworkModule(torch.nn.Module): - def __init__(self, dim, state_dict): - super().__init__() - - self.linear1 = torch.nn.Linear(dim, dim * 2) - self.linear2 = torch.nn.Linear(dim * 2, dim) - - self.load_state_dict(state_dict, strict=True) - self.to(devices.device) - - def forward(self, x): - return x + (self.linear2(self.linear1(x))) - - -class Hypernetwork: - filename = None - name = None - - def __init__(self, filename): - self.filename = filename - self.name = os.path.splitext(os.path.basename(filename))[0] - self.layers = {} - - state_dict = torch.load(filename, map_location='cpu') - for size, sd in state_dict.items(): - self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) - - -def load_hypernetworks(path): - res = {} - - for filename in glob.iglob(path + '**/*.pt', recursive=True): - try: - hn = Hypernetwork(filename) - res[hn.name] = hn - except Exception: - print(f"Error loading hypernetwork {filename}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - - return res - - -def attention_CrossAttention_forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - - hypernetwork = shared.selected_hypernetwork() - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - k = self.to_k(hypernetwork_layers[0](context)) - v = self.to_v(hypernetwork_layers[1](context)) - else: - k = self.to_k(context) - v = self.to_v(context) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if mask is not None: - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py new file mode 100644 index 00000000..a3d6a47e --- /dev/null +++ b/modules/hypernetwork/hypernetwork.py @@ -0,0 +1,267 @@ +import datetime +import glob +import html +import os +import sys +import traceback +import tqdm + +import torch + +from ldm.util import default +from modules import devices, shared, processing, sd_models +import torch +from torch import einsum +from einops import rearrange, repeat +import modules.textual_inversion.dataset + + +class HypernetworkModule(torch.nn.Module): + def __init__(self, dim, state_dict=None): + super().__init__() + + self.linear1 = torch.nn.Linear(dim, dim * 2) + self.linear2 = torch.nn.Linear(dim * 2, dim) + + if state_dict is not None: + self.load_state_dict(state_dict, strict=True) + else: + self.linear1.weight.data.fill_(0.0001) + self.linear1.bias.data.fill_(0.0001) + self.linear2.weight.data.fill_(0.0001) + self.linear2.bias.data.fill_(0.0001) + + self.to(devices.device) + + def forward(self, x): + return x + (self.linear2(self.linear1(x))) + + +class Hypernetwork: + filename = None + name = None + + def __init__(self, name=None): + self.filename = None + self.name = name + self.layers = {} + self.step = 0 + self.sd_checkpoint = None + self.sd_checkpoint_name = None + + for size in [320, 640, 768, 1280]: + self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) + + def weights(self): + res = [] + + for k, layers in self.layers.items(): + for layer in layers: + layer.train() + res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias] + + return res + + def save(self, filename): + state_dict = {} + + for k, v in self.layers.items(): + state_dict[k] = (v[0].state_dict(), v[1].state_dict()) + + state_dict['step'] = self.step + state_dict['name'] = self.name + state_dict['sd_checkpoint'] = self.sd_checkpoint + state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name + + torch.save(state_dict, filename) + + def load(self, filename): + self.filename = filename + if self.name is None: + self.name = os.path.splitext(os.path.basename(filename))[0] + + state_dict = torch.load(filename, map_location='cpu') + + for size, sd in state_dict.items(): + if type(size) == int: + self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) + + self.name = state_dict.get('name', self.name) + self.step = state_dict.get('step', 0) + self.sd_checkpoint = state_dict.get('sd_checkpoint', None) + self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) + + +def load_hypernetworks(path): + res = {} + + for filename in glob.iglob(path + '**/*.pt', recursive=True): + try: + hn = Hypernetwork() + hn.load(filename) + res[hn.name] = hn + except Exception: + print(f"Error loading hypernetwork {filename}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + return res + + +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is not None: + hypernetwork_k, hypernetwork_v = hypernetwork_layers + + self.hypernetwork_k = hypernetwork_k + self.hypernetwork_v = hypernetwork_v + + context_k = hypernetwork_k(context) + context_v = hypernetwork_v(context) + else: + context_k = context + context_v = context + + k = self.to_k(context_k) + v = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): + assert hypernetwork_name, 'embedding not selected' + + shared.hypernetwork = shared.hypernetworks[hypernetwork_name] + + shared.state.textinfo = "Initializing hypernetwork training..." + shared.state.job_count = steps + + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + + log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + + if save_hypernetwork_every > 0: + hypernetwork_dir = os.path.join(log_directory, "hypernetworks") + os.makedirs(hypernetwork_dir, exist_ok=True) + else: + hypernetwork_dir = None + + if create_image_every > 0: + images_dir = os.path.join(log_directory, "images") + os.makedirs(images_dir, exist_ok=True) + else: + images_dir = None + + cond_model = shared.sd_model.cond_stage_model + + shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." + with torch.autocast("cuda"): + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + + hypernetwork = shared.hypernetworks[hypernetwork_name] + weights = hypernetwork.weights() + for weight in weights: + weight.requires_grad = True + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + + losses = torch.zeros((32,)) + + last_saved_file = "" + last_saved_image = "" + + ititial_step = hypernetwork.step or 0 + if ititial_step > steps: + return hypernetwork, filename + + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + for i, (x, text) in pbar: + hypernetwork.step = i + ititial_step + + if hypernetwork.step > steps: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([text]) + + x = x.to(devices.device) + loss = shared.sd_model(x.unsqueeze(0), c)[0] + del x + + losses[hypernetwork.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + pbar.set_description(f"loss: {losses.mean():.7f}") + + if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') + hypernetwork.save(last_saved_file) + + if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: + last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') + + preview_text = text if preview_image_prompt == "" else preview_image_prompt + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + prompt=preview_text, + steps=20, + do_not_save_grid=True, + do_not_save_samples=True, + ) + + processed = processing.process_images(p) + image = processed.images[0] + + shared.state.current_image = image + image.save(last_saved_image) + + last_saved_image += f", prompt: {preview_text}" + + shared.state.job_no = hypernetwork.step + + shared.state.textinfo = f""" +

+Loss: {losses.mean():.7f}
+Step: {hypernetwork.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+

+""" + + checkpoint = sd_models.select_checkpoint() + + hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint_name = checkpoint.model_name + hypernetwork.save(filename) + + return hypernetwork, filename + + diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py new file mode 100644 index 00000000..525f978c --- /dev/null +++ b/modules/hypernetwork/ui.py @@ -0,0 +1,43 @@ +import html +import os + +import gradio as gr + +import modules.textual_inversion.textual_inversion +import modules.textual_inversion.preprocess +from modules import sd_hijack, shared + + +def create_hypernetwork(name): + fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") + assert not os.path.exists(fn), f"file {fn} already exists" + + hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernetwork.save(fn) + + shared.reload_hypernetworks() + shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None) + + return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" + + +def train_hypernetwork(*args): + + initial_hypernetwork = shared.hypernetwork + + try: + sd_hijack.undo_optimizations() + + hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) + + res = f""" +Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. +Hypernetwork saved to {html.escape(filename)} +""" + return res, "" + except Exception: + raise + finally: + shared.hypernetwork = initial_hypernetwork + sd_hijack.apply_optimizations() + diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index d68f89cc..ec8c9d4b 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -8,7 +8,7 @@ from torch import einsum from torch.nn.functional import silu import modules.textual_inversion.textual_inversion -from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork +from modules import prompt_parser, devices, sd_hijack_optimizations, shared from modules.shared import opts, device, cmd_opts import ldm.modules.attention @@ -32,6 +32,8 @@ def apply_optimizations(): def undo_optimizations(): + from modules.hypernetwork import hypernetwork + ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index d9cca485..3f32e020 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -45,8 +45,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): q_in = self.to_q(x) context = default(context, x) - hypernetwork = shared.selected_hypernetwork() - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None) if hypernetwork_layers is not None: k_in = self.to_k(hypernetwork_layers[0](context)) diff --git a/modules/shared.py b/modules/shared.py index 879d8424..c5a893e8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,7 +13,7 @@ import modules.memmon import modules.sd_models import modules.styles import modules.devices as devices -from modules import sd_samplers, hypernetwork +from modules import sd_samplers from modules.paths import models_path, script_path, sd_path sd_model_file = os.path.join(script_path, 'model.ckpt') @@ -28,6 +28,7 @@ parser.add_argument("--no-half", action='store_true', help="do not switch the mo parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") @@ -76,11 +77,15 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram config_filename = cmd_opts.ui_settings_file -hypernetworks = hypernetwork.load_hypernetworks(os.path.join(models_path, 'hypernetworks')) +def reload_hypernetworks(): + from modules.hypernetwork import hypernetwork + hypernetworks.clear() + hypernetworks.update(hypernetwork.load_hypernetworks(cmd_opts.hypernetwork_dir)) -def selected_hypernetwork(): - return hypernetworks.get(opts.sd_hypernetwork, None) + +hypernetworks = {} +hypernetwork = None class State: diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index f19ac5e0..c57de1f9 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -22,7 +22,6 @@ def preprocess(*args): def train_embedding(*args): - try: sd_hijack.undo_optimizations() diff --git a/modules/ui.py b/modules/ui.py index 4f18126f..051908c1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -37,6 +37,7 @@ import modules.generation_parameters_copypaste from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui +import modules.hypernetwork.ui # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() @@ -965,6 +966,18 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column(): create_embedding = gr.Button(value="Create", variant='primary') + with gr.Group(): + gr.HTML(value="

Create a new hypernetwork

") + + new_hypernetwork_name = gr.Textbox(label="Name") + + with gr.Row(): + with gr.Column(scale=3): + gr.HTML(value="") + + with gr.Column(): + create_hypernetwork = gr.Button(value="Create", variant='primary') + with gr.Group(): gr.HTML(value="

Preprocess images

") @@ -986,6 +999,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Group(): gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) learn_rate = gr.Number(label='Learning rate', value=5.0e-03) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") @@ -993,15 +1007,12 @@ def create_ui(wrap_gradio_gpu_call): steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) + preview_image_prompt = gr.Textbox(label='Preview prompt', value="") with gr.Row(): - with gr.Column(scale=2): - gr.HTML(value="") - - with gr.Column(): - with gr.Row(): - interrupt_training = gr.Button(value="Interrupt") - train_embedding = gr.Button(value="Train", variant='primary') + interrupt_training = gr.Button(value="Interrupt") + train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary') + train_embedding = gr.Button(value="Train Embedding", variant='primary') with gr.Column(): progressbar = gr.HTML(elem_id="ti_progressbar") @@ -1027,6 +1038,18 @@ def create_ui(wrap_gradio_gpu_call): ] ) + create_hypernetwork.click( + fn=modules.hypernetwork.ui.create_hypernetwork, + inputs=[ + new_hypernetwork_name, + ], + outputs=[ + train_hypernetwork_name, + ti_output, + ti_outcome, + ] + ) + run_preprocess.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", @@ -1062,12 +1085,33 @@ def create_ui(wrap_gradio_gpu_call): ] ) + train_hypernetwork.click( + fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + train_hypernetwork_name, + learn_rate, + dataset_directory, + log_directory, + steps, + create_image_every, + save_embedding_every, + template_file, + preview_image_prompt, + ], + outputs=[ + ti_output, + ti_outcome, + ] + ) + interrupt_training.click( fn=lambda: shared.state.interrupt(), inputs=[], outputs=[], ) + def create_setting_component(key): def fun(): return opts.data[key] if key in opts.data else opts.data_labels[key].default -- cgit v1.2.3 From cc92dc1f8d73dd4d574c4c8ccab78b7fc61e440b Mon Sep 17 00:00:00 2001 From: ssysm Date: Sun, 9 Oct 2022 23:17:29 -0400 Subject: add vae path args --- modules/sd_models.py | 2 +- modules/shared.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'modules') diff --git a/modules/sd_models.py b/modules/sd_models.py index cb3982b1..b6979432 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -147,7 +147,7 @@ def load_model_weights(model, checkpoint_info): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 - vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" + vae_file = shared.cmd_opts.vae_path or os.path.splitext(checkpoint_file)[0] + ".vae.pt" if os.path.exists(vae_file): print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location="cpu") diff --git a/modules/shared.py b/modules/shared.py index 2dc092d6..52ccfa6e 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -64,7 +64,7 @@ parser.add_argument("--autolaunch", action='store_true', help="open the webui UR parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False) parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False) - +parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None) cmd_opts = parser.parse_args() -- cgit v1.2.3 From 1f92336be768d235c18a82acb2195b7135101ae7 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Sun, 9 Oct 2022 23:58:18 -0500 Subject: refactored the deepbooru module to improve speed on running multiple interogations in a row. Added the option to generate deepbooru tags for textual inversion preproccessing. --- modules/deepbooru.py | 84 +++++++++++++++++++++++++-------- modules/textual_inversion/preprocess.py | 22 ++++++++- modules/ui.py | 52 ++++++++++++++------ 3 files changed, 122 insertions(+), 36 deletions(-) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 7e3c0618..cee4a3b4 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -1,21 +1,74 @@ import os.path from concurrent.futures import ProcessPoolExecutor -from multiprocessing import get_context +import multiprocessing -def _load_tf_and_return_tags(pil_image, threshold): +def get_deepbooru_tags(pil_image, threshold=0.5): + """ + This method is for running only one image at a time for simple use. Used to the img2img interrogate. + """ + from modules import shared # prevents circular reference + create_deepbooru_process(threshold) + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process_queue.put(pil_image) + while shared.deepbooru_process_return["value"] == -1: + time.sleep(0.2) + release_process() + return ret + + +def deepbooru_process(queue, deepbooru_process_return, threshold): + model, tags = get_deepbooru_tags_model() + while True: # while process is running, keep monitoring queue for new image + pil_image = queue.get() + if pil_image == "QUIT": + break + else: + deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold) + + +def create_deepbooru_process(threshold=0.5): + """ + Creates deepbooru process. A queue is created to send images into the process. This enables multiple images + to be processed in a row without reloading the model or creating a new process. To return the data, a shared + dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned + to the dictionary and the method adding the image to the queue should wait for this value to be updated with + the tags. + """ + from modules import shared # prevents circular reference + shared.deepbooru_process_manager = multiprocessing.Manager() + shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() + shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold)) + shared.deepbooru_process.start() + + +def release_process(): + """ + Stops the deepbooru process to return used memory + """ + from modules import shared # prevents circular reference + shared.deepbooru_process_queue.put("QUIT") + shared.deepbooru_process.join() + shared.deepbooru_process_queue = None + shared.deepbooru_process = None + shared.deepbooru_process_return = None + shared.deepbooru_process_manager = None + +def get_deepbooru_tags_model(): import deepdanbooru as dd import tensorflow as tf import numpy as np - this_folder = os.path.dirname(__file__) model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru')) if not os.path.exists(os.path.join(model_path, 'project.json')): # there is no point importing these every time import zipfile from basicsr.utils.download_util import load_file_from_url - load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip", - model_path) + load_file_from_url( + r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip", + model_path) with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref: zip_ref.extractall(model_path) os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip")) @@ -24,7 +77,13 @@ def _load_tf_and_return_tags(pil_image, threshold): model = dd.project.load_model_from_project( model_path, compile_model=True ) + return model, tags + +def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5): + import deepdanbooru as dd + import tensorflow as tf + import numpy as np width = model.input_shape[2] height = model.input_shape[1] image = np.array(pil_image) @@ -57,17 +116,4 @@ def _load_tf_and_return_tags(pil_image, threshold): print('\n'.join(sorted(result_tags_print, reverse=True))) - return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') - - -def subprocess_init_no_cuda(): - import os - os.environ["CUDA_VISIBLE_DEVICES"] = "-1" - - -def get_deepbooru_tags(pil_image, threshold=0.5): - context = get_context('spawn') - with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor: - f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, ) - ret = f.result() # will rethrow any exceptions - return ret \ No newline at end of file + return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') \ No newline at end of file diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..9f63c9a4 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -3,11 +3,14 @@ from PIL import Image, ImageOps import platform import sys import tqdm +import time from modules import shared, images +from modules.shared import opts, cmd_opts +if cmd_opts.deepdanbooru: + import modules.deepbooru as deepbooru - -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): +def preprocess(process_src, process_dst, process_flip, process_split, process_caption, process_caption_deepbooru=False): size = 512 src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -24,10 +27,21 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: shared.interrogator.load() + if process_caption_deepbooru: + deepbooru.create_deepbooru_process() + def save_pic_with_caption(image, index): if process_caption: caption = "-" + shared.interrogator.generate_caption(image) caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") + elif process_caption_deepbooru: + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process_queue.put(image) + while shared.deepbooru_process_return["value"] == -1: + time.sleep(0.2) + caption = "-" + shared.deepbooru_process_return["value"] + caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") + shared.deepbooru_process_return["value"] = -1 else: caption = filename caption = os.path.splitext(caption)[0] @@ -79,6 +93,10 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: shared.interrogator.send_blip_to_ram() + if process_caption_deepbooru: + deepbooru.release_process() + + def sanitize_caption(base_path, original_caption, suffix): operating_system = platform.system().lower() if (operating_system == "windows"): diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..179e3a83 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1034,6 +1034,9 @@ def create_ui(wrap_gradio_gpu_call): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images into two') process_caption = gr.Checkbox(label='Use BLIP caption as filename') + if cmd_opts.deepdanbooru: + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename') + with gr.Row(): with gr.Column(scale=3): @@ -1086,21 +1089,40 @@ def create_ui(wrap_gradio_gpu_call): ] ) - run_preprocess.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - process_src, - process_dst, - process_flip, - process_split, - process_caption, - ], - outputs=[ - ti_output, - ti_outcome, - ], - ) + if cmd_opts.deepdanbooru: + # if process_caption_deepbooru is None, it will cause an error, as a result only include it if it is enabled + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + process_caption_deepbooru, + ], + outputs=[ + ti_output, + ti_outcome, + ], + ) + else: + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + ], + outputs=[ + ti_output, + ti_outcome, + ], + ) train_embedding.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), -- cgit v1.2.3 From 8acc901ba3a252dc6ab4fabcb41644cf64d1774c Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 10 Oct 2022 00:38:55 -0400 Subject: Newer versions of PyTorch use TypedStorage instead Pytorch 1.13 and later will rename _TypedStorage to TypedStorage, so check for TypedStorage and use _TypedStorage if it is not available. Currently this is needed so that nightly builds of PyTorch work correctly. --- modules/safe.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/safe.py b/modules/safe.py index 4d06f2a5..05917463 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -12,6 +12,10 @@ import _codecs import zipfile +# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage +TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage + + def encode(*args): out = _codecs.encode(*args) return out @@ -20,7 +24,7 @@ def encode(*args): class RestrictedUnpickler(pickle.Unpickler): def persistent_load(self, saved_id): assert saved_id[0] == 'storage' - return torch.storage._TypedStorage() + return TypedStorage() def find_class(self, module, name): if module == 'collections' and name == 'OrderedDict': -- cgit v1.2.3 From 3110f895b2718a3a25aae419fdf5c87c177ec9f4 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:07:46 +0900 Subject: Textual Inversion: Added custom training image size and number of repeats per input image in a single epoch --- modules/textual_inversion/dataset.py | 6 +++--- modules/textual_inversion/preprocess.py | 4 ++-- modules/textual_inversion/textual_inversion.py | 15 ++++++++++++--- modules/ui.py | 8 +++++++- 4 files changed, 24 insertions(+), 9 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 7c44ea5b..acc4ce59 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,13 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None): + def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token self.size = size - self.width = width - self.height = height + self.width = size + self.height = size self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..b3de6fd7 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,8 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): - size = 512 +def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): + size = process_size src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index cd9f3498..e34dc2e8 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, if ititial_step > steps: return embedding, filename + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + epoch_len = (tr_img_len * num_repeats) + tr_img_len + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, loss.backward() optimizer.step() - pbar.set_description(f"loss: {losses.mean():.7f}") + epoch_num = math.floor(embedding.step / epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, sd_model=shared.sd_model, prompt=text, steps=20, + height=training_size, + width=training_size, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..f821fd8d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,6 +1029,7 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') + process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1043,13 +1044,15 @@ def create_ui(wrap_gradio_gpu_call): run_preprocess = gr.Button(value="Preprocess", variant='primary') with gr.Group(): - gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") + gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) learn_rate = gr.Number(label='Learning rate', value=5.0e-03) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) + training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) + num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1092,6 +1095,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, + process_size, process_flip, process_split, process_caption, @@ -1110,7 +1114,9 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, + training_size, steps, + num_repeats, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 8ec069e64df48f8f202f8b93a08e91b69448eb39 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 03:23:24 -0500 Subject: removed duplicate run_preprocess.click by creating run_preprocess_inputs list and appending deepbooru variable to input list if in scope --- modules/ui.py | 49 +++++++++++++++++-------------------------------- 1 file changed, 17 insertions(+), 32 deletions(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 179e3a83..22ca74c2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1089,40 +1089,25 @@ def create_ui(wrap_gradio_gpu_call): ] ) + run_preprocess_inputs = [ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + ] if cmd_opts.deepdanbooru: # if process_caption_deepbooru is None, it will cause an error, as a result only include it if it is enabled - run_preprocess.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - process_src, - process_dst, - process_flip, - process_split, - process_caption, - process_caption_deepbooru, - ], - outputs=[ - ti_output, - ti_outcome, - ], - ) - else: - run_preprocess.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - process_src, - process_dst, - process_flip, - process_split, - process_caption, - ], - outputs=[ - ti_output, - ti_outcome, - ], - ) + run_preprocess_inputs.append(process_caption_deepbooru) + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=run_preprocess_inputs, + outputs=[ + ti_output, + ti_outcome, + ], + ) train_embedding.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), -- cgit v1.2.3 From 4ee7519fc2e459ce8eff1f61f1655afba393357c Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:31:33 +0900 Subject: Fixed progress bar output for epoch --- modules/textual_inversion/textual_inversion.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index e34dc2e8..769682ea 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -228,7 +228,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini optimizer.step() epoch_num = math.floor(embedding.step / epoch_len) - epoch_step = embedding.step - (epoch_num * epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") -- cgit v1.2.3 From 2f94331df2cb1181439adecc28cfd758049f6501 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 03:34:00 -0500 Subject: removed change in last commit, simplified to adding the visible argument to process_caption_deepbooru and it set to False if deepdanbooru argument is not set --- modules/ui.py | 22 ++++++++++------------ 1 file changed, 10 insertions(+), 12 deletions(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 22ca74c2..f8adafb3 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1036,7 +1036,8 @@ def create_ui(wrap_gradio_gpu_call): process_caption = gr.Checkbox(label='Use BLIP caption as filename') if cmd_opts.deepdanbooru: process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename') - + else: + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename', visible=False) with gr.Row(): with gr.Column(scale=3): @@ -1089,20 +1090,17 @@ def create_ui(wrap_gradio_gpu_call): ] ) - run_preprocess_inputs = [ - process_src, - process_dst, - process_flip, - process_split, - process_caption, - ] - if cmd_opts.deepdanbooru: - # if process_caption_deepbooru is None, it will cause an error, as a result only include it if it is enabled - run_preprocess_inputs.append(process_caption_deepbooru) run_preprocess.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", - inputs=run_preprocess_inputs, + inputs=[ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + process_caption_deepbooru + ], outputs=[ ti_output, ti_outcome, -- cgit v1.2.3 From 7349088d32b080f64058b6e5de5f0380a71ecd09 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 16:11:14 +0300 Subject: --no-half-vae --- modules/devices.py | 6 +++++- modules/processing.py | 11 +++++++++-- modules/sd_models.py | 3 +++ modules/sd_samplers.py | 4 ++-- modules/shared.py | 1 + 5 files changed, 20 insertions(+), 5 deletions(-) (limited to 'modules') diff --git a/modules/devices.py b/modules/devices.py index 0158b11f..03ef58f1 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -36,6 +36,7 @@ errors.run(enable_tf32, "Enabling TF32") device = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device() dtype = torch.float16 +dtype_vae = torch.float16 def randn(seed, shape): # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used. @@ -59,9 +60,12 @@ def randn_without_seed(shape): return torch.randn(shape, device=device) -def autocast(): +def autocast(disable=False): from modules import shared + if disable: + return contextlib.nullcontext() + if dtype == torch.float32 or shared.cmd_opts.precision == "full": return contextlib.nullcontext() diff --git a/modules/processing.py b/modules/processing.py index 94d2dd62..ec8651ae 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -259,6 +259,13 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see return x +def decode_first_stage(model, x): + with devices.autocast(disable=x.dtype == devices.dtype_vae): + x = model.decode_first_stage(x) + + return x + + def get_fixed_seed(seed): if seed is None or seed == '' or seed == -1: return int(random.randrange(4294967294)) @@ -400,7 +407,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: samples_ddim = samples_ddim.to(devices.dtype) - x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) + x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) del samples_ddim @@ -533,7 +540,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if self.scale_latent: samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") else: - decoded_samples = self.sd_model.decode_first_stage(samples) + decoded_samples = decode_first_stage(self.sd_model, samples) if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None": decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") diff --git a/modules/sd_models.py b/modules/sd_models.py index e63d3c29..2cdcd84f 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -149,6 +149,7 @@ def load_model_weights(model, checkpoint_info): model.half() devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 + devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" if os.path.exists(vae_file): @@ -158,6 +159,8 @@ def load_model_weights(model, checkpoint_info): model.first_stage_model.load_state_dict(vae_dict) + model.first_stage_model.to(devices.dtype_vae) + model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 6e743f7e..d168b938 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -7,7 +7,7 @@ import inspect import k_diffusion.sampling import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from modules import prompt_parser +from modules import prompt_parser, devices, processing from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -83,7 +83,7 @@ def setup_img2img_steps(p, steps=None): def sample_to_image(samples): - x_sample = shared.sd_model.decode_first_stage(samples[0:1].type(shared.sd_model.dtype))[0] + x_sample = processing.decode_first_stage(shared.sd_model, samples[0:1])[0] x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) diff --git a/modules/shared.py b/modules/shared.py index 1995a99a..5dfc344c 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -25,6 +25,7 @@ parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to director parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default=None) parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") +parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") -- cgit v1.2.3 From 04c745ea4f81518999927fee5f78500560c25e29 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 22:35:35 +0900 Subject: Custom Width and Height --- modules/textual_inversion/dataset.py | 7 +++---- modules/textual_inversion/preprocess.py | 19 ++++++++++--------- modules/textual_inversion/textual_inversion.py | 11 +++++------ modules/ui.py | 12 ++++++++---- 4 files changed, 26 insertions(+), 23 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index acc4ce59..bcf772d2 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,12 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token - self.size = size - self.width = size - self.height = size + self.width = width + self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b3de6fd7..d7efdef2 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,9 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): - size = process_size +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption): + width = process_width + height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -55,23 +56,23 @@ def preprocess(process_src, process_dst, process_size, process_flip, process_spl is_wide = ratio < 1 / 1.35 if process_split and is_tall: - img = img.resize((size, size * img.height // img.width)) + img = img.resize((width, height * img.height // img.width)) - top = img.crop((0, 0, size, size)) + top = img.crop((0, 0, width, height)) save_pic(top, index) - bot = img.crop((0, img.height - size, size, img.height)) + bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) elif process_split and is_wide: - img = img.resize((size * img.width // img.height, size)) + img = img.resize((width * img.width // img.height, height)) - left = img.crop((0, 0, size, size)) + left = img.crop((0, 0, width, height)) save_pic(left, index) - right = img.crop((img.width - size, 0, img.width, size)) + right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) else: - img = images.resize_image(1, img, size, size) + img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 769682ea..5965c5a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,7 +6,6 @@ import torch import tqdm import html import datetime -import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -157,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -183,7 +182,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -227,7 +226,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = math.floor(embedding.step / epoch_len) + epoch_num = embedding.step // epoch_len epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") @@ -243,8 +242,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini sd_model=shared.sd_model, prompt=text, steps=20, - height=training_size, - width=training_size, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index f821fd8d..8c06ad7c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,7 +1029,8 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') - process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1050,7 +1051,8 @@ def create_ui(wrap_gradio_gpu_call): dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) - training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1095,7 +1097,8 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, - process_size, + process_width, + process_height, process_flip, process_split, process_caption, @@ -1114,7 +1117,8 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, - training_size, + training_width, + training_height, steps, num_repeats, create_image_every, -- cgit v1.2.3 From 8f1efdc130cf7ff47cb8d3722cdfc0dbeba3069e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 17:03:45 +0300 Subject: --no-half-vae pt2 --- modules/processing.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'modules') diff --git a/modules/processing.py b/modules/processing.py index ec8651ae..50ba4fc5 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -405,8 +405,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: # use the image collected previously in sampler loop samples_ddim = shared.state.current_latent - samples_ddim = samples_ddim.to(devices.dtype) - + samples_ddim = samples_ddim.to(devices.dtype_vae) x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) -- cgit v1.2.3 From ea00c1624bbb0dcb5be07f59c9509061baddf5b1 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:07:46 +0900 Subject: Textual Inversion: Added custom training image size and number of repeats per input image in a single epoch --- modules/textual_inversion/dataset.py | 6 +++--- modules/textual_inversion/preprocess.py | 4 ++-- modules/textual_inversion/textual_inversion.py | 15 ++++++++++++--- modules/ui.py | 8 +++++++- 4 files changed, 24 insertions(+), 9 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 7c44ea5b..acc4ce59 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,13 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None): + def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token self.size = size - self.width = width - self.height = height + self.width = size + self.height = size self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..b3de6fd7 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,8 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): - size = 512 +def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): + size = process_size src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index cd9f3498..e34dc2e8 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, if ititial_step > steps: return embedding, filename + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + epoch_len = (tr_img_len * num_repeats) + tr_img_len + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, loss.backward() optimizer.step() - pbar.set_description(f"loss: {losses.mean():.7f}") + epoch_num = math.floor(embedding.step / epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, sd_model=shared.sd_model, prompt=text, steps=20, + height=training_size, + width=training_size, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..f821fd8d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,6 +1029,7 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') + process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1043,13 +1044,15 @@ def create_ui(wrap_gradio_gpu_call): run_preprocess = gr.Button(value="Preprocess", variant='primary') with gr.Group(): - gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") + gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) learn_rate = gr.Number(label='Learning rate', value=5.0e-03) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) + training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) + num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1092,6 +1095,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, + process_size, process_flip, process_split, process_caption, @@ -1110,7 +1114,9 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, + training_size, steps, + num_repeats, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 6ad3a53e368d36535de1a4fca73b3bb78fd40654 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:31:33 +0900 Subject: Fixed progress bar output for epoch --- modules/textual_inversion/textual_inversion.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index e34dc2e8..769682ea 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -228,7 +228,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini optimizer.step() epoch_num = math.floor(embedding.step / epoch_len) - epoch_step = embedding.step - (epoch_num * epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") -- cgit v1.2.3 From 7a20f914eddfdf09c0ccced157ec108205bc3d0f Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 22:35:35 +0900 Subject: Custom Width and Height --- modules/textual_inversion/dataset.py | 7 +++---- modules/textual_inversion/preprocess.py | 19 ++++++++++--------- modules/textual_inversion/textual_inversion.py | 11 +++++------ modules/ui.py | 12 ++++++++---- 4 files changed, 26 insertions(+), 23 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index acc4ce59..bcf772d2 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,12 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token - self.size = size - self.width = size - self.height = size + self.width = width + self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b3de6fd7..d7efdef2 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,9 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): - size = process_size +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption): + width = process_width + height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -55,23 +56,23 @@ def preprocess(process_src, process_dst, process_size, process_flip, process_spl is_wide = ratio < 1 / 1.35 if process_split and is_tall: - img = img.resize((size, size * img.height // img.width)) + img = img.resize((width, height * img.height // img.width)) - top = img.crop((0, 0, size, size)) + top = img.crop((0, 0, width, height)) save_pic(top, index) - bot = img.crop((0, img.height - size, size, img.height)) + bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) elif process_split and is_wide: - img = img.resize((size * img.width // img.height, size)) + img = img.resize((width * img.width // img.height, height)) - left = img.crop((0, 0, size, size)) + left = img.crop((0, 0, width, height)) save_pic(left, index) - right = img.crop((img.width - size, 0, img.width, size)) + right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) else: - img = images.resize_image(1, img, size, size) + img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 769682ea..5965c5a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,7 +6,6 @@ import torch import tqdm import html import datetime -import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -157,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -183,7 +182,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -227,7 +226,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = math.floor(embedding.step / epoch_len) + epoch_num = embedding.step // epoch_len epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") @@ -243,8 +242,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini sd_model=shared.sd_model, prompt=text, steps=20, - height=training_size, - width=training_size, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index f821fd8d..8c06ad7c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,7 +1029,8 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') - process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1050,7 +1051,8 @@ def create_ui(wrap_gradio_gpu_call): dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) - training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1095,7 +1097,8 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, - process_size, + process_width, + process_height, process_flip, process_split, process_caption, @@ -1114,7 +1117,8 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, - training_size, + training_width, + training_height, steps, num_repeats, create_image_every, -- cgit v1.2.3 From f347ddfd808c56bb1bacdec0c4bedf826ff85cd8 Mon Sep 17 00:00:00 2001 From: RW21 Date: Mon, 10 Oct 2022 10:44:11 +0900 Subject: Remove max_batch_count from ui.py --- modules/ui.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 8c06ad7c..8ba84911 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -524,7 +524,7 @@ def create_ui(wrap_gradio_gpu_call): denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) with gr.Row(): - batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0) @@ -710,7 +710,7 @@ def create_ui(wrap_gradio_gpu_call): tiling = gr.Checkbox(label='Tiling', value=False) with gr.Row(): - batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1) batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1) with gr.Group(): -- cgit v1.2.3 From b340439586d844e76782149ca1857c8de35773ec Mon Sep 17 00:00:00 2001 From: hentailord85ez <112723046+hentailord85ez@users.noreply.github.com> Date: Mon, 10 Oct 2022 05:28:06 +0100 Subject: Unlimited Token Works Unlimited tokens actually work now. Works with textual inversion too. Replaces the previous not-so-much-working implementation. --- modules/sd_hijack.py | 69 ++++++++++++++++++++++++++++++++++------------------ 1 file changed, 46 insertions(+), 23 deletions(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 437acce4..8d5c77d8 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -43,10 +43,7 @@ def undo_optimizations(): def get_target_prompt_token_count(token_count): - if token_count < 75: - return 75 - - return math.ceil(token_count / 10) * 10 + return math.ceil(max(token_count, 1) / 75) * 75 class StableDiffusionModelHijack: @@ -127,7 +124,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): self.token_mults[ident] = mult def tokenize_line(self, line, used_custom_terms, hijack_comments): - id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id if opts.enable_emphasis: @@ -154,7 +150,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): i += 1 else: emb_len = int(embedding.vec.shape[0]) - fixes.append((len(remade_tokens), embedding)) + iteration = len(remade_tokens) // 75 + fixes.append((iteration, (len(remade_tokens) % 75, embedding))) remade_tokens += [0] * emb_len multipliers += [weight] * emb_len used_custom_terms.append((embedding.name, embedding.checksum())) @@ -162,10 +159,10 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): token_count = len(remade_tokens) prompt_target_length = get_target_prompt_token_count(token_count) - tokens_to_add = prompt_target_length - len(remade_tokens) + 1 + tokens_to_add = prompt_target_length - len(remade_tokens) - remade_tokens = [id_start] + remade_tokens + [id_end] * tokens_to_add - multipliers = [1.0] + multipliers + [1.0] * tokens_to_add + remade_tokens = remade_tokens + [id_end] * tokens_to_add + multipliers = multipliers + [1.0] * tokens_to_add return remade_tokens, fixes, multipliers, token_count @@ -260,29 +257,55 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): hijack_fixes.append(fixes) batch_multipliers.append(multipliers) return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count - + def forward(self, text): - - if opts.use_old_emphasis_implementation: + use_old = opts.use_old_emphasis_implementation + if use_old: batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) else: batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) - self.hijack.fixes = hijack_fixes self.hijack.comments += hijack_comments if len(used_custom_terms) > 0: self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) + + if use_old: + self.hijack.fixes = hijack_fixes + return self.process_tokens(remade_batch_tokens, batch_multipliers) + + z = None + i = 0 + while max(map(len, remade_batch_tokens)) != 0: + rem_tokens = [x[75:] for x in remade_batch_tokens] + rem_multipliers = [x[75:] for x in batch_multipliers] + + self.hijack.fixes = [] + for unfiltered in hijack_fixes: + fixes = [] + for fix in unfiltered: + if fix[0] == i: + fixes.append(fix[1]) + self.hijack.fixes.append(fixes) + + z1 = self.process_tokens([x[:75] for x in remade_batch_tokens], [x[:75] for x in batch_multipliers]) + z = z1 if z is None else torch.cat((z, z1), axis=-2) + + remade_batch_tokens = rem_tokens + batch_multipliers = rem_multipliers + i += 1 + + return z + + + def process_tokens(self, remade_batch_tokens, batch_multipliers): + if not opts.use_old_emphasis_implementation: + remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens] + batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers] + + tokens = torch.asarray(remade_batch_tokens).to(device) + outputs = self.wrapped.transformer(input_ids=tokens) - target_token_count = get_target_prompt_token_count(token_count) + 2 - - position_ids_array = [min(x, 75) for x in range(target_token_count-1)] + [76] - position_ids = torch.asarray(position_ids_array, device=devices.device).expand((1, -1)) - - remade_batch_tokens_of_same_length = [x + [self.wrapped.tokenizer.eos_token_id] * (target_token_count - len(x)) for x in remade_batch_tokens] - tokens = torch.asarray(remade_batch_tokens_of_same_length).to(device) - - outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids, output_hidden_states=-opts.CLIP_stop_at_last_layers) if opts.CLIP_stop_at_last_layers > 1: z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] z = self.wrapped.transformer.text_model.final_layer_norm(z) @@ -290,7 +313,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): z = outputs.last_hidden_state # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise - batch_multipliers_of_same_length = [x + [1.0] * (target_token_count - len(x)) for x in batch_multipliers] + batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers] batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(device) original_mean = z.mean() z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) -- cgit v1.2.3 From 460bbae58726c177beddfcddf351f27e205d3fb2 Mon Sep 17 00:00:00 2001 From: hentailord85ez <112723046+hentailord85ez@users.noreply.github.com> Date: Mon, 10 Oct 2022 16:09:06 +0100 Subject: Pad beginning of textual inversion embedding --- modules/sd_hijack.py | 5 +++++ 1 file changed, 5 insertions(+) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 8d5c77d8..3a60cd63 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -151,6 +151,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): else: emb_len = int(embedding.vec.shape[0]) iteration = len(remade_tokens) // 75 + if (len(remade_tokens) + emb_len) // 75 != iteration: + rem = (75 * (iteration + 1) - len(remade_tokens)) + remade_tokens += [id_end] * rem + multipliers += [1.0] * rem + iteration += 1 fixes.append((iteration, (len(remade_tokens) % 75, embedding))) remade_tokens += [0] * emb_len multipliers += [weight] * emb_len -- cgit v1.2.3 From d5c14365fd468dbf89fa12a68bea5b217077273c Mon Sep 17 00:00:00 2001 From: hentailord85ez <112723046+hentailord85ez@users.noreply.github.com> Date: Mon, 10 Oct 2022 16:13:47 +0100 Subject: Add back in output hidden states parameter --- modules/sd_hijack.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 3a60cd63..3edc0e9d 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -309,7 +309,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers] tokens = torch.asarray(remade_batch_tokens).to(device) - outputs = self.wrapped.transformer(input_ids=tokens) + outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) if opts.CLIP_stop_at_last_layers > 1: z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers] -- cgit v1.2.3 From 9d33baba587637815d818e5e641d8f8b74c4900d Mon Sep 17 00:00:00 2001 From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com> Date: Mon, 10 Oct 2022 18:46:48 +0300 Subject: Always show previous mask and fix extras_send dest --- modules/ui.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 8ba84911..e8039d76 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -961,7 +961,7 @@ def create_ui(wrap_gradio_gpu_call): extras_send_to_inpaint.click( fn=lambda x: image_from_url_text(x), - _js="extract_image_from_gallery_img2img", + _js="extract_image_from_gallery_inpaint", inputs=[result_images], outputs=[init_img_with_mask], ) -- cgit v1.2.3 From 623251ce2b8d152e242011f62984a8247a14a389 Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Mon, 10 Oct 2022 17:45:38 +0300 Subject: allow pascal onwards --- modules/sd_hijack.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 3edc0e9d..827bf304 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -23,7 +23,7 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu - if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and torch.cuda.get_device_capability(shared.device) == (8, 6)): + if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)): print("Applying xformers cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward -- cgit v1.2.3 From 3e7a981194ed9c454e951365846e4eba66fa7095 Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Mon, 10 Oct 2022 17:51:05 +0300 Subject: remove functorch --- modules/sd_hijack_optimizations.py | 2 -- 1 file changed, 2 deletions(-) (limited to 'modules') diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 634fb4b2..18408e62 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -13,8 +13,6 @@ from modules import shared if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: try: import xformers.ops - import functorch - xformers._is_functorch_available = True shared.xformers_available = True except Exception: print("Cannot import xformers", file=sys.stderr) -- cgit v1.2.3 From ece27fe98933eb0eda8ea94dc496dd7554f3a08f Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Sun, 9 Oct 2022 18:55:33 +0300 Subject: Add files via upload --- modules/swinir_model_arch_v2.py | 1017 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 1017 insertions(+) create mode 100644 modules/swinir_model_arch_v2.py (limited to 'modules') diff --git a/modules/swinir_model_arch_v2.py b/modules/swinir_model_arch_v2.py new file mode 100644 index 00000000..0e28ae6e --- /dev/null +++ b/modules/swinir_model_arch_v2.py @@ -0,0 +1,1017 @@ +# ----------------------------------------------------------------------------------- +# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/ +# Written by Conde and Choi et al. +# ----------------------------------------------------------------------------------- + +import math +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + pretrained_window_size (tuple[int]): The height and width of the window in pre-training. + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., + pretrained_window_size=[0, 0]): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.pretrained_window_size = pretrained_window_size + self.num_heads = num_heads + + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) + + # mlp to generate continuous relative position bias + self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), + nn.ReLU(inplace=True), + nn.Linear(512, num_heads, bias=False)) + + # get relative_coords_table + relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) + relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) + relative_coords_table = torch.stack( + torch.meshgrid([relative_coords_h, + relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 + if pretrained_window_size[0] > 0: + relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) + else: + relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) + relative_coords_table *= 8 # normalize to -8, 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2( + torch.abs(relative_coords_table) + 1.0) / np.log2(8) + + self.register_buffer("relative_coords_table", relative_coords_table) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(dim)) + self.v_bias = nn.Parameter(torch.zeros(dim)) + else: + self.q_bias = None + self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + # cosine attention + attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) + logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp() + attn = attn * logit_scale + + relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) + relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + relative_position_bias = 16 * torch.sigmoid(relative_position_bias) + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, ' \ + f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + pretrained_window_size (int): Window size in pre-training. + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, + pretrained_window_size=to_2tuple(pretrained_window_size)) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + #assert L == H * W, "input feature has wrong size" + + shortcut = x + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + x = shortcut + self.drop_path(self.norm1(x)) + + # FFN + x = x + self.drop_path(self.norm2(self.mlp(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(2 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.reduction(x) + x = self.norm(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + flops += H * W * self.dim // 2 + return flops + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + pretrained_window_size (int): Local window size in pre-training. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + pretrained_window_size=0): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + pretrained_window_size=pretrained_window_size) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + def _init_respostnorm(self): + for blk in self.blocks: + nn.init.constant_(blk.norm1.bias, 0) + nn.init.constant_(blk.norm1.weight, 0) + nn.init.constant_(blk.norm2.bias, 0) + nn.init.constant_(blk.norm2.weight, 0) + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + # assert H == self.img_size[0] and W == self.img_size[1], + # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + img_size=224, patch_size=4, resi_connection='1conv'): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer(dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint) + + if resi_connection == '1conv': + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1)) + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, + norm_layer=None) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, + norm_layer=None) + + def forward(self, x, x_size): + return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + +class PatchUnEmbed(nn.Module): + r""" Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample, self).__init__(*m) + +class Upsample_hf(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample_hf, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.num_feat * 3 * 9 + return flops + + + +class Swin2SR(nn.Module): + r""" Swin2SR + A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__(self, img_size=64, patch_size=1, in_chans=3, + embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + window_size=7, mlp_ratio=4., qkv_bias=True, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', + **kwargs): + super(Swin2SR, self).__init__() + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + self.window_size = window_size + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers.append(layer) + + if self.upsampler == 'pixelshuffle_hf': + self.layers_hf = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers_hf.append(layer) + + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == '1conv': + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == 'pixelshuffle': + # for classical SR + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == 'pixelshuffle_aux': + self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_after_aux = nn.Sequential( + nn.Conv2d(3, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == 'pixelshuffle_hf': + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.upsample_hf = Upsample_hf(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + self.conv_before_upsample_hf = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, + (patches_resolution[0], patches_resolution[1])) + elif self.upsampler == 'nearest+conv': + # for real-world SR (less artifacts) + assert self.upscale == 4, 'only support x4 now.' + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward_features_hf(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers_hf: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == 'pixelshuffle': + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == 'pixelshuffle_aux': + bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False) + bicubic = self.conv_bicubic(bicubic) + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + aux = self.conv_aux(x) # b, 3, LR_H, LR_W + x = self.conv_after_aux(aux) + x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale] + x = self.conv_last(x) + aux = aux / self.img_range + self.mean + elif self.upsampler == 'pixelshuffle_hf': + # for classical SR with HF + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x_before = self.conv_before_upsample(x) + x_out = self.conv_last(self.upsample(x_before)) + + x_hf = self.conv_first_hf(x_before) + x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf + x_hf = self.conv_before_upsample_hf(x_hf) + x_hf = self.conv_last_hf(self.upsample_hf(x_hf)) + x = x_out + x_hf + x_hf = x_hf / self.img_range + self.mean + + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == 'nearest+conv': + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + if self.upsampler == "pixelshuffle_aux": + return x[:, :, :H*self.upscale, :W*self.upscale], aux + + elif self.upsampler == "pixelshuffle_hf": + x_out = x_out / self.img_range + self.mean + return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale] + + else: + return x[:, :, :H*self.upscale, :W*self.upscale] + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() + return flops + + +if __name__ == '__main__': + upscale = 4 + window_size = 8 + height = (1024 // upscale // window_size + 1) * window_size + width = (720 // upscale // window_size + 1) * window_size + model = Swin2SR(upscale=2, img_size=(height, width), + window_size=window_size, img_range=1., depths=[6, 6, 6, 6], + embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') + print(model) + print(height, width, model.flops() / 1e9) + + x = torch.randn((1, 3, height, width)) + x = model(x) + print(x.shape) \ No newline at end of file -- cgit v1.2.3 From ed769977f0d0f201d8e361d365102f18775fc62c Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Sun, 9 Oct 2022 18:56:59 +0300 Subject: add swinir v2 support --- modules/swinir_model.py | 35 ++++++++++++++++++++++++++++------- 1 file changed, 28 insertions(+), 7 deletions(-) (limited to 'modules') diff --git a/modules/swinir_model.py b/modules/swinir_model.py index fbd11f84..baa02e3d 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -10,6 +10,7 @@ from tqdm import tqdm from modules import modelloader from modules.shared import cmd_opts, opts, device from modules.swinir_model_arch import SwinIR as net +from modules.swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData precision_scope = ( @@ -57,22 +58,42 @@ class UpscalerSwinIR(Upscaler): filename = path if filename is None or not os.path.exists(filename): return None - model = net( + if filename.endswith(".v2.pth"): + model = net2( upscale=scale, in_chans=3, img_size=64, window_size=8, img_range=1.0, - depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], - embed_dim=240, - num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + depths=[6, 6, 6, 6, 6, 6], + embed_dim=180, + num_heads=[6, 6, 6, 6, 6, 6], mlp_ratio=2, upsampler="nearest+conv", - resi_connection="3conv", - ) + resi_connection="1conv", + ) + params = None + else: + model = net( + upscale=scale, + in_chans=3, + img_size=64, + window_size=8, + img_range=1.0, + depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], + embed_dim=240, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, + upsampler="nearest+conv", + resi_connection="3conv", + ) + params = "params_ema" pretrained_model = torch.load(filename) - model.load_state_dict(pretrained_model["params_ema"], strict=True) + if params is not None: + model.load_state_dict(pretrained_model[params], strict=True) + else: + model.load_state_dict(pretrained_model, strict=True) if not cmd_opts.no_half: model = model.half() return model -- cgit v1.2.3 From af62ad4d25dcd0454944368f4925d83101cdedbc Mon Sep 17 00:00:00 2001 From: ssysm Date: Mon, 10 Oct 2022 13:25:28 -0400 Subject: change vae loading method --- modules/sd_models.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) (limited to 'modules') diff --git a/modules/sd_models.py b/modules/sd_models.py index b0e1d8bd..7a42d924 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -150,9 +150,16 @@ def load_model_weights(model, checkpoint_info): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 - vae_file = shared.cmd_opts.vae_path or os.path.splitext(checkpoint_file)[0] + ".vae.pt" + vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" + if os.path.exists(vae_file): + print(f"Found VAE Weights: {vae_file}") + elif shared.cmd_opts.vae_path != None: + vae_file = shared.cmd_opts.vae_path + print(f'No VAE found for inside the model folder. Using CLI specified : {vae_file}') + else: + print("No VAE found for inside the model folder. Passing.") + if os.path.exists(vae_file): - print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location="cpu") vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} -- cgit v1.2.3 From 39919c40dd18f5a14ae21403efea1b0f819756c7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 20:32:37 +0300 Subject: add eta noise seed delta option --- modules/processing.py | 6 +++++- modules/shared.py | 1 + 2 files changed, 6 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/processing.py b/modules/processing.py index 50ba4fc5..698b3069 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -207,7 +207,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see # enables the generation of additional tensors with noise that the sampler will use during its processing. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to # produce the same images as with two batches [100], [101]. - if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds: + if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0): sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] else: sampler_noises = None @@ -247,6 +247,9 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see if sampler_noises is not None: cnt = p.sampler.number_of_needed_noises(p) + if opts.eta_noise_seed_delta > 0: + torch.manual_seed(seed + opts.eta_noise_seed_delta) + for j in range(cnt): sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) @@ -301,6 +304,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Denoising strength": getattr(p, 'denoising_strength', None), "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), "Clip skip": None if clip_skip <= 1 else clip_skip, + "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, } generation_params.update(p.extra_generation_params) diff --git a/modules/shared.py b/modules/shared.py index 5dfc344c..b1c65ecf 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -260,6 +260,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) -- cgit v1.2.3 From 727e4d108674dc2813507e2a973a733ef21e8d53 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 20:46:55 +0300 Subject: no to different messages plus fix using != to compare to None --- modules/sd_models.py | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) (limited to 'modules') diff --git a/modules/sd_models.py b/modules/sd_models.py index 4c06051e..0a55b4c3 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -152,15 +152,12 @@ def load_model_weights(model, checkpoint_info): devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" - if os.path.exists(vae_file): - print(f"Found VAE Weights: {vae_file}") - elif shared.cmd_opts.vae_path != None: + + if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None: vae_file = shared.cmd_opts.vae_path - print(f'No VAE found for inside the model folder. Using CLI specified : {vae_file}') - else: - print("No VAE found for inside the model folder. Passing.") if os.path.exists(vae_file): + print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location="cpu") vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"} -- cgit v1.2.3 From bc3e183b739913e7be91213a256f038b10eb71e9 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 04:30:13 +0900 Subject: Textual Inversion: Preprocess and Training will only pick-up image files --- modules/textual_inversion/dataset.py | 3 ++- modules/textual_inversion/preprocess.py | 3 ++- modules/textual_inversion/textual_inversion.py | 3 ++- 3 files changed, 6 insertions(+), 3 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index bcf772d2..d4baf066 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,6 +22,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) + self.extns = [".jpg",".jpeg",".png"] self.dataset = [] @@ -32,7 +33,7 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' - self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in self.extns] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): image = Image.open(path) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index d7efdef2..b6c78cf8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,12 +12,13 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) + extns = [".jpg",".jpeg",".png"] assert src != dst, 'same directory specified as source and destination' os.makedirs(dst, exist_ok=True) - files = os.listdir(src) + files = [i for i in os.listdir(src) if os.path.splitext(i.casefold())[1] in extns] shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a0..45397be9 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,6 +161,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps + extns = [".jpg",".jpeg",".png"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') @@ -200,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in extns]) epoch_len = (tr_img_len * num_repeats) + tr_img_len pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) -- cgit v1.2.3 From f98338faa84ecce503e68d8ba13d5f7bbae52730 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 23:15:48 +0300 Subject: add an option to not add watermark to created images --- modules/shared.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules') diff --git a/modules/shared.py b/modules/shared.py index da389f9c..ecd15ef5 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -173,6 +173,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"), "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), + "do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"), })) options_templates.update(options_section(('saving-paths', "Paths for saving"), { -- cgit v1.2.3 From 2536ecbb1790da2af0d61b6a26f38732cba665cd Mon Sep 17 00:00:00 2001 From: Fampai <> Date: Mon, 10 Oct 2022 17:10:29 -0400 Subject: Refactored learning rate code --- modules/textual_inversion/textual_inversion.py | 51 ++++++++++++++++++++++++-- modules/ui.py | 2 +- 2 files changed, 48 insertions(+), 5 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a0..c64a4598 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -189,8 +189,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini embedding = hijack.embedding_db.word_embeddings[embedding_name] embedding.vec.requires_grad = True - optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) - losses = torch.zeros((32,)) last_saved_file = "" @@ -203,12 +201,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) epoch_len = (tr_img_len * num_repeats) + tr_img_len + scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(scheduleIter) + print(f'Training at rate of {learn_rate} until step {end_step}') + + optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step - if embedding.step > steps: - break + if embedding.step > end_step: + try: + (learn_rate, end_step) = next(scheduleIter) + except: + break + tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') + for pg in optimizer.param_groups: + pg['lr'] = learn_rate if shared.state.interrupted: break @@ -277,3 +287,36 @@ Last saved image: {html.escape(last_saved_image)}
return embedding, filename +class LearnSchedule: + def __init__(self, learn_rate, max_steps, cur_step=0): + pairs = learn_rate.split(',') + self.rates = [] + self.it = 0 + self.maxit = 0 + for i, pair in enumerate(pairs): + tmp = pair.split(':') + if len(tmp) == 2: + step = int(tmp[1]) + if step > cur_step: + self.rates.append((float(tmp[0]), min(step, max_steps))) + self.maxit += 1 + if step > max_steps: + return + elif step == -1: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + else: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + + def __iter__(self): + return self + + def __next__(self): + if self.it < self.maxit: + self.it += 1 + return self.rates[self.it - 1] + else: + raise StopIteration diff --git a/modules/ui.py b/modules/ui.py index 8c06ad7c..c9e8355b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1047,7 +1047,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Group(): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) - learn_rate = gr.Number(label='Learning rate', value=5.0e-03) + learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) -- cgit v1.2.3 From 907a88b2d0be320575c2129d8d6a1d4f3a68f9eb Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 06:33:08 +0900 Subject: Added .webp .bmp --- modules/textual_inversion/dataset.py | 2 +- modules/textual_inversion/preprocess.py | 2 +- modules/textual_inversion/textual_inversion.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index d4baf066..0dc54fb7 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,7 +22,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) - self.extns = [".jpg",".jpeg",".png"] + self.extns = [".jpg",".jpeg",".png",".webp",".bmp"] self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b6c78cf8..8290abe8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,7 +12,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) - extns = [".jpg",".jpeg",".png"] + extns = [".jpg",".jpeg",".png",".webp",".bmp"] assert src != dst, 'same directory specified as source and destination' diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index a03b299c..33c923d1 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,7 +161,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps - extns = [".jpg",".jpeg",".png"] + extns = [".jpg",".jpeg",".png",".webp",".bmp"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') -- cgit v1.2.3 From a1a05ad2d13d0b995dbf8ecead6315f17837ef81 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 16:47:58 -0500 Subject: import time missing, added to deepbooru fixxing error on get_deepbooru_tags --- modules/deepbooru.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index cee4a3b4..12555b2e 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -1,6 +1,7 @@ import os.path from concurrent.futures import ProcessPoolExecutor import multiprocessing +import time def get_deepbooru_tags(pil_image, threshold=0.5): -- cgit v1.2.3 From b980e7188c671fc55b26557f097076fb5c976ba0 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 16:52:54 -0500 Subject: corrected tag return in get_deepbooru_tags --- modules/deepbooru.py | 1 - 1 file changed, 1 deletion(-) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 12555b2e..ebdba5e0 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -15,7 +15,6 @@ def get_deepbooru_tags(pil_image, threshold=0.5): while shared.deepbooru_process_return["value"] == -1: time.sleep(0.2) release_process() - return ret def deepbooru_process(queue, deepbooru_process_return, threshold): -- cgit v1.2.3 From 76ef3d75f61253516c024553335d9083d9660a8a Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 18:01:49 -0500 Subject: added deepbooru settings (threshold and sort by alpha or likelyhood) --- modules/deepbooru.py | 36 +++++++++++++++++++++++++----------- modules/shared.py | 6 ++++++ 2 files changed, 31 insertions(+), 11 deletions(-) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index ebdba5e0..e31e92c0 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -3,31 +3,32 @@ from concurrent.futures import ProcessPoolExecutor import multiprocessing import time - -def get_deepbooru_tags(pil_image, threshold=0.5): +def get_deepbooru_tags(pil_image): """ This method is for running only one image at a time for simple use. Used to the img2img interrogate. """ from modules import shared # prevents circular reference - create_deepbooru_process(threshold) + create_deepbooru_process(shared.opts.deepbooru_threshold, shared.opts.deepbooru_sort_alpha) shared.deepbooru_process_return["value"] = -1 shared.deepbooru_process_queue.put(pil_image) while shared.deepbooru_process_return["value"] == -1: time.sleep(0.2) + tags = shared.deepbooru_process_return["value"] release_process() + return tags -def deepbooru_process(queue, deepbooru_process_return, threshold): +def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort): model, tags = get_deepbooru_tags_model() while True: # while process is running, keep monitoring queue for new image pil_image = queue.get() if pil_image == "QUIT": break else: - deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold) + deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort) -def create_deepbooru_process(threshold=0.5): +def create_deepbooru_process(threshold, alpha_sort): """ Creates deepbooru process. A queue is created to send images into the process. This enables multiple images to be processed in a row without reloading the model or creating a new process. To return the data, a shared @@ -40,7 +41,7 @@ def create_deepbooru_process(threshold=0.5): shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() shared.deepbooru_process_return["value"] = -1 - shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold)) + shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort)) shared.deepbooru_process.start() @@ -80,7 +81,7 @@ def get_deepbooru_tags_model(): return model, tags -def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5): +def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort): import deepdanbooru as dd import tensorflow as tf import numpy as np @@ -105,15 +106,28 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5): for i, tag in enumerate(tags): result_dict[tag] = y[i] - result_tags_out = [] + + unsorted_tags_in_theshold = [] result_tags_print = [] for tag in tags: if result_dict[tag] >= threshold: if tag.startswith("rating:"): continue - result_tags_out.append(tag) + unsorted_tags_in_theshold.append((result_dict[tag], tag)) result_tags_print.append(f'{result_dict[tag]} {tag}') + # sort tags + result_tags_out = [] + sort_ndx = 0 + print(alpha_sort) + if alpha_sort: + sort_ndx = 1 + + # sort by reverse by likelihood and normal for alpha + unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort)) + for weight, tag in unsorted_tags_in_theshold: + result_tags_out.append(tag) + print('\n'.join(sorted(result_tags_print, reverse=True))) - return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') \ No newline at end of file + return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') diff --git a/modules/shared.py b/modules/shared.py index 1995a99a..2e307809 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -261,6 +261,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), })) +if cmd_opts.deepdanbooru: + options_templates.update(options_section(('deepbooru-params', "DeepBooru parameters"), { + "deepbooru_sort_alpha": OptionInfo(True, "Sort Alphabetical", gr.Checkbox), + 'deepbooru_threshold': OptionInfo(0.5, "Threshold", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + })) + class Options: data = None -- cgit v1.2.3 From bb932dbf9faf43ba918daa4791873078797b2a48 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 18:37:52 -0500 Subject: added alpha sort and threshold variables to create process method in preprocessing --- modules/textual_inversion/preprocess.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 4a2194da..c0af729b 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -29,7 +29,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.interrogator.load() if process_caption_deepbooru: - deepbooru.create_deepbooru_process() + deepbooru.create_deepbooru_process(opts.deepbooru_threshold, opts.deepbooru_sort_alpha) def save_pic_with_caption(image, index): if process_caption: -- cgit v1.2.3 From 1add3cff84b7e2436d69b1e97ae689281e4a7c33 Mon Sep 17 00:00:00 2001 From: papuSpartan Date: Mon, 10 Oct 2022 19:57:43 -0500 Subject: Refresh list of models/ckpts upon hitting restart gradio in the settings pane --- modules/ui.py | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index e8039d76..06ff118f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -39,6 +39,7 @@ import modules.generation_parameters_copypaste from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui +from modules.sd_models import list_models # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() @@ -1290,6 +1291,9 @@ Requested path was: {f} shared.state.interrupt() settings_interface.gradio_ref.do_restart = True + # refresh models so that new models/.ckpt's show up on reload + list_models() + restart_gradio.click( fn=request_restart, inputs=[], -- cgit v1.2.3 From 8b7d3f1bef47bbe048f644ed0d8dd3ad46554045 Mon Sep 17 00:00:00 2001 From: Jairo Correa Date: Tue, 11 Oct 2022 02:22:46 -0300 Subject: Make the ctrl+enter shortcut use the generate button on the current tab --- modules/ui.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index e8039d76..cafda884 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1331,7 +1331,7 @@ Requested path was: {f} with gr.Tabs() as tabs: for interface, label, ifid in interfaces: - with gr.TabItem(label, id=ifid): + with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid): interface.render() if os.path.exists(os.path.join(script_path, "notification.mp3")): -- cgit v1.2.3 From 8617396c6df71074c7fd3d39419802026874712a Mon Sep 17 00:00:00 2001 From: Kenneth Date: Mon, 10 Oct 2022 17:23:07 -0600 Subject: Added slider for deepbooru score threshold in settings --- modules/shared.py | 1 + modules/ui.py | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/shared.py b/modules/shared.py index ecd15ef5..e0830e28 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -239,6 +239,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), + "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), })) options_templates.update(options_section(('ui', "User interface"), { diff --git a/modules/ui.py b/modules/ui.py index cafda884..ca3151c4 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -311,7 +311,7 @@ def interrogate(image): def interrogate_deepbooru(image): - prompt = get_deepbooru_tags(image) + prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold) return gr_show(True) if prompt is None else prompt -- cgit v1.2.3 From 5e2627a1a63e4c9f87e6e604ecc24e9936f149de Mon Sep 17 00:00:00 2001 From: hentailord85ez <112723046+hentailord85ez@users.noreply.github.com> Date: Tue, 11 Oct 2022 07:55:28 +0100 Subject: Comma backtrack padding (#2192) Comma backtrack padding --- modules/sd_hijack.py | 19 ++++++++++++++++++- modules/shared.py | 1 + 2 files changed, 19 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 827bf304..aa4d2cbc 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -107,6 +107,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): self.tokenizer = wrapped.tokenizer self.token_mults = {} + self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0] + tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] for text, ident in tokens_with_parens: mult = 1.0 @@ -136,6 +138,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): fixes = [] remade_tokens = [] multipliers = [] + last_comma = -1 for tokens, (text, weight) in zip(tokenized, parsed): i = 0 @@ -144,6 +147,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) + if token == self.comma_token: + last_comma = len(remade_tokens) + elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack: + last_comma += 1 + reloc_tokens = remade_tokens[last_comma:] + reloc_mults = multipliers[last_comma:] + + remade_tokens = remade_tokens[:last_comma] + length = len(remade_tokens) + + rem = int(math.ceil(length / 75)) * 75 - length + remade_tokens += [id_end] * rem + reloc_tokens + multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults + if embedding is None: remade_tokens.append(token) multipliers.append(weight) @@ -284,7 +301,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): while max(map(len, remade_batch_tokens)) != 0: rem_tokens = [x[75:] for x in remade_batch_tokens] rem_multipliers = [x[75:] for x in batch_multipliers] - + self.hijack.fixes = [] for unfiltered in hijack_fixes: fixes = [] diff --git a/modules/shared.py b/modules/shared.py index e0830e28..14b40d70 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -227,6 +227,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), + "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "filter_nsfw": OptionInfo(False, "Filter NSFW content"), 'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), -- cgit v1.2.3 From 948533950c9db5069a874d925fadd50bac00fdb5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 11:09:51 +0300 Subject: replace duplicate code with a function --- modules/hypernetwork.py | 23 ++++++++++++-------- modules/sd_hijack_optimizations.py | 44 +++++++++++++------------------------- 2 files changed, 29 insertions(+), 38 deletions(-) (limited to 'modules') diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py index 498bc9d8..7bbc443e 100644 --- a/modules/hypernetwork.py +++ b/modules/hypernetwork.py @@ -64,21 +64,26 @@ def load_hypernetwork(filename): shared.loaded_hypernetwork = None +def apply_hypernetwork(hypernetwork, context): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is None: + return context, context + + context_k = hypernetwork_layers[0](context) + context_v = hypernetwork_layers[1](context) + return context_k, context_v + + def attention_CrossAttention_forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) - hypernetwork = shared.loaded_hypernetwork - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - k = self.to_k(hypernetwork_layers[0](context)) - v = self.to_v(hypernetwork_layers[1](context)) - else: - k = self.to_k(context) - v = self.to_v(context) + context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context) + k = self.to_k(context_k) + v = self.to_v(context_v) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 18408e62..25cb67a4 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -8,7 +8,8 @@ from torch import einsum from ldm.util import default from einops import rearrange -from modules import shared +from modules import shared, hypernetwork + if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: try: @@ -26,16 +27,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): q_in = self.to_q(x) context = default(context, x) - hypernetwork = shared.loaded_hypernetwork - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - k_in = self.to_k(hypernetwork_layers[0](context)) - v_in = self.to_v(hypernetwork_layers[1](context)) - else: - k_in = self.to_k(context) - v_in = self.to_v(context) - del context, x + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k_in = self.to_k(context_k) + v_in = self.to_v(context_v) + del context, context_k, context_v, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in @@ -59,22 +54,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): return self.to_out(r2) -# taken from https://github.com/Doggettx/stable-diffusion +# taken from https://github.com/Doggettx/stable-diffusion and modified def split_cross_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) - hypernetwork = shared.loaded_hypernetwork - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - k_in = self.to_k(hypernetwork_layers[0](context)) - v_in = self.to_v(hypernetwork_layers[1](context)) - else: - k_in = self.to_k(context) - v_in = self.to_v(context) + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k_in = self.to_k(context_k) + v_in = self.to_v(context_v) k_in *= self.scale @@ -130,14 +119,11 @@ def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) - hypernetwork = shared.loaded_hypernetwork - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - if hypernetwork_layers is not None: - k_in = self.to_k(hypernetwork_layers[0](context)) - v_in = self.to_v(hypernetwork_layers[1](context)) - else: - k_in = self.to_k(context) - v_in = self.to_v(context) + + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k_in = self.to_k(context_k) + v_in = self.to_v(context_v) + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) -- cgit v1.2.3 From b2368a3bce663f19a7209d9cb38617e635ca6e3c Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 17:32:46 +0900 Subject: Switched to exception handling --- modules/textual_inversion/dataset.py | 10 +++++----- modules/textual_inversion/preprocess.py | 8 +++++--- modules/textual_inversion/textual_inversion.py | 18 ++++++++---------- 3 files changed, 18 insertions(+), 18 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 0dc54fb7..4d006366 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,7 +22,6 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) - self.extns = [".jpg",".jpeg",".png",".webp",".bmp"] self.dataset = [] @@ -33,12 +32,13 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' - self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in self.extns] + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): - image = Image.open(path) - image = image.convert('RGB') - image = image.resize((self.width, self.height), PIL.Image.BICUBIC) + try: + image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC) + except Exception: + continue filename = os.path.basename(path) filename_tokens = os.path.splitext(filename)[0] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 8290abe8..1a672725 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,13 +12,12 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) - extns = [".jpg",".jpeg",".png",".webp",".bmp"] assert src != dst, 'same directory specified as source and destination' os.makedirs(dst, exist_ok=True) - files = [i for i in os.listdir(src) if os.path.splitext(i.casefold())[1] in extns] + files = os.listdir(src) shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) @@ -47,7 +46,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ for index, imagefile in enumerate(tqdm.tqdm(files)): subindex = [0] filename = os.path.join(src, imagefile) - img = Image.open(filename).convert("RGB") + try: + img = Image.open(filename).convert("RGB") + except Exception: + continue if shared.state.interrupted: break diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 33c923d1..91cde04b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,7 +161,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps - extns = [".jpg",".jpeg",".png",".webp",".bmp"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') @@ -201,10 +200,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in extns]) - - epoch_len = (tr_img_len * num_repeats) + tr_img_len - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -228,10 +223,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = embedding.step // epoch_len - epoch_step = embedding.step - (epoch_num * epoch_len) + 1 + epoch_num = embedding.step // len(ds) + epoch_step = embedding.step - (epoch_num * len(ds)) + 1 - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -243,9 +238,12 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, prompt=text, - steps=20, - height=training_height, + steps=28, + height=768, width=training_width, + negative_prompt="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name", + cfg_scale=7.0, + sampler_index=0, do_not_save_grid=True, do_not_save_samples=True, ) -- cgit v1.2.3 From 8bacbca0a1ab9aabcb0ad0cbf070e0006991e98a Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 17:35:09 +0900 Subject: Removed my local edits to checkpoint image generation --- modules/textual_inversion/textual_inversion.py | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) (limited to 'modules') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 91cde04b..e9ff80c2 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -238,12 +238,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, prompt=text, - steps=28, - height=768, + steps=20, + height=training_height, width=training_width, - negative_prompt="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name", - cfg_scale=7.0, - sampler_index=0, do_not_save_grid=True, do_not_save_samples=True, ) -- cgit v1.2.3 From 530103b586109c11fd068eb70ef09503ec6a4caf Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 14:53:02 +0300 Subject: fixes related to merge --- modules/hypernetwork.py | 103 ------------------------- modules/hypernetwork/hypernetwork.py | 74 +++++++++++------- modules/hypernetwork/ui.py | 10 +-- modules/sd_hijack_optimizations.py | 3 +- modules/shared.py | 13 +++- modules/textual_inversion/textual_inversion.py | 12 +-- modules/ui.py | 5 +- 7 files changed, 73 insertions(+), 147 deletions(-) delete mode 100644 modules/hypernetwork.py (limited to 'modules') diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py deleted file mode 100644 index 7bbc443e..00000000 --- a/modules/hypernetwork.py +++ /dev/null @@ -1,103 +0,0 @@ -import glob -import os -import sys -import traceback - -import torch - -from ldm.util import default -from modules import devices, shared -import torch -from torch import einsum -from einops import rearrange, repeat - - -class HypernetworkModule(torch.nn.Module): - def __init__(self, dim, state_dict): - super().__init__() - - self.linear1 = torch.nn.Linear(dim, dim * 2) - self.linear2 = torch.nn.Linear(dim * 2, dim) - - self.load_state_dict(state_dict, strict=True) - self.to(devices.device) - - def forward(self, x): - return x + (self.linear2(self.linear1(x))) - - -class Hypernetwork: - filename = None - name = None - - def __init__(self, filename): - self.filename = filename - self.name = os.path.splitext(os.path.basename(filename))[0] - self.layers = {} - - state_dict = torch.load(filename, map_location='cpu') - for size, sd in state_dict.items(): - self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) - - -def list_hypernetworks(path): - res = {} - for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): - name = os.path.splitext(os.path.basename(filename))[0] - res[name] = filename - return res - - -def load_hypernetwork(filename): - path = shared.hypernetworks.get(filename, None) - if path is not None: - print(f"Loading hypernetwork {filename}") - try: - shared.loaded_hypernetwork = Hypernetwork(path) - except Exception: - print(f"Error loading hypernetwork {path}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - if shared.loaded_hypernetwork is not None: - print(f"Unloading hypernetwork") - - shared.loaded_hypernetwork = None - - -def apply_hypernetwork(hypernetwork, context): - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is None: - return context, context - - context_k = hypernetwork_layers[0](context) - context_v = hypernetwork_layers[1](context) - return context_k, context_v - - -def attention_CrossAttention_forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - - context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context) - k = self.to_k(context_k) - v = self.to_v(context_v) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if mask is not None: - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py index a3d6a47e..aa701bda 100644 --- a/modules/hypernetwork/hypernetwork.py +++ b/modules/hypernetwork/hypernetwork.py @@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module): if state_dict is not None: self.load_state_dict(state_dict, strict=True) else: - self.linear1.weight.data.fill_(0.0001) - self.linear1.bias.data.fill_(0.0001) - self.linear2.weight.data.fill_(0.0001) - self.linear2.bias.data.fill_(0.0001) + + self.linear1.weight.data.normal_(mean=0.0, std=0.01) + self.linear1.bias.data.zero_() + self.linear2.weight.data.normal_(mean=0.0, std=0.01) + self.linear2.bias.data.zero_() self.to(devices.device) @@ -92,41 +93,54 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) -def load_hypernetworks(path): +def list_hypernetworks(path): res = {} + for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): + name = os.path.splitext(os.path.basename(filename))[0] + res[name] = filename + return res - for filename in glob.iglob(path + '**/*.pt', recursive=True): + +def load_hypernetwork(filename): + path = shared.hypernetworks.get(filename, None) + if path is not None: + print(f"Loading hypernetwork {filename}") try: - hn = Hypernetwork() - hn.load(filename) - res[hn.name] = hn + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + except Exception: - print(f"Error loading hypernetwork {filename}", file=sys.stderr) + print(f"Error loading hypernetwork {path}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) + else: + if shared.loaded_hypernetwork is not None: + print(f"Unloading hypernetwork") - return res + shared.loaded_hypernetwork = None -def attention_CrossAttention_forward(self, x, context=None, mask=None): - h = self.heads +def apply_hypernetwork(hypernetwork, context, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - q = self.to_q(x) - context = default(context, x) + if hypernetwork_layers is None: + return context, context - hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None) + if layer is not None: + layer.hyper_k = hypernetwork_layers[0] + layer.hyper_v = hypernetwork_layers[1] - if hypernetwork_layers is not None: - hypernetwork_k, hypernetwork_v = hypernetwork_layers + context_k = hypernetwork_layers[0](context) + context_v = hypernetwork_layers[1](context) + return context_k, context_v - self.hypernetwork_k = hypernetwork_k - self.hypernetwork_v = hypernetwork_v - context_k = hypernetwork_k(context) - context_v = hypernetwork_v(context) - else: - context_k = context - context_v = context +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) k = self.to_k(context_k) v = self.to_v(context_v) @@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): assert hypernetwork_name, 'embedding not selected' - shared.hypernetwork = shared.hypernetworks[hypernetwork_name] + path = shared.hypernetworks.get(hypernetwork_name, None) + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) shared.state.textinfo = "Initializing hypernetwork training..." shared.state.job_count = steps @@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) - hypernetwork = shared.hypernetworks[hypernetwork_name] + hypernetwork = shared.loaded_hypernetwork weights = hypernetwork.weights() for weight in weights: weight.requires_grad = True @@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, (x, text) in pbar: hypernetwork.step = i + ititial_step diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py index 525f978c..f6d1d0a3 100644 --- a/modules/hypernetwork/ui.py +++ b/modules/hypernetwork/ui.py @@ -6,24 +6,24 @@ import gradio as gr import modules.textual_inversion.textual_inversion import modules.textual_inversion.preprocess from modules import sd_hijack, shared +from modules.hypernetwork import hypernetwork def create_hypernetwork(name): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) - hypernetwork.save(fn) + hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet.save(fn) shared.reload_hypernetworks() - shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None) return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" def train_hypernetwork(*args): - initial_hypernetwork = shared.hypernetwork + initial_hypernetwork = shared.loaded_hypernetwork try: sd_hijack.undo_optimizations() @@ -38,6 +38,6 @@ Hypernetwork saved to {html.escape(filename)} except Exception: raise finally: - shared.hypernetwork = initial_hypernetwork + shared.loaded_hypernetwork = initial_hypernetwork sd_hijack.apply_optimizations() diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 25cb67a4..27e571fc 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -8,7 +8,8 @@ from torch import einsum from ldm.util import default from einops import rearrange -from modules import shared, hypernetwork +from modules import shared +from modules.hypernetwork import hypernetwork if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: diff --git a/modules/shared.py b/modules/shared.py index 14b40d70..8753015e 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,7 +13,8 @@ import modules.memmon import modules.sd_models import modules.styles import modules.devices as devices -from modules import sd_samplers, hypernetwork +from modules import sd_samplers +from modules.hypernetwork import hypernetwork from modules.paths import models_path, script_path, sd_path sd_model_file = os.path.join(script_path, 'model.ckpt') @@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") @@ -82,10 +84,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram xformers_available = False config_filename = cmd_opts.ui_settings_file -hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks')) +hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None +def reload_hypernetworks(): + global hypernetworks + + hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) + hypernetwork.load_hypernetwork(opts.sd_hypernetwork) + + class State: skipped = False interrupted = False diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a0..d6977950 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -238,12 +238,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') + preview_text = text if preview_image_prompt == "" else preview_image_prompt + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, - prompt=text, + prompt=preview_text, steps=20, - height=training_height, - width=training_width, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) @@ -254,7 +256,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.current_image = image image.save(last_saved_image) - last_saved_image += f", prompt: {text}" + last_saved_image += f", prompt: {preview_text}" shared.state.job_no = embedding.step diff --git a/modules/ui.py b/modules/ui.py index 10b1ee3a..df653059 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1023,7 +1023,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="") with gr.Column(): - create_embedding = gr.Button(value="Create", variant='primary') + create_embedding = gr.Button(value="Create embedding", variant='primary') with gr.Group(): gr.HTML(value="

Create a new hypernetwork

") @@ -1035,7 +1035,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="") with gr.Column(): - create_hypernetwork = gr.Button(value="Create", variant='primary') + create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary') with gr.Group(): gr.HTML(value="

Preprocess images

") @@ -1147,6 +1147,7 @@ def create_ui(wrap_gradio_gpu_call): create_image_every, save_embedding_every, template_file, + preview_image_prompt, ], outputs=[ ti_output, -- cgit v1.2.3 From 92d7a138857b308c97a8d009848f642aeb93d6c8 Mon Sep 17 00:00:00 2001 From: Martin Cairns Date: Tue, 11 Oct 2022 00:02:44 +0100 Subject: Handle different parameters for DPM fast & adaptive --- modules/sd_samplers.py | 25 ++++++++++++++++++------- 1 file changed, 18 insertions(+), 7 deletions(-) (limited to 'modules') diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index d168b938..eee52e7d 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -57,7 +57,7 @@ def set_samplers(): global samplers, samplers_for_img2img hidden = set(opts.hide_samplers) - hidden_img2img = set(opts.hide_samplers + ['PLMS', 'DPM fast', 'DPM adaptive']) + hidden_img2img = set(opts.hide_samplers + ['PLMS']) samplers = [x for x in all_samplers if x.name not in hidden] samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] @@ -365,16 +365,27 @@ class KDiffusionSampler: else: sigmas = self.model_wrap.get_sigmas(steps) - noise = noise * sigmas[steps - t_enc - 1] - xi = x + noise - - extra_params_kwargs = self.initialize(p) - sigma_sched = sigmas[steps - t_enc - 1:] + print('check values same', sigmas[steps - t_enc - 1] , sigma_sched[0], sigmas[steps - t_enc - 1] - sigma_sched[0]) + xi = x + noise * sigma_sched[0] + + extra_params_kwargs = self.initialize(p) + if 'sigma_min' in inspect.signature(self.func).parameters: + ## last sigma is zero which is allowed by DPM Fast & Adaptive so taking value before last + extra_params_kwargs['sigma_min'] = sigma_sched[-2] + if 'sigma_max' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_max'] = sigma_sched[0] + if 'n' in inspect.signature(self.func).parameters: + extra_params_kwargs['n'] = len(sigma_sched) - 1 + if 'sigma_sched' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigma_sched'] = sigma_sched + if 'sigmas' in inspect.signature(self.func).parameters: + extra_params_kwargs['sigmas'] = sigma_sched self.model_wrap_cfg.init_latent = x - return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): steps = steps or p.steps -- cgit v1.2.3 From 1eae3076078f00ecc5d0fac3c77fffb85cd2eb77 Mon Sep 17 00:00:00 2001 From: Martin Cairns Date: Tue, 11 Oct 2022 00:04:06 +0100 Subject: Remove debug code for checking that first sigma value is same after code cleanup --- modules/sd_samplers.py | 1 - 1 file changed, 1 deletion(-) (limited to 'modules') diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index eee52e7d..32272916 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -366,7 +366,6 @@ class KDiffusionSampler: sigmas = self.model_wrap.get_sigmas(steps) sigma_sched = sigmas[steps - t_enc - 1:] - print('check values same', sigmas[steps - t_enc - 1] , sigma_sched[0], sigmas[steps - t_enc - 1] - sigma_sched[0]) xi = x + noise * sigma_sched[0] extra_params_kwargs = self.initialize(p) -- cgit v1.2.3 From eacc03b16730bcc5be95cda2d7c966ff1b4a8263 Mon Sep 17 00:00:00 2001 From: Martin Cairns Date: Tue, 11 Oct 2022 00:36:00 +0100 Subject: Fix typo in comments --- modules/sd_samplers.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 32272916..20309e06 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -370,7 +370,7 @@ class KDiffusionSampler: extra_params_kwargs = self.initialize(p) if 'sigma_min' in inspect.signature(self.func).parameters: - ## last sigma is zero which is allowed by DPM Fast & Adaptive so taking value before last + ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last extra_params_kwargs['sigma_min'] = sigma_sched[-2] if 'sigma_max' in inspect.signature(self.func).parameters: extra_params_kwargs['sigma_max'] = sigma_sched[0] -- cgit v1.2.3 From 87b77cad5f3017c952a7dfec0e7904a9df5b72fd Mon Sep 17 00:00:00 2001 From: Ben <110583491+TheLastBen@users.noreply.github.com> Date: Mon, 10 Oct 2022 19:37:16 +0100 Subject: Layout fix --- modules/ui.py | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index df653059..de4cd7f2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -550,15 +550,15 @@ def create_ui(wrap_gradio_gpu_call): button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder' open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id) - with gr.Row(): - do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False) + with gr.Row(): + do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False) - with gr.Row(): - download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False) + with gr.Row(): + download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False) - with gr.Group(): - html_info = gr.HTML() - generation_info = gr.Textbox(visible=False) + with gr.Group(): + html_info = gr.HTML() + generation_info = gr.Textbox(visible=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) @@ -738,15 +738,15 @@ def create_ui(wrap_gradio_gpu_call): button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder' open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id) - with gr.Row(): - do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False) + with gr.Row(): + do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False) - with gr.Row(): - download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False) + with gr.Row(): + download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False) - with gr.Group(): - html_info = gr.HTML() - generation_info = gr.Textbox(visible=False) + with gr.Group(): + html_info = gr.HTML() + generation_info = gr.Textbox(visible=False) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) -- cgit v1.2.3 From 861297cefe2bb663f4e09dd4778a4cb93ebe8ff1 Mon Sep 17 00:00:00 2001 From: Ben <110583491+TheLastBen@users.noreply.github.com> Date: Tue, 11 Oct 2022 08:08:45 +0100 Subject: add a space holder --- modules/ui.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index de4cd7f2..fc0f3d3c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -429,7 +429,10 @@ def create_toprow(is_img2img): with gr.Row(): with gr.Column(scale=8): - negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) + with gr.Row(): + negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2) + with gr.Column(scale=1, elem_id="roll_col"): + sh = gr.Button(elem_id="sh", visible=True) with gr.Column(scale=1, elem_id="style_neg_col"): prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) -- cgit v1.2.3 From 59925644480b6fd84f6bb84b4df7d4fbc6a0cce8 Mon Sep 17 00:00:00 2001 From: JamnedZ Date: Tue, 11 Oct 2022 16:40:27 +0700 Subject: Cleaned ngrok integration --- modules/ngrok.py | 15 +++++++++++++++ modules/shared.py | 1 + modules/ui.py | 5 +++++ 3 files changed, 21 insertions(+) create mode 100644 modules/ngrok.py (limited to 'modules') diff --git a/modules/ngrok.py b/modules/ngrok.py new file mode 100644 index 00000000..17e6976f --- /dev/null +++ b/modules/ngrok.py @@ -0,0 +1,15 @@ +from pyngrok import ngrok, conf, exception + + +def connect(token, port): + if token == None: + token = 'None' + conf.get_default().auth_token = token + try: + public_url = ngrok.connect(port).public_url + except exception.PyngrokNgrokError: + print(f'Invalid ngrok authtoken, ngrok connection aborted.\n' + f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') + else: + print(f'ngrok connected to localhost:{port}! URL: {public_url}\n' + 'You can use this link after the launch is complete.') \ No newline at end of file diff --git a/modules/shared.py b/modules/shared.py index 8753015e..375e3afb 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -38,6 +38,7 @@ parser.add_argument("--always-batch-cond-uncond", action='store_true', help="dis parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") +parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None) parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer')) parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN')) diff --git a/modules/ui.py b/modules/ui.py index fc0f3d3c..f57f32db 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -51,6 +51,11 @@ if not cmd_opts.share and not cmd_opts.listen: gradio.utils.version_check = lambda: None gradio.utils.get_local_ip_address = lambda: '127.0.0.1' +if cmd_opts.ngrok != None: + import modules.ngrok as ngrok + print('ngrok authtoken detected, trying to connect...') + ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860) + def gr_show(visible=True): return {"visible": visible, "__type__": "update"} -- cgit v1.2.3 From a004d1a855311b0d7ff2976a4e31b0247ad9d1f6 Mon Sep 17 00:00:00 2001 From: JamnedZ Date: Tue, 11 Oct 2022 16:48:27 +0700 Subject: Added new line at the end of ngrok.py --- modules/ngrok.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/ngrok.py b/modules/ngrok.py index 17e6976f..7d03a6df 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -12,4 +12,4 @@ def connect(token, port): f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') else: print(f'ngrok connected to localhost:{port}! URL: {public_url}\n' - 'You can use this link after the launch is complete.') \ No newline at end of file + 'You can use this link after the launch is complete.') -- cgit v1.2.3 From 873efeed49bb5197a42da18272115b326c5d68f3 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 15:51:22 +0300 Subject: rename hypernetwork dir to hypernetworks to prevent clash with an old filename that people who use zip instead of git clone will have --- modules/hypernetwork/hypernetwork.py | 283 ---------------------------------- modules/hypernetwork/ui.py | 43 ------ modules/hypernetworks/hypernetwork.py | 283 ++++++++++++++++++++++++++++++++++ modules/hypernetworks/ui.py | 43 ++++++ modules/sd_hijack.py | 2 +- modules/sd_hijack_optimizations.py | 2 +- modules/shared.py | 2 +- modules/ui.py | 2 +- 8 files changed, 330 insertions(+), 330 deletions(-) delete mode 100644 modules/hypernetwork/hypernetwork.py delete mode 100644 modules/hypernetwork/ui.py create mode 100644 modules/hypernetworks/hypernetwork.py create mode 100644 modules/hypernetworks/ui.py (limited to 'modules') diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py deleted file mode 100644 index aa701bda..00000000 --- a/modules/hypernetwork/hypernetwork.py +++ /dev/null @@ -1,283 +0,0 @@ -import datetime -import glob -import html -import os -import sys -import traceback -import tqdm - -import torch - -from ldm.util import default -from modules import devices, shared, processing, sd_models -import torch -from torch import einsum -from einops import rearrange, repeat -import modules.textual_inversion.dataset - - -class HypernetworkModule(torch.nn.Module): - def __init__(self, dim, state_dict=None): - super().__init__() - - self.linear1 = torch.nn.Linear(dim, dim * 2) - self.linear2 = torch.nn.Linear(dim * 2, dim) - - if state_dict is not None: - self.load_state_dict(state_dict, strict=True) - else: - - self.linear1.weight.data.normal_(mean=0.0, std=0.01) - self.linear1.bias.data.zero_() - self.linear2.weight.data.normal_(mean=0.0, std=0.01) - self.linear2.bias.data.zero_() - - self.to(devices.device) - - def forward(self, x): - return x + (self.linear2(self.linear1(x))) - - -class Hypernetwork: - filename = None - name = None - - def __init__(self, name=None): - self.filename = None - self.name = name - self.layers = {} - self.step = 0 - self.sd_checkpoint = None - self.sd_checkpoint_name = None - - for size in [320, 640, 768, 1280]: - self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) - - def weights(self): - res = [] - - for k, layers in self.layers.items(): - for layer in layers: - layer.train() - res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias] - - return res - - def save(self, filename): - state_dict = {} - - for k, v in self.layers.items(): - state_dict[k] = (v[0].state_dict(), v[1].state_dict()) - - state_dict['step'] = self.step - state_dict['name'] = self.name - state_dict['sd_checkpoint'] = self.sd_checkpoint - state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name - - torch.save(state_dict, filename) - - def load(self, filename): - self.filename = filename - if self.name is None: - self.name = os.path.splitext(os.path.basename(filename))[0] - - state_dict = torch.load(filename, map_location='cpu') - - for size, sd in state_dict.items(): - if type(size) == int: - self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) - - self.name = state_dict.get('name', self.name) - self.step = state_dict.get('step', 0) - self.sd_checkpoint = state_dict.get('sd_checkpoint', None) - self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) - - -def list_hypernetworks(path): - res = {} - for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): - name = os.path.splitext(os.path.basename(filename))[0] - res[name] = filename - return res - - -def load_hypernetwork(filename): - path = shared.hypernetworks.get(filename, None) - if path is not None: - print(f"Loading hypernetwork {filename}") - try: - shared.loaded_hypernetwork = Hypernetwork() - shared.loaded_hypernetwork.load(path) - - except Exception: - print(f"Error loading hypernetwork {path}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - if shared.loaded_hypernetwork is not None: - print(f"Unloading hypernetwork") - - shared.loaded_hypernetwork = None - - -def apply_hypernetwork(hypernetwork, context, layer=None): - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is None: - return context, context - - if layer is not None: - layer.hyper_k = hypernetwork_layers[0] - layer.hyper_v = hypernetwork_layers[1] - - context_k = hypernetwork_layers[0](context) - context_v = hypernetwork_layers[1](context) - return context_k, context_v - - -def attention_CrossAttention_forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - - context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) - k = self.to_k(context_k) - v = self.to_v(context_v) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if mask is not None: - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) - - -def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): - assert hypernetwork_name, 'embedding not selected' - - path = shared.hypernetworks.get(hypernetwork_name, None) - shared.loaded_hypernetwork = Hypernetwork() - shared.loaded_hypernetwork.load(path) - - shared.state.textinfo = "Initializing hypernetwork training..." - shared.state.job_count = steps - - filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') - - log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) - - if save_hypernetwork_every > 0: - hypernetwork_dir = os.path.join(log_directory, "hypernetworks") - os.makedirs(hypernetwork_dir, exist_ok=True) - else: - hypernetwork_dir = None - - if create_image_every > 0: - images_dir = os.path.join(log_directory, "images") - os.makedirs(images_dir, exist_ok=True) - else: - images_dir = None - - cond_model = shared.sd_model.cond_stage_model - - shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." - with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) - - hypernetwork = shared.loaded_hypernetwork - weights = hypernetwork.weights() - for weight in weights: - weight.requires_grad = True - - optimizer = torch.optim.AdamW(weights, lr=learn_rate) - - losses = torch.zeros((32,)) - - last_saved_file = "" - last_saved_image = "" - - ititial_step = hypernetwork.step or 0 - if ititial_step > steps: - return hypernetwork, filename - - pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, (x, text) in pbar: - hypernetwork.step = i + ititial_step - - if hypernetwork.step > steps: - break - - if shared.state.interrupted: - break - - with torch.autocast("cuda"): - c = cond_model([text]) - - x = x.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] - del x - - losses[hypernetwork.step % losses.shape[0]] = loss.item() - - optimizer.zero_grad() - loss.backward() - optimizer.step() - - pbar.set_description(f"loss: {losses.mean():.7f}") - - if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: - last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') - hypernetwork.save(last_saved_file) - - if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: - last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') - - preview_text = text if preview_image_prompt == "" else preview_image_prompt - - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - prompt=preview_text, - steps=20, - do_not_save_grid=True, - do_not_save_samples=True, - ) - - processed = processing.process_images(p) - image = processed.images[0] - - shared.state.current_image = image - image.save(last_saved_image) - - last_saved_image += f", prompt: {preview_text}" - - shared.state.job_no = hypernetwork.step - - shared.state.textinfo = f""" -

-Loss: {losses.mean():.7f}
-Step: {hypernetwork.step}
-Last prompt: {html.escape(text)}
-Last saved embedding: {html.escape(last_saved_file)}
-Last saved image: {html.escape(last_saved_image)}
-

-""" - - checkpoint = sd_models.select_checkpoint() - - hypernetwork.sd_checkpoint = checkpoint.hash - hypernetwork.sd_checkpoint_name = checkpoint.model_name - hypernetwork.save(filename) - - return hypernetwork, filename - - diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py deleted file mode 100644 index f6d1d0a3..00000000 --- a/modules/hypernetwork/ui.py +++ /dev/null @@ -1,43 +0,0 @@ -import html -import os - -import gradio as gr - -import modules.textual_inversion.textual_inversion -import modules.textual_inversion.preprocess -from modules import sd_hijack, shared -from modules.hypernetwork import hypernetwork - - -def create_hypernetwork(name): - fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") - assert not os.path.exists(fn), f"file {fn} already exists" - - hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) - hypernet.save(fn) - - shared.reload_hypernetworks() - - return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" - - -def train_hypernetwork(*args): - - initial_hypernetwork = shared.loaded_hypernetwork - - try: - sd_hijack.undo_optimizations() - - hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) - - res = f""" -Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. -Hypernetwork saved to {html.escape(filename)} -""" - return res, "" - except Exception: - raise - finally: - shared.loaded_hypernetwork = initial_hypernetwork - sd_hijack.apply_optimizations() - diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py new file mode 100644 index 00000000..aa701bda --- /dev/null +++ b/modules/hypernetworks/hypernetwork.py @@ -0,0 +1,283 @@ +import datetime +import glob +import html +import os +import sys +import traceback +import tqdm + +import torch + +from ldm.util import default +from modules import devices, shared, processing, sd_models +import torch +from torch import einsum +from einops import rearrange, repeat +import modules.textual_inversion.dataset + + +class HypernetworkModule(torch.nn.Module): + def __init__(self, dim, state_dict=None): + super().__init__() + + self.linear1 = torch.nn.Linear(dim, dim * 2) + self.linear2 = torch.nn.Linear(dim * 2, dim) + + if state_dict is not None: + self.load_state_dict(state_dict, strict=True) + else: + + self.linear1.weight.data.normal_(mean=0.0, std=0.01) + self.linear1.bias.data.zero_() + self.linear2.weight.data.normal_(mean=0.0, std=0.01) + self.linear2.bias.data.zero_() + + self.to(devices.device) + + def forward(self, x): + return x + (self.linear2(self.linear1(x))) + + +class Hypernetwork: + filename = None + name = None + + def __init__(self, name=None): + self.filename = None + self.name = name + self.layers = {} + self.step = 0 + self.sd_checkpoint = None + self.sd_checkpoint_name = None + + for size in [320, 640, 768, 1280]: + self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) + + def weights(self): + res = [] + + for k, layers in self.layers.items(): + for layer in layers: + layer.train() + res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias] + + return res + + def save(self, filename): + state_dict = {} + + for k, v in self.layers.items(): + state_dict[k] = (v[0].state_dict(), v[1].state_dict()) + + state_dict['step'] = self.step + state_dict['name'] = self.name + state_dict['sd_checkpoint'] = self.sd_checkpoint + state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name + + torch.save(state_dict, filename) + + def load(self, filename): + self.filename = filename + if self.name is None: + self.name = os.path.splitext(os.path.basename(filename))[0] + + state_dict = torch.load(filename, map_location='cpu') + + for size, sd in state_dict.items(): + if type(size) == int: + self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) + + self.name = state_dict.get('name', self.name) + self.step = state_dict.get('step', 0) + self.sd_checkpoint = state_dict.get('sd_checkpoint', None) + self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) + + +def list_hypernetworks(path): + res = {} + for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): + name = os.path.splitext(os.path.basename(filename))[0] + res[name] = filename + return res + + +def load_hypernetwork(filename): + path = shared.hypernetworks.get(filename, None) + if path is not None: + print(f"Loading hypernetwork {filename}") + try: + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + + except Exception: + print(f"Error loading hypernetwork {path}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + if shared.loaded_hypernetwork is not None: + print(f"Unloading hypernetwork") + + shared.loaded_hypernetwork = None + + +def apply_hypernetwork(hypernetwork, context, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is None: + return context, context + + if layer is not None: + layer.hyper_k = hypernetwork_layers[0] + layer.hyper_v = hypernetwork_layers[1] + + context_k = hypernetwork_layers[0](context) + context_v = hypernetwork_layers[1](context) + return context_k, context_v + + +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) + k = self.to_k(context_k) + v = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): + assert hypernetwork_name, 'embedding not selected' + + path = shared.hypernetworks.get(hypernetwork_name, None) + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + + shared.state.textinfo = "Initializing hypernetwork training..." + shared.state.job_count = steps + + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + + log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + + if save_hypernetwork_every > 0: + hypernetwork_dir = os.path.join(log_directory, "hypernetworks") + os.makedirs(hypernetwork_dir, exist_ok=True) + else: + hypernetwork_dir = None + + if create_image_every > 0: + images_dir = os.path.join(log_directory, "images") + os.makedirs(images_dir, exist_ok=True) + else: + images_dir = None + + cond_model = shared.sd_model.cond_stage_model + + shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." + with torch.autocast("cuda"): + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + + hypernetwork = shared.loaded_hypernetwork + weights = hypernetwork.weights() + for weight in weights: + weight.requires_grad = True + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + + losses = torch.zeros((32,)) + + last_saved_file = "" + last_saved_image = "" + + ititial_step = hypernetwork.step or 0 + if ititial_step > steps: + return hypernetwork, filename + + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) + for i, (x, text) in pbar: + hypernetwork.step = i + ititial_step + + if hypernetwork.step > steps: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([text]) + + x = x.to(devices.device) + loss = shared.sd_model(x.unsqueeze(0), c)[0] + del x + + losses[hypernetwork.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + pbar.set_description(f"loss: {losses.mean():.7f}") + + if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') + hypernetwork.save(last_saved_file) + + if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: + last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') + + preview_text = text if preview_image_prompt == "" else preview_image_prompt + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + prompt=preview_text, + steps=20, + do_not_save_grid=True, + do_not_save_samples=True, + ) + + processed = processing.process_images(p) + image = processed.images[0] + + shared.state.current_image = image + image.save(last_saved_image) + + last_saved_image += f", prompt: {preview_text}" + + shared.state.job_no = hypernetwork.step + + shared.state.textinfo = f""" +

+Loss: {losses.mean():.7f}
+Step: {hypernetwork.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+

+""" + + checkpoint = sd_models.select_checkpoint() + + hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint_name = checkpoint.model_name + hypernetwork.save(filename) + + return hypernetwork, filename + + diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py new file mode 100644 index 00000000..811bc31e --- /dev/null +++ b/modules/hypernetworks/ui.py @@ -0,0 +1,43 @@ +import html +import os + +import gradio as gr + +import modules.textual_inversion.textual_inversion +import modules.textual_inversion.preprocess +from modules import sd_hijack, shared +from modules.hypernetworks import hypernetwork + + +def create_hypernetwork(name): + fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") + assert not os.path.exists(fn), f"file {fn} already exists" + + hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet.save(fn) + + shared.reload_hypernetworks() + + return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" + + +def train_hypernetwork(*args): + + initial_hypernetwork = shared.loaded_hypernetwork + + try: + sd_hijack.undo_optimizations() + + hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) + + res = f""" +Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. +Hypernetwork saved to {html.escape(filename)} +""" + return res, "" + except Exception: + raise + finally: + shared.loaded_hypernetwork = initial_hypernetwork + sd_hijack.apply_optimizations() + diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f873049a..f07ec041 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -37,7 +37,7 @@ def apply_optimizations(): def undo_optimizations(): - from modules.hypernetwork import hypernetwork + from modules.hypernetworks import hypernetwork ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 27e571fc..3349b9c3 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -9,7 +9,7 @@ from ldm.util import default from einops import rearrange from modules import shared -from modules.hypernetwork import hypernetwork +from modules.hypernetworks import hypernetwork if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: diff --git a/modules/shared.py b/modules/shared.py index 375e3afb..1dc2ccf2 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.sd_models import modules.styles import modules.devices as devices from modules import sd_samplers -from modules.hypernetwork import hypernetwork +from modules.hypernetworks import hypernetwork from modules.paths import models_path, script_path, sd_path sd_model_file = os.path.join(script_path, 'model.ckpt') diff --git a/modules/ui.py b/modules/ui.py index f57f32db..42e5d866 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -39,7 +39,7 @@ import modules.generation_parameters_copypaste from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui -import modules.hypernetwork.ui +import modules.hypernetworks.ui # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() -- cgit v1.2.3 From b0583be0884cd17dafb408fd79b52b2a0a972563 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 15:54:34 +0300 Subject: more renames --- modules/hypernetworks/ui.py | 4 ++-- modules/ui.py | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) (limited to 'modules') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 811bc31e..e7540f41 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -13,7 +13,7 @@ def create_hypernetwork(name): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name) hypernet.save(fn) shared.reload_hypernetworks() @@ -28,7 +28,7 @@ def train_hypernetwork(*args): try: sd_hijack.undo_optimizations() - hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) + hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args) res = f""" Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. diff --git a/modules/ui.py b/modules/ui.py index 42e5d866..ee333c3b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1111,7 +1111,7 @@ def create_ui(wrap_gradio_gpu_call): ) create_hypernetwork.click( - fn=modules.hypernetwork.ui.create_hypernetwork, + fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ new_hypernetwork_name, ], @@ -1164,7 +1164,7 @@ def create_ui(wrap_gradio_gpu_call): ) train_hypernetwork.click( - fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]), + fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", inputs=[ train_hypernetwork_name, -- cgit v1.2.3 From d01a2d01560b31937df1f3433d210c18f97d32fa Mon Sep 17 00:00:00 2001 From: papuSpartan Date: Tue, 11 Oct 2022 08:03:31 -0500 Subject: move list refresh to webui.py and add stdout indicating it's doing so --- modules/ui.py | 3 --- 1 file changed, 3 deletions(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 06ff118f..ae9317a3 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -39,7 +39,6 @@ import modules.generation_parameters_copypaste from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui -from modules.sd_models import list_models # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() @@ -1291,8 +1290,6 @@ Requested path was: {f} shared.state.interrupt() settings_interface.gradio_ref.do_restart = True - # refresh models so that new models/.ckpt's show up on reload - list_models() restart_gradio.click( fn=request_restart, -- cgit v1.2.3 From 66b7d7584f0b44ce1316425808c27ca7df38293c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 17:03:00 +0300 Subject: become even stricter with pickles no pickle shall pass thank you again, RyotaK --- modules/safe.py | 17 +++++++++++++++++ 1 file changed, 17 insertions(+) (limited to 'modules') diff --git a/modules/safe.py b/modules/safe.py index 05917463..20be16a5 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -10,6 +10,7 @@ import torch import numpy import _codecs import zipfile +import re # PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage @@ -54,11 +55,27 @@ class RestrictedUnpickler(pickle.Unpickler): raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden") +allowed_zip_names = ["archive/data.pkl", "archive/version"] +allowed_zip_names_re = re.compile(r"^archive/data/\d+$") + + +def check_zip_filenames(filename, names): + for name in names: + if name in allowed_zip_names: + continue + if allowed_zip_names_re.match(name): + continue + + raise Exception(f"bad file inside {filename}: {name}") + + def check_pt(filename): try: # new pytorch format is a zip file with zipfile.ZipFile(filename) as z: + check_zip_filenames(filename, z.namelist()) + with z.open('archive/data.pkl') as file: unpickler = RestrictedUnpickler(file) unpickler.load() -- cgit v1.2.3 From c0484f1b986ce7acb0e3596f6089a191279f5442 Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 10 Oct 2022 22:48:54 -0400 Subject: Add cross-attention optimization from InvokeAI * Add cross-attention optimization from InvokeAI (~30% speed improvement on MPS) * Add command line option for it * Make it default when CUDA is unavailable --- modules/sd_hijack.py | 5 ++- modules/sd_hijack_optimizations.py | 79 ++++++++++++++++++++++++++++++++++++++ modules/shared.py | 5 ++- 3 files changed, 86 insertions(+), 3 deletions(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index f07ec041..5a1b167f 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -30,8 +30,11 @@ def apply_optimizations(): elif cmd_opts.opt_split_attention_v1: print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 + elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): + print("Applying cross attention optimization (InvokeAI).") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): - print("Applying cross attention optimization.") + print("Applying cross attention optimization (Doggettx).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 3349b9c3..870226c5 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -1,6 +1,7 @@ import math import sys import traceback +import psutil import torch from torch import einsum @@ -116,6 +117,84 @@ def split_cross_attention_forward(self, x, context=None, mask=None): return self.to_out(r2) +# -- From https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py (with hypernetworks support added) -- + +mem_total_gb = psutil.virtual_memory().total // (1 << 30) + +def einsum_op_compvis(q, k, v): + s = einsum('b i d, b j d -> b i j', q, k) + s = s.softmax(dim=-1, dtype=s.dtype) + return einsum('b i j, b j d -> b i d', s, v) + +def einsum_op_slice_0(q, k, v, slice_size): + r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + for i in range(0, q.shape[0], slice_size): + end = i + slice_size + r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) + return r + +def einsum_op_slice_1(q, k, v, slice_size): + r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) + return r + +def einsum_op_mps_v1(q, k, v): + if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096 + return einsum_op_compvis(q, k, v) + else: + slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) + return einsum_op_slice_1(q, k, v, slice_size) + +def einsum_op_mps_v2(q, k, v): + if mem_total_gb > 8 and q.shape[1] <= 4096: + return einsum_op_compvis(q, k, v) + else: + return einsum_op_slice_0(q, k, v, 1) + +def einsum_op_tensor_mem(q, k, v, max_tensor_mb): + size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) + if size_mb <= max_tensor_mb: + return einsum_op_compvis(q, k, v) + div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() + if div <= q.shape[0]: + return einsum_op_slice_0(q, k, v, q.shape[0] // div) + return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) + +def einsum_op(q, k, v): + if q.device.type == 'mps': + if mem_total_gb >= 32: + return einsum_op_mps_v1(q, k, v) + return einsum_op_mps_v2(q, k, v) + + # Smaller slices are faster due to L2/L3/SLC caches. + # Tested on i7 with 8MB L3 cache. + return einsum_op_tensor_mem(q, k, v, 32) + +def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + hypernetwork = shared.loaded_hypernetwork + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is not None: + k = self.to_k(hypernetwork_layers[0](context)) * self.scale + v = self.to_v(hypernetwork_layers[1](context)) + else: + k = self.to_k(context) * self.scale + v = self.to_v(context) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + r = einsum_op(q, k, v) + return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) + +# -- End of code from https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py -- + def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) diff --git a/modules/shared.py b/modules/shared.py index 1dc2ccf2..20b45f23 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -50,9 +50,10 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers") parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work") parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator") -parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.") -parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") +parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.") +parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") +parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[]) parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) -- cgit v1.2.3 From 98fd5cde72d5bda1620ab78416c7828fdc3dc10b Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 10 Oct 2022 23:55:48 -0400 Subject: Add check for psutil --- modules/sd_hijack.py | 10 ++++++++-- modules/sd_hijack_optimizations.py | 19 +++++++++++++++---- 2 files changed, 23 insertions(+), 6 deletions(-) (limited to 'modules') diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 5a1b167f..ac70f876 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -10,6 +10,7 @@ from torch.nn.functional import silu import modules.textual_inversion.textual_inversion from modules import prompt_parser, devices, sd_hijack_optimizations, shared from modules.shared import opts, device, cmd_opts +from modules.sd_hijack_optimizations import invokeAI_mps_available import ldm.modules.attention import ldm.modules.diffusionmodules.model @@ -31,8 +32,13 @@ def apply_optimizations(): print("Applying v1 cross attention optimization.") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()): - print("Applying cross attention optimization (InvokeAI).") - ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI + if not invokeAI_mps_available and shared.device.type == 'mps': + print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.") + print("Applying v1 cross attention optimization.") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 + else: + print("Applying cross attention optimization (InvokeAI).") + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): print("Applying cross attention optimization (Doggettx).") ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 870226c5..2a4ac7e0 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -1,7 +1,7 @@ import math import sys import traceback -import psutil +import importlib import torch from torch import einsum @@ -117,9 +117,20 @@ def split_cross_attention_forward(self, x, context=None, mask=None): return self.to_out(r2) -# -- From https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py (with hypernetworks support added) -- -mem_total_gb = psutil.virtual_memory().total // (1 << 30) +def check_for_psutil(): + try: + spec = importlib.util.find_spec('psutil') + return spec is not None + except ModuleNotFoundError: + return False + +invokeAI_mps_available = check_for_psutil() + +# -- Taken from https://github.com/invoke-ai/InvokeAI -- +if invokeAI_mps_available: + import psutil + mem_total_gb = psutil.virtual_memory().total // (1 << 30) def einsum_op_compvis(q, k, v): s = einsum('b i d, b j d -> b i j', q, k) @@ -193,7 +204,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): r = einsum_op(q, k, v) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) -# -- End of code from https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py -- +# -- End of code from https://github.com/invoke-ai/InvokeAI -- def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads -- cgit v1.2.3 From 574c8e554a5371eca2cbf344764cb241c6ec4efc Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 11 Oct 2022 03:32:11 -0400 Subject: Add InvokeAI and lstein to credits, add back CUDA support --- modules/sd_hijack_optimizations.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) (limited to 'modules') diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 2a4ac7e0..f006427f 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -173,7 +173,20 @@ def einsum_op_tensor_mem(q, k, v, max_tensor_mb): return einsum_op_slice_0(q, k, v, q.shape[0] // div) return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) +def einsum_op_cuda(q, k, v): + stats = torch.cuda.memory_stats(q.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + # Divide factor of safety as there's copying and fragmentation + return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) + def einsum_op(q, k, v): + if q.device.type == 'cuda': + return einsum_op_cuda(q, k, v) + if q.device.type == 'mps': if mem_total_gb >= 32: return einsum_op_mps_v1(q, k, v) -- cgit v1.2.3 From 861db783c7acfcb93cf0b5191db3d50f9a9bc531 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 11 Oct 2022 05:13:17 -0400 Subject: Use apply_hypernetwork function --- modules/sd_hijack_optimizations.py | 14 ++++---------- 1 file changed, 4 insertions(+), 10 deletions(-) (limited to 'modules') diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index f006427f..79405525 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -202,16 +202,10 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) - hypernetwork = shared.loaded_hypernetwork - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - k = self.to_k(hypernetwork_layers[0](context)) * self.scale - v = self.to_v(hypernetwork_layers[1](context)) - else: - k = self.to_k(context) * self.scale - v = self.to_v(context) - del context, x + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k = self.to_k(context_k) * self.scale + v = self.to_v(context_v) + del context, context_k, context_v, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) r = einsum_op(q, k, v) -- cgit v1.2.3 From d682444ecc99319fbd2b142a12727501e2884ba7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 18:04:47 +0300 Subject: add option to select hypernetwork modules when creating --- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/hypernetworks/ui.py | 4 ++-- modules/ui.py | 2 ++ 3 files changed, 6 insertions(+), 4 deletions(-) (limited to 'modules') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index aa701bda..b081f14e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -42,7 +42,7 @@ class Hypernetwork: filename = None name = None - def __init__(self, name=None): + def __init__(self, name=None, enable_sizes=None): self.filename = None self.name = name self.layers = {} @@ -50,7 +50,7 @@ class Hypernetwork: self.sd_checkpoint = None self.sd_checkpoint_name = None - for size in [320, 640, 768, 1280]: + for size in enable_sizes or [320, 640, 768, 1280]: self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) def weights(self): diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index e7540f41..cdddcce1 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -9,11 +9,11 @@ from modules import sd_hijack, shared from modules.hypernetworks import hypernetwork -def create_hypernetwork(name): +def create_hypernetwork(name, enable_sizes): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name) + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes]) hypernet.save(fn) shared.reload_hypernetworks() diff --git a/modules/ui.py b/modules/ui.py index f2d16b12..14b87b92 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1037,6 +1037,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="

Create a new hypernetwork

") new_hypernetwork_name = gr.Textbox(label="Name") + new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) with gr.Row(): with gr.Column(scale=3): @@ -1114,6 +1115,7 @@ def create_ui(wrap_gradio_gpu_call): fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ new_hypernetwork_name, + new_hypernetwork_sizes, ], outputs=[ train_hypernetwork_name, -- cgit v1.2.3 From ff4ef13dd591ec52f196f344f47537695df95364 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Tue, 11 Oct 2022 10:24:27 -0500 Subject: removed unneeded print --- modules/deepbooru.py | 1 - 1 file changed, 1 deletion(-) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index e31e92c0..89dcac3c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -119,7 +119,6 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort) # sort tags result_tags_out = [] sort_ndx = 0 - print(alpha_sort) if alpha_sort: sort_ndx = 1 -- cgit v1.2.3 From 6d09b8d1df3a96e1380bb1650f5961781630af96 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 18:33:57 +0300 Subject: produce error when training with medvram/lowvram enabled --- modules/hypernetworks/ui.py | 2 ++ modules/textual_inversion/ui.py | 3 +++ 2 files changed, 5 insertions(+) (limited to 'modules') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index cdddcce1..3541a388 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -25,6 +25,8 @@ def train_hypernetwork(*args): initial_hypernetwork = shared.loaded_hypernetwork + assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + try: sd_hijack.undo_optimizations() diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index c57de1f9..70f47343 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -22,6 +22,9 @@ def preprocess(*args): def train_embedding(*args): + + assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + try: sd_hijack.undo_optimizations() -- cgit v1.2.3 From d4ea5f4d8631f778d11efcde397e4a5b8801d43b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 19:03:08 +0300 Subject: add an option to unload models during hypernetwork training to save VRAM --- modules/hypernetworks/hypernetwork.py | 25 +++++++++++++++------- modules/hypernetworks/ui.py | 4 +++- modules/shared.py | 4 ++++ modules/textual_inversion/dataset.py | 29 ++++++++++++++++++-------- modules/textual_inversion/textual_inversion.py | 2 +- 5 files changed, 46 insertions(+), 18 deletions(-) (limited to 'modules') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index b081f14e..4700e1ec 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -175,6 +175,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + unload = shared.opts.unload_models_when_training if save_hypernetwork_every > 0: hypernetwork_dir = os.path.join(log_directory, "hypernetworks") @@ -188,11 +189,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, else: images_dir = None - cond_model = shared.sd_model.cond_stage_model - shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) hypernetwork = shared.loaded_hypernetwork weights = hypernetwork.weights() @@ -211,7 +214,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, return hypernetwork, filename pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, (x, text) in pbar: + for i, (x, text, cond) in pbar: hypernetwork.step = i + ititial_step if hypernetwork.step > steps: @@ -221,11 +224,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, break with torch.autocast("cuda"): - c = cond_model([text]) - + cond = cond.to(devices.device) x = x.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] + loss = shared.sd_model(x.unsqueeze(0), cond)[0] del x + del cond losses[hypernetwork.step % losses.shape[0]] = loss.item() @@ -244,6 +247,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, preview_text = text if preview_image_prompt == "" else preview_image_prompt + optimizer.zero_grad() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, prompt=preview_text, @@ -255,6 +262,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, processed = processing.process_images(p) image = processed.images[0] + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) + shared.state.current_image = image image.save(last_saved_image) diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 3541a388..c67facbb 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -5,7 +5,7 @@ import gradio as gr import modules.textual_inversion.textual_inversion import modules.textual_inversion.preprocess -from modules import sd_hijack, shared +from modules import sd_hijack, shared, devices from modules.hypernetworks import hypernetwork @@ -41,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)} raise finally: shared.loaded_hypernetwork = initial_hypernetwork + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) sd_hijack.apply_optimizations() diff --git a/modules/shared.py b/modules/shared.py index 20b45f23..c1092ff7 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -228,6 +228,10 @@ options_templates.update(options_section(('system', "System"), { "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), })) +options_templates.update(options_section(('training', "Training"), { + "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"), +})) + options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True), "sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}), diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 4d006366..f61f40d3 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -8,14 +8,14 @@ from torchvision import transforms import random import tqdm -from modules import devices +from modules import devices, shared import re re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): self.placeholder_token = placeholder_token @@ -32,6 +32,8 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' + cond_model = shared.sd_model.cond_stage_model + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): @@ -53,7 +55,13 @@ class PersonalizedBase(Dataset): init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = init_latent.to(devices.cpu) - self.dataset.append((init_latent, filename_tokens)) + if include_cond: + text = self.create_text(filename_tokens) + cond = cond_model([text]).to(devices.cpu) + else: + cond = None + + self.dataset.append((init_latent, filename_tokens, cond)) self.length = len(self.dataset) * repeats @@ -64,6 +72,12 @@ class PersonalizedBase(Dataset): def shuffle(self): self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] + def create_text(self, filename_tokens): + text = random.choice(self.lines) + text = text.replace("[name]", self.placeholder_token) + text = text.replace("[filewords]", ' '.join(filename_tokens)) + return text + def __len__(self): return self.length @@ -72,10 +86,7 @@ class PersonalizedBase(Dataset): self.shuffle() index = self.indexes[i % len(self.indexes)] - x, filename_tokens = self.dataset[index] - - text = random.choice(self.lines) - text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", ' '.join(filename_tokens)) + x, filename_tokens, cond = self.dataset[index] - return x, text + text = self.create_text(filename_tokens) + return x, text, cond diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index bb05cdc6..35f4bd9e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -201,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini return embedding, filename pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, (x, text) in pbar: + for i, (x, text, _) in pbar: embedding.step = i + ititial_step if embedding.step > steps: -- cgit v1.2.3 From 6a9ea5b41cf92cd9e980349bb5034439f4e7a58b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 19:22:30 +0300 Subject: prevent extra modules from being saved/loaded with hypernet --- modules/hypernetworks/hypernetwork.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 4700e1ec..5608e799 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -50,7 +50,7 @@ class Hypernetwork: self.sd_checkpoint = None self.sd_checkpoint_name = None - for size in enable_sizes or [320, 640, 768, 1280]: + for size in enable_sizes or []: self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) def weights(self): -- cgit v1.2.3 From d6fcc6b87bc00fcdecea276fe5b7c7945f7a8b14 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 22:03:05 +0300 Subject: apply lr schedule to hypernets --- modules/hypernetworks/hypernetwork.py | 19 ++++++++--- modules/textual_inversion/learn_schedule.py | 34 ++++++++++++++++++++ modules/textual_inversion/textual_inversion.py | 44 +++----------------------- modules/ui.py | 2 +- 4 files changed, 54 insertions(+), 45 deletions(-) create mode 100644 modules/textual_inversion/learn_schedule.py (limited to 'modules') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 5608e799..470659df 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -14,6 +14,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class HypernetworkModule(torch.nn.Module): @@ -202,8 +203,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, for weight in weights: weight.requires_grad = True - optimizer = torch.optim.AdamW(weights, lr=learn_rate) - losses = torch.zeros((32,)) last_saved_file = "" @@ -213,12 +212,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) + print(f'Training at rate of {learn_rate} until step {end_step}') + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, (x, text, cond) in pbar: hypernetwork.step = i + ititial_step - if hypernetwork.step > steps: - break + if hypernetwork.step > end_step: + try: + (learn_rate, end_step) = next(schedules) + except Exception: + break + tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') + for pg in optimizer.param_groups: + pg['lr'] = learn_rate if shared.state.interrupted: break diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py new file mode 100644 index 00000000..db720271 --- /dev/null +++ b/modules/textual_inversion/learn_schedule.py @@ -0,0 +1,34 @@ + +class LearnSchedule: + def __init__(self, learn_rate, max_steps, cur_step=0): + pairs = learn_rate.split(',') + self.rates = [] + self.it = 0 + self.maxit = 0 + for i, pair in enumerate(pairs): + tmp = pair.split(':') + if len(tmp) == 2: + step = int(tmp[1]) + if step > cur_step: + self.rates.append((float(tmp[0]), min(step, max_steps))) + self.maxit += 1 + if step > max_steps: + return + elif step == -1: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + else: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + + def __iter__(self): + return self + + def __next__(self): + if self.it < self.maxit: + self.it += 1 + return self.rates[self.it - 1] + else: + raise StopIteration diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 47a27faf..7717837d 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -10,6 +10,7 @@ import datetime from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class Embedding: @@ -198,11 +199,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) - epoch_len = (tr_img_len * num_repeats) + tr_img_len - - scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(scheduleIter) + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) print(f'Training at rate of {learn_rate} until step {end_step}') optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) @@ -213,7 +211,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > end_step: try: - (learn_rate, end_step) = next(scheduleIter) + (learn_rate, end_step) = next(schedules) except: break tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') @@ -288,37 +286,3 @@ Last saved image: {html.escape(last_saved_image)}
embedding.save(filename) return embedding, filename - -class LearnSchedule: - def __init__(self, learn_rate, max_steps, cur_step=0): - pairs = learn_rate.split(',') - self.rates = [] - self.it = 0 - self.maxit = 0 - for i, pair in enumerate(pairs): - tmp = pair.split(':') - if len(tmp) == 2: - step = int(tmp[1]) - if step > cur_step: - self.rates.append((float(tmp[0]), min(step, max_steps))) - self.maxit += 1 - if step > max_steps: - return - elif step == -1: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - else: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - - def __iter__(self): - return self - - def __next__(self): - if self.it < self.maxit: - self.it += 1 - return self.rates[self.it - 1] - else: - raise StopIteration diff --git a/modules/ui.py b/modules/ui.py index 2b688e32..1204eef7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1070,7 +1070,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) - learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03") + learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) -- cgit v1.2.3 From 6be32b31d181e42c639dad3451229aa7b9cfd1cf Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 23:07:09 +0300 Subject: reports that training with medvram is possible. --- modules/hypernetworks/ui.py | 2 +- modules/textual_inversion/ui.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'modules') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index c67facbb..dfa599af 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -25,7 +25,7 @@ def train_hypernetwork(*args): initial_hypernetwork = shared.loaded_hypernetwork - assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' try: sd_hijack.undo_optimizations() diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index 70f47343..36881e7a 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -23,7 +23,7 @@ def preprocess(*args): def train_embedding(*args): - assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible' try: sd_hijack.undo_optimizations() -- cgit v1.2.3 From f53f703aebc801c4204182d52bb1e0bef9808e1f Mon Sep 17 00:00:00 2001 From: JC_Array Date: Tue, 11 Oct 2022 18:12:12 -0500 Subject: resolved conflicts, moved settings under interrogate section, settings only show if deepbooru flag is enabled --- modules/deepbooru.py | 2 +- modules/shared.py | 19 +++++++++---------- modules/textual_inversion/preprocess.py | 2 +- modules/ui.py | 2 +- 4 files changed, 12 insertions(+), 13 deletions(-) (limited to 'modules') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 89dcac3c..29529949 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -8,7 +8,7 @@ def get_deepbooru_tags(pil_image): This method is for running only one image at a time for simple use. Used to the img2img interrogate. """ from modules import shared # prevents circular reference - create_deepbooru_process(shared.opts.deepbooru_threshold, shared.opts.deepbooru_sort_alpha) + create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, shared.opts.deepbooru_sort_alpha) shared.deepbooru_process_return["value"] = -1 shared.deepbooru_process_queue.put(pil_image) while shared.deepbooru_process_return["value"] == -1: diff --git a/modules/shared.py b/modules/shared.py index 817203f8..5456c477 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -248,15 +248,20 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), })) -options_templates.update(options_section(('interrogate', "Interrogate Options"), { +interrogate_option_dictionary = { "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), -})) + "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)") +} + +if cmd_opts.deepdanbooru: + interrogate_option_dictionary["interrogate_deepbooru_score_threshold"] = OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}) + interrogate_option_dictionary["deepbooru_sort_alpha"] = OptionInfo(True, "Interrogate: deepbooru sort alphabetically", gr.Checkbox) + +options_templates.update(options_section(('interrogate', "Interrogate Options"), interrogate_option_dictionary)) options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), @@ -282,12 +287,6 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) -if cmd_opts.deepdanbooru: - options_templates.update(options_section(('deepbooru-params', "DeepBooru parameters"), { - "deepbooru_sort_alpha": OptionInfo(True, "Sort Alphabetical", gr.Checkbox), - 'deepbooru_threshold': OptionInfo(0.5, "Threshold", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - })) - class Options: data = None diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index a96388d6..113cecf1 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -29,7 +29,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.interrogator.load() if process_caption_deepbooru: - deepbooru.create_deepbooru_process(opts.deepbooru_threshold, opts.deepbooru_sort_alpha) + deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, opts.deepbooru_sort_alpha) def save_pic_with_caption(image, index): if process_caption: diff --git a/modules/ui.py b/modules/ui.py index 2891fc8c..fa45edca 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -317,7 +317,7 @@ def interrogate(image): def interrogate_deepbooru(image): - prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold) + prompt = get_deepbooru_tags(image) return gr_show(True) if prompt is None else prompt -- cgit v1.2.3 From 65b973ac4e547a325f30a05f852b161421af2041 Mon Sep 17 00:00:00 2001 From: supersteve3d <39339941+supersteve3d@users.noreply.github.com> Date: Wed, 12 Oct 2022 08:21:52 +0800 Subject: Update shared.py Correct typo to "Unload VAE and CLIP from VRAM when training" in settings tab. --- modules/shared.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/shared.py b/modules/shared.py index c1092ff7..46bc740c 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -229,7 +229,7 @@ options_templates.update(options_section(('system', "System"), { })) options_templates.update(options_section(('training', "Training"), { - "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"), + "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { -- cgit v1.2.3 From 6ac2ec2b78bc5fabd09cb866dd9a71061d669269 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 07:01:20 +0300 Subject: create dir for hypernetworks --- modules/shared.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules') diff --git a/modules/shared.py b/modules/shared.py index c1092ff7..e65e77f8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -86,6 +86,7 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram xformers_available = False config_filename = cmd_opts.ui_settings_file +os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None -- cgit v1.2.3 From fec2221eeaafb50afd26ba3e109bf6f928011e69 Mon Sep 17 00:00:00 2001 From: Greg Fuller Date: Tue, 11 Oct 2022 19:29:38 -0700 Subject: Truncate error text to fix service lockup / stall What: * Update wrap_gradio_call to add a limit to the maximum amount of text output Why: * wrap_gradio_call currently prints out a list of the arguments provided to the failing function. * if that function is save_image, this causes the entire image to be printed to stderr * If the image is large, this can cause the service to lock up while attempting to print all the text * It is easy to generate large images using the x/y plot script * it is easy to encounter image save exceptions, including if the output directory does not exist / cannot be written to, or if the file is too big * The huge amount of log spam is confusing and not particularly helpful --- modules/ui.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 1204eef7..33a49d3b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -181,8 +181,15 @@ def wrap_gradio_call(func, extra_outputs=None): try: res = list(func(*args, **kwargs)) except Exception as e: + # When printing out our debug argument list, do not print out more than a MB of text + max_debug_str_len = 131072 # (1024*1024)/8 + print("Error completing request", file=sys.stderr) - print("Arguments:", args, kwargs, file=sys.stderr) + argStr = f"Arguments: {str(args)} {str(kwargs)}" + print(argStr[:max_debug_str_len], file=sys.stderr) + if len(argStr) > max_debug_str_len: + print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) shared.state.job = "" -- cgit v1.2.3 From 336bd8703c7b4d71f2f096f303599925a30b8167 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 09:00:07 +0300 Subject: just add the deepdanbooru settings unconditionally --- modules/shared.py | 13 ++++--------- 1 file changed, 4 insertions(+), 9 deletions(-) (limited to 'modules') diff --git a/modules/shared.py b/modules/shared.py index f150e024..42e99741 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -249,20 +249,15 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), })) -interrogate_option_dictionary = { +options_templates.update(options_section(('interrogate', "Interrogate Options"), { "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)") -} - -if cmd_opts.deepdanbooru: - interrogate_option_dictionary["interrogate_deepbooru_score_threshold"] = OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}) - interrogate_option_dictionary["deepbooru_sort_alpha"] = OptionInfo(True, "Interrogate: deepbooru sort alphabetically", gr.Checkbox) - -options_templates.update(options_section(('interrogate', "Interrogate Options"), interrogate_option_dictionary)) + "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"), +})) options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), -- cgit v1.2.3 From 57e03cdd244eee4e33ccab7554b3594563a3d0cd Mon Sep 17 00:00:00 2001 From: brkirch Date: Wed, 12 Oct 2022 00:54:24 -0400 Subject: Ensure the directory exists before saving to it The directory for the images saved with the Save button may still not exist, so it needs to be created prior to opening the log.csv file. --- modules/ui.py | 2 ++ 1 file changed, 2 insertions(+) (limited to 'modules') diff --git a/modules/ui.py b/modules/ui.py index 00bf09ae..cd67b84b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -131,6 +131,8 @@ def save_files(js_data, images, do_make_zip, index): images = [images[index]] start_index = index + os.makedirs(opts.outdir_save, exist_ok=True) + with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file: at_start = file.tell() == 0 writer = csv.writer(file) -- cgit v1.2.3