From 3e67017dfb767f18f599f13e62fff9355ea14160 Mon Sep 17 00:00:00 2001 From: missionfloyd Date: Fri, 1 Sep 2023 17:01:08 -0600 Subject: Restore missing tooltips --- scripts/postprocessing_upscale.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'scripts') diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py index edb70ac0..eb42a29e 100644 --- a/scripts/postprocessing_upscale.py +++ b/scripts/postprocessing_upscale.py @@ -29,7 +29,7 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing): upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w") upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h") with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"): - upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn") + upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn", tooltip="Switch width/height") upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop") with FormRow(): -- cgit v1.2.3 From afd06245876004710007fa1abd0a1b4b2564c181 Mon Sep 17 00:00:00 2001 From: Won-Kyu Park Date: Fri, 15 Sep 2023 17:10:01 +0900 Subject: xyz_grid: add prepare option to AxisOption --- scripts/xyz_grid.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'scripts') diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 939d8605..ce5a1a19 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -205,13 +205,14 @@ def csv_string_to_list_strip(data_str): class AxisOption: - def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None): + def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None, prepare=None): self.label = label self.type = type self.apply = apply self.format_value = format_value self.confirm = confirm self.cost = cost + self.prepare = prepare self.choices = choices @@ -536,6 +537,8 @@ class Script(scripts.Script): if opt.choices is not None and not csv_mode: valslist = vals_dropdown + elif opt.prepare is not None: + valslist = opt.prepare(vals) else: valslist = csv_string_to_list_strip(vals) -- cgit v1.2.3 From d2878a8b0b952c08d832e0308e575e352a1bc3f1 Mon Sep 17 00:00:00 2001 From: w-e-w <40751091+w-e-w@users.noreply.github.com> Date: Sat, 16 Sep 2023 09:49:53 +0900 Subject: XYZ if not Include Sub Grids do not save Sub Grid --- scripts/xyz_grid.py | 2 ++ 1 file changed, 2 insertions(+) (limited to 'scripts') diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 939d8605..99ad96be 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -773,6 +773,8 @@ class Script(scripts.Script): # TODO: See previous comment about intentional data misalignment. adj_g = g-1 if g > 0 else g images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed) + if not include_sub_grids: # if not include_sub_grids then skip saving after the first grid + break if not include_sub_grids: # Done with sub-grids, drop all related information: -- cgit v1.2.3 From 701feabf496b7ce0327ccdb1ef1dc942deab25ea Mon Sep 17 00:00:00 2001 From: Zolxys Date: Sun, 17 Sep 2023 11:37:15 -0500 Subject: Fix: --sd_model in "Promts from file or textbox" script is not working Fix for bug report #8079 --- scripts/prompts_from_file.py | 15 ++++++++++++--- 1 file changed, 12 insertions(+), 3 deletions(-) (limited to 'scripts') diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 50320d55..ca73b2a5 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -5,11 +5,17 @@ import shlex import modules.scripts as scripts import gradio as gr -from modules import sd_samplers, errors +from modules import sd_samplers, errors, sd_models from modules.processing import Processed, process_images from modules.shared import state +def process_model_tag(tag): + info = sd_models.get_closet_checkpoint_match(tag) + assert info is not None, f'Unknown checkpoint: {tag}' + return info.name + + def process_string_tag(tag): return tag @@ -27,7 +33,7 @@ def process_boolean_tag(tag): prompt_tags = { - "sd_model": None, + "sd_model": process_model_tag, "outpath_samples": process_string_tag, "outpath_grids": process_string_tag, "prompt_for_display": process_string_tag, @@ -156,7 +162,10 @@ class Script(scripts.Script): copy_p = copy.copy(p) for k, v in args.items(): - setattr(copy_p, k, v) + if k == "sd_model": + copy_p.override_settings['sd_model_checkpoint'] = v + else: + setattr(copy_p, k, v) proc = process_images(copy_p) images += proc.images -- cgit v1.2.3 From 88b2ef3b04c37ec068fdfea9ba2596645e981b46 Mon Sep 17 00:00:00 2001 From: David Benson Date: Mon, 23 Oct 2023 08:16:26 -0400 Subject: Update prompts_from_file script to allow concatenating entries with the general prompt. --- scripts/prompts_from_file.py | 17 +++++++++++++++-- 1 file changed, 15 insertions(+), 2 deletions(-) (limited to 'scripts') diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 50320d55..1aadf113 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -108,6 +108,7 @@ class Script(scripts.Script): def ui(self, is_img2img): checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate")) checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch")) + prompt_position = gr.Radio(["start", "end"], label="Insert prompts at the", elem_id=self.elem_id("prompt_position"), value="start") prompt_txt = gr.Textbox(label="List of prompt inputs", lines=1, elem_id=self.elem_id("prompt_txt")) file = gr.File(label="Upload prompt inputs", type='binary', elem_id=self.elem_id("file")) @@ -118,9 +119,9 @@ class Script(scripts.Script): # We don't shrink back to 1, because that causes the control to ignore [enter], and it may # be unclear to the user that shift-enter is needed. prompt_txt.change(lambda tb: gr.update(lines=7) if ("\n" in tb) else gr.update(lines=2), inputs=[prompt_txt], outputs=[prompt_txt], show_progress=False) - return [checkbox_iterate, checkbox_iterate_batch, prompt_txt] + return [checkbox_iterate, checkbox_iterate_batch, prompt_position, prompt_txt] - def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_txt: str): + def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_position, prompt_txt: str): lines = [x for x in (x.strip() for x in prompt_txt.splitlines()) if x] p.do_not_save_grid = True @@ -158,6 +159,18 @@ class Script(scripts.Script): for k, v in args.items(): setattr(copy_p, k, v) + if args.get("prompt") and p.prompt: + if prompt_position == "start": + copy_p.prompt = args.get("prompt") + " " + p.prompt + else: + copy_p.prompt = p.prompt + " " + args.get("prompt") + + if args.get("negative_prompt") and p.negative_prompt: + if prompt_position == "start": + copy_p.negative_prompt = args.get("negative_prompt") + " " + p.negative_prompt + else: + copy_p.negative_prompt = p.negative_prompt + " " + args.get("negative_prompt") + proc = process_images(copy_p) images += proc.images -- cgit v1.2.3 From dfc4c27b2402a35a1820ffa549e74bb79873aaaa Mon Sep 17 00:00:00 2001 From: David Benson Date: Mon, 23 Oct 2023 08:26:40 -0400 Subject: linting issue --- scripts/prompts_from_file.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'scripts') diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 1aadf113..3c09bb97 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -164,7 +164,7 @@ class Script(scripts.Script): copy_p.prompt = args.get("prompt") + " " + p.prompt else: copy_p.prompt = p.prompt + " " + args.get("prompt") - + if args.get("negative_prompt") and p.negative_prompt: if prompt_position == "start": copy_p.negative_prompt = args.get("negative_prompt") + " " + p.negative_prompt -- cgit v1.2.3 From 11d23e8ca55c097ecfa255a05b63f194e25f08be Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 2 Dec 2023 18:01:11 +0300 Subject: remove Train/Preprocessing tab and put all its functionality into extras batch images mode --- scripts/postprocessing_caption.py | 30 +++++++++++ scripts/postprocessing_codeformer.py | 16 +++--- scripts/postprocessing_create_flipped_copies.py | 32 +++++++++++ scripts/postprocessing_focal_crop.py | 54 +++++++++++++++++++ scripts/postprocessing_gfpgan.py | 13 +++-- scripts/postprocessing_split_oversized.py | 71 +++++++++++++++++++++++++ scripts/postprocessing_upscale.py | 12 +++++ scripts/processing_autosized_crop.py | 64 ++++++++++++++++++++++ 8 files changed, 277 insertions(+), 15 deletions(-) create mode 100644 scripts/postprocessing_caption.py create mode 100644 scripts/postprocessing_create_flipped_copies.py create mode 100644 scripts/postprocessing_focal_crop.py create mode 100644 scripts/postprocessing_split_oversized.py create mode 100644 scripts/processing_autosized_crop.py (limited to 'scripts') diff --git a/scripts/postprocessing_caption.py b/scripts/postprocessing_caption.py new file mode 100644 index 00000000..243e3ad9 --- /dev/null +++ b/scripts/postprocessing_caption.py @@ -0,0 +1,30 @@ +from modules import scripts_postprocessing, ui_components, deepbooru, shared +import gradio as gr + + +class ScriptPostprocessingCeption(scripts_postprocessing.ScriptPostprocessing): + name = "Caption" + order = 4000 + + def ui(self): + with ui_components.InputAccordion(False, label="Caption") as enable: + option = gr.CheckboxGroup(value=["Deepbooru"], choices=["Deepbooru", "BLIP"], show_label=False) + + return { + "enable": enable, + "option": option, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option): + if not enable: + return + + captions = [pp.caption] + + if "Deepbooru" in option: + captions.append(deepbooru.model.tag(pp.image)) + + if "BLIP" in option: + captions.append(shared.interrogator.generate_caption(pp.image)) + + pp.caption = ", ".join([x for x in captions if x]) diff --git a/scripts/postprocessing_codeformer.py b/scripts/postprocessing_codeformer.py index a7d80d40..e1e156dd 100644 --- a/scripts/postprocessing_codeformer.py +++ b/scripts/postprocessing_codeformer.py @@ -1,28 +1,28 @@ from PIL import Image import numpy as np -from modules import scripts_postprocessing, codeformer_model +from modules import scripts_postprocessing, codeformer_model, ui_components import gradio as gr -from modules.ui_components import FormRow - class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing): name = "CodeFormer" order = 3000 def ui(self): - with FormRow(): - codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility") - codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight") + with ui_components.InputAccordion(False, label="CodeFormer") as enable: + with gr.Row(): + codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_codeformer_visibility") + codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight") return { + "enable": enable, "codeformer_visibility": codeformer_visibility, "codeformer_weight": codeformer_weight, } - def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight): - if codeformer_visibility == 0: + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, codeformer_visibility, codeformer_weight): + if codeformer_visibility == 0 or not enable: return restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight) diff --git a/scripts/postprocessing_create_flipped_copies.py b/scripts/postprocessing_create_flipped_copies.py new file mode 100644 index 00000000..3425571d --- /dev/null +++ b/scripts/postprocessing_create_flipped_copies.py @@ -0,0 +1,32 @@ +from PIL import ImageOps, Image + +from modules import scripts_postprocessing, ui_components +import gradio as gr + + +class ScriptPostprocessingCreateFlippedCopies(scripts_postprocessing.ScriptPostprocessing): + name = "Create flipped copies" + order = 4000 + + def ui(self): + with ui_components.InputAccordion(False, label="Create flipped copies") as enable: + with gr.Row(): + option = gr.CheckboxGroup(value=["Horizontal"], choices=["Horizontal", "Vertical", "Both"], show_label=False) + + return { + "enable": enable, + "option": option, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option): + if not enable: + return + + if "Horizontal" in option: + pp.extra_images.append(ImageOps.mirror(pp.image)) + + if "Vertical" in option: + pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)) + + if "Both" in option: + pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).transpose(Image.Transpose.FLIP_LEFT_RIGHT)) diff --git a/scripts/postprocessing_focal_crop.py b/scripts/postprocessing_focal_crop.py new file mode 100644 index 00000000..d3baf298 --- /dev/null +++ b/scripts/postprocessing_focal_crop.py @@ -0,0 +1,54 @@ + +from modules import scripts_postprocessing, ui_components, errors +import gradio as gr + +from modules.textual_inversion import autocrop + + +class ScriptPostprocessingFocalCrop(scripts_postprocessing.ScriptPostprocessing): + name = "Auto focal point crop" + order = 4000 + + def ui(self): + with ui_components.InputAccordion(False, label="Auto focal point crop") as enable: + face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_face_weight") + entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_entropy_weight") + edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_edges_weight") + debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") + + return { + "enable": enable, + "face_weight": face_weight, + "entropy_weight": entropy_weight, + "edges_weight": edges_weight, + "debug": debug, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, face_weight, entropy_weight, edges_weight, debug): + if not enable: + return + + if not pp.shared.target_width or not pp.shared.target_height: + return + + dnn_model_path = None + try: + dnn_model_path = autocrop.download_and_cache_models() + except Exception: + errors.report("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", exc_info=True) + + autocrop_settings = autocrop.Settings( + crop_width=pp.shared.target_width, + crop_height=pp.shared.target_height, + face_points_weight=face_weight, + entropy_points_weight=entropy_weight, + corner_points_weight=edges_weight, + annotate_image=debug, + dnn_model_path=dnn_model_path, + ) + + result, *others = autocrop.crop_image(pp.image, autocrop_settings) + + pp.image = result + pp.extra_images = [pp.create_copy(x, nametags=["focal-crop-debug"], disable_processing=True) for x in others] + diff --git a/scripts/postprocessing_gfpgan.py b/scripts/postprocessing_gfpgan.py index d854f3f7..6e756605 100644 --- a/scripts/postprocessing_gfpgan.py +++ b/scripts/postprocessing_gfpgan.py @@ -1,26 +1,25 @@ from PIL import Image import numpy as np -from modules import scripts_postprocessing, gfpgan_model +from modules import scripts_postprocessing, gfpgan_model, ui_components import gradio as gr -from modules.ui_components import FormRow - class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing): name = "GFPGAN" order = 2000 def ui(self): - with FormRow(): - gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility") + with ui_components.InputAccordion(False, label="GFPGAN") as enable: + gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility") return { + "enable": enable, "gfpgan_visibility": gfpgan_visibility, } - def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility): - if gfpgan_visibility == 0: + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, gfpgan_visibility): + if gfpgan_visibility == 0 or not enable: return restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8)) diff --git a/scripts/postprocessing_split_oversized.py b/scripts/postprocessing_split_oversized.py new file mode 100644 index 00000000..c4a03160 --- /dev/null +++ b/scripts/postprocessing_split_oversized.py @@ -0,0 +1,71 @@ +import math + +from modules import scripts_postprocessing, ui_components +import gradio as gr + + +def split_pic(image, inverse_xy, width, height, overlap_ratio): + if inverse_xy: + from_w, from_h = image.height, image.width + to_w, to_h = height, width + else: + from_w, from_h = image.width, image.height + to_w, to_h = width, height + h = from_h * to_w // from_w + if inverse_xy: + image = image.resize((h, to_w)) + else: + image = image.resize((to_w, h)) + + split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio))) + y_step = (h - to_h) / (split_count - 1) + for i in range(split_count): + y = int(y_step * i) + if inverse_xy: + splitted = image.crop((y, 0, y + to_h, to_w)) + else: + splitted = image.crop((0, y, to_w, y + to_h)) + yield splitted + + +class ScriptPostprocessingSplitOversized(scripts_postprocessing.ScriptPostprocessing): + name = "Split oversized images" + order = 4000 + + def ui(self): + with ui_components.InputAccordion(False, label="Split oversized images") as enable: + with gr.Row(): + split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_split_threshold") + overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="postprocess_overlap_ratio") + + return { + "enable": enable, + "split_threshold": split_threshold, + "overlap_ratio": overlap_ratio, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, split_threshold, overlap_ratio): + if not enable: + return + + width = pp.shared.target_width + height = pp.shared.target_height + + if not width or not height: + return + + if pp.image.height > pp.image.width: + ratio = (pp.image.width * height) / (pp.image.height * width) + inverse_xy = False + else: + ratio = (pp.image.height * width) / (pp.image.width * height) + inverse_xy = True + + if ratio >= 1.0 and ratio > split_threshold: + return + + result, *others = split_pic(pp.image, inverse_xy, width, height, overlap_ratio) + + pp.image = result + pp.extra_images = [pp.create_copy(x) for x in others] + diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py index eb42a29e..ed709688 100644 --- a/scripts/postprocessing_upscale.py +++ b/scripts/postprocessing_upscale.py @@ -81,6 +81,14 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing): return image + def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0): + if upscale_mode == 1: + pp.shared.target_width = upscale_to_width + pp.shared.target_height = upscale_to_height + else: + pp.shared.target_width = int(pp.image.width * upscale_by) + pp.shared.target_height = int(pp.image.height * upscale_by) + def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0): if upscaler_1_name == "None": upscaler_1_name = None @@ -126,6 +134,10 @@ class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale): "upscaler_name": upscaler_name, } + def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None): + pp.shared.target_width = int(pp.image.width * upscale_by) + pp.shared.target_height = int(pp.image.height * upscale_by) + def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None): if upscaler_name is None or upscaler_name == "None": return diff --git a/scripts/processing_autosized_crop.py b/scripts/processing_autosized_crop.py new file mode 100644 index 00000000..c0980226 --- /dev/null +++ b/scripts/processing_autosized_crop.py @@ -0,0 +1,64 @@ +from PIL import Image + +from modules import scripts_postprocessing, ui_components +import gradio as gr + + +def center_crop(image: Image, w: int, h: int): + iw, ih = image.size + if ih / h < iw / w: + sw = w * ih / h + box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih + else: + sh = h * iw / w + box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2 + return image.resize((w, h), Image.Resampling.LANCZOS, box) + + +def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold): + iw, ih = image.size + err = lambda w, h: 1 - (lambda x: x if x < 1 else 1 / x)(iw / ih / (w / h)) + wh = max(((w, h) for w in range(mindim, maxdim + 1, 64) for h in range(mindim, maxdim + 1, 64) + if minarea <= w * h <= maxarea and err(w, h) <= threshold), + key=lambda wh: (wh[0] * wh[1], -err(*wh))[::1 if objective == 'Maximize area' else -1], + default=None + ) + return wh and center_crop(image, *wh) + + +class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocessing): + name = "Auto-sized crop" + order = 4000 + + def ui(self): + with ui_components.InputAccordion(False, label="Auto-sized crop") as enable: + gr.Markdown('Each image is center-cropped with an automatically chosen width and height.') + with gr.Row(): + mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim") + maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim") + with gr.Row(): + minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea") + maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea") + with gr.Row(): + objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective") + threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold") + + return { + "enable": enable, + "mindim": mindim, + "maxdim": maxdim, + "minarea": minarea, + "maxarea": maxarea, + "objective": objective, + "threshold": threshold, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, mindim, maxdim, minarea, maxarea, objective, threshold): + if not enable: + return + + cropped = multicrop_pic(pp.image, mindim, maxdim, minarea, maxarea, objective, threshold) + if cropped is not None: + pp.image = cropped + else: + print(f"skipped {pp.image.width}x{pp.image.height} image (can't find suitable size within error threshold)") -- cgit v1.2.3