From fd66199769ebe0851d2ff33fdc7b191421822454 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 6 Sep 2022 19:33:51 +0300 Subject: added preview option --- modules/processing.py | 5 +++++ modules/sd_samplers.py | 9 ++++++-- modules/shared.py | 4 ++++ modules/ui.py | 59 +++++++++++++++++++++++++++++++++++++++++++------- 4 files changed, 67 insertions(+), 10 deletions(-) (limited to 'modules') diff --git a/modules/processing.py b/modules/processing.py index e8923a7a..e615ffdc 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -176,6 +176,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: shared.state.job = f"Batch {n+1} out of {p.n_iter}" samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc) + if state.interrupted: + + # if we are interruped, sample returns just noise + # use the image collected previously in sampler loop + samples_ddim = shared.state.current_latent x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 896e8b3f..ff7e686e 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -42,6 +42,8 @@ def p_sample_ddim_hook(sampler_wrapper, x_dec, cond, ts, *args, **kwargs): img_orig = sampler_wrapper.sampler.model.q_sample(sampler_wrapper.init_latent, ts) x_dec = img_orig * sampler_wrapper.mask + sampler_wrapper.nmask * x_dec + state.current_latent = x_dec + return sampler_wrapper.orig_p_sample_ddim(x_dec, cond, ts, *args, **kwargs) @@ -141,6 +143,9 @@ class KDiffusionSampler: self.func = getattr(k_diffusion.sampling, self.funcname) self.model_wrap_cfg = CFGDenoiser(self.model_wrap) + def callback_state(self, d): + state.current_latent = d["denoised"] + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): t_enc = int(min(p.denoising_strength, 0.999) * p.steps) sigmas = self.model_wrap.get_sigmas(p.steps) @@ -157,7 +162,7 @@ class KDiffusionSampler: if hasattr(k_diffusion.sampling, 'trange'): k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) - return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False) + return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) def sample(self, p, x, conditioning, unconditional_conditioning): sigmas = self.model_wrap.get_sigmas(p.steps) @@ -166,6 +171,6 @@ class KDiffusionSampler: if hasattr(k_diffusion.sampling, 'trange'): k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) - samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False) + samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) return samples_ddim diff --git a/modules/shared.py b/modules/shared.py index d57aba37..e9c88e31 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -39,6 +39,7 @@ gpu = torch.device("cuda") device = gpu if torch.cuda.is_available() else cpu batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) + class State: interrupted = False job = "" @@ -46,6 +47,8 @@ class State: job_count = 0 sampling_step = 0 sampling_steps = 0 + current_latent = None + current_image = None def interrupt(self): self.interrupted = True @@ -99,6 +102,7 @@ class Options: "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}), "show_progressbar": OptionInfo(True, "Show progressbar"), + "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), } def __init__(self): diff --git a/modules/ui.py b/modules/ui.py index 1df74070..8e7a3ee4 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -9,6 +9,8 @@ import sys import time import traceback +import numpy as np +import torch from PIL import Image import gradio as gr @@ -119,6 +121,9 @@ def wrap_gradio_call(func): print("Arguments:", args, kwargs, file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) + shared.state.job = "" + shared.state.job_count = 0 + res = [None, '', f"
{plaintext_to_html(type(e).__name__+': '+str(e))}
"] elapsed = time.perf_counter() - t @@ -134,11 +139,9 @@ def wrap_gradio_call(func): def check_progress_call(): - if not opts.show_progressbar: - return "" if shared.state.job_count == 0: - return "" + return "", gr_show(False), gr_show(False) progress = 0 @@ -149,9 +152,29 @@ def check_progress_call(): progress = min(progress, 1) - progressbar = f"""
{str(int(progress*100))+"%" if progress > 0.01 else ""}
""" + progressbar = "" + if opts.show_progressbar: + progressbar = f"""
{str(int(progress*100))+"%" if progress > 0.01 else ""}
""" + + image = gr_show(False) + preview_visibility = gr_show(False) + + if opts.show_progress_every_n_steps > 0: + if (shared.state.sampling_step-1) % opts.show_progress_every_n_steps == 0 and shared.state.current_latent is not None: + x_sample = shared.sd_model.decode_first_stage(shared.state.current_latent[0:1].type(shared.sd_model.dtype))[0] + x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + shared.state.current_image = Image.fromarray(x_sample) - return f"{time.time()}

{progressbar}

" + image = shared.state.current_image + + if image is None or progress >= 1: + image = gr.update(value=None) + else: + preview_visibility = gr_show(True) + + return f"{time.time()}

{progressbar}

", preview_visibility, image def roll_artist(prompt): @@ -204,6 +227,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Column(variant='panel'): with gr.Group(): + txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) txt2img_gallery = gr.Gallery(label='Output', elem_id='txt2img_gallery') @@ -251,8 +275,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): check_progress.click( fn=check_progress_call, + show_progress=False, inputs=[], - outputs=[progressbar], + outputs=[progressbar, txt2img_preview, txt2img_preview], ) @@ -337,13 +362,16 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): with gr.Column(variant='panel'): with gr.Group(): + img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) img2img_gallery = gr.Gallery(label='Output', elem_id='img2img_gallery') with gr.Group(): with gr.Row(): - interrupt = gr.Button('Interrupt') save = gr.Button('Save') + img2img_send_to_img2img = gr.Button('Send to img2img') + img2img_send_to_inpaint = gr.Button('Send to inpaint') img2img_send_to_extras = gr.Button('Send to extras') + interrupt = gr.Button('Interrupt') progressbar = gr.HTML(elem_id="progressbar") @@ -426,8 +454,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): check_progress.click( fn=check_progress_call, + show_progress=False, inputs=[], - outputs=[progressbar], + outputs=[progressbar, img2img_preview, img2img_preview], ) interrupt.click( @@ -463,6 +492,20 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): outputs=[init_img_with_mask], ) + img2img_send_to_img2img.click( + fn=lambda x: image_from_url_text(x), + _js="extract_image_from_gallery", + inputs=[img2img_gallery], + outputs=[init_img], + ) + + img2img_send_to_inpaint.click( + fn=lambda x: image_from_url_text(x), + _js="extract_image_from_gallery", + inputs=[img2img_gallery], + outputs=[init_img_with_mask], + ) + with gr.Blocks(analytics_enabled=False) as extras_interface: with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): -- cgit v1.2.3