From 7267b7d2d91c559626eaf43e3c0cd9c5918918dd Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Mon, 19 Sep 2022 23:05:12 +0300 Subject: extremely basic and incomplete swinir implementation --- swinir.py | 74 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 74 insertions(+) create mode 100644 swinir.py (limited to 'swinir.py') diff --git a/swinir.py b/swinir.py new file mode 100644 index 00000000..cb2bbe3d --- /dev/null +++ b/swinir.py @@ -0,0 +1,74 @@ +import sys +import traceback +import cv2 +from collections import OrderedDict +import os +import requests +from collections import namedtuple +import numpy as np +from PIL import Image +import torch +import modules.images +from modules.shared import cmd_opts, opts, device +from modules.swinir_arch import SwinIR as net +precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext +def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))): + if not large_model: + # use 'nearest+conv' to avoid block artifacts + model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') + else: + # larger model size; use '3conv' to save parameters and memory; use ema for GAN training + model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') + + pretrained_model = torch.load(model_path) + model.load_state_dict(pretrained_model, strict=True) + + return model.half().to(device) + +def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4): + img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255. + model = load_model() + with torch.no_grad(), precision_scope("cuda"): + _, _, h_old, w_old = img.size() + h_pad = (h_old // window_size + 1) * window_size - h_old + w_pad = (w_old // window_size + 1) * window_size - w_old + img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, :h_old + h_pad, :] + img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, :w_old + w_pad] + output = inference(img, model, tile, tile_overlap, window_size, scale) + output = output[..., :h_old * scale, :w_old * scale] + output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() + if output.ndim == 3: + output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR + output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 + return output + + +def inference(img, model, tile, tile_overlap, window_size, scale): + # test the image tile by tile + b, c, h, w = img.size() + tile = min(tile, h, w) + assert tile % window_size == 0, "tile size should be a multiple of window_size" + sf = scale + + stride = tile - tile_overlap + h_idx_list = list(range(0, h-tile, stride)) + [h-tile] + w_idx_list = list(range(0, w-tile, stride)) + [w-tile] + E = torch.zeros(b, c, h*sf, w*sf, dtype=torch.half, device=device).type_as(img) + W = torch.zeros_like(E, dtype=torch.half, device=device) + + for h_idx in h_idx_list: + for w_idx in w_idx_list: + in_patch = img[..., h_idx:h_idx+tile, w_idx:w_idx+tile] + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) + W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) + output = E.div_(W) + + return output \ No newline at end of file -- cgit v1.2.3