From 948eff4b3caa237334389a5a08adda130e2b43a5 Mon Sep 17 00:00:00 2001 From: C43H66N12O12S2 <36072735+C43H66N12O12S2@users.noreply.github.com> Date: Tue, 20 Sep 2022 16:36:20 +0300 Subject: make swinir actually useful --- swinir.py | 74 --------------------------------------------------------------- 1 file changed, 74 deletions(-) delete mode 100644 swinir.py (limited to 'swinir.py') diff --git a/swinir.py b/swinir.py deleted file mode 100644 index cb2bbe3d..00000000 --- a/swinir.py +++ /dev/null @@ -1,74 +0,0 @@ -import sys -import traceback -import cv2 -from collections import OrderedDict -import os -import requests -from collections import namedtuple -import numpy as np -from PIL import Image -import torch -import modules.images -from modules.shared import cmd_opts, opts, device -from modules.swinir_arch import SwinIR as net -precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext -def load_model(task = "realsr", large_model = True, model_path=next(os.listdir(cmd_opts.esrgan_models_path))): - if not large_model: - # use 'nearest+conv' to avoid block artifacts - model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, - img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], - mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') - else: - # larger model size; use '3conv' to save parameters and memory; use ema for GAN training - model = net(upscale=scale, in_chans=3, img_size=64, window_size=8, - img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, - num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], - mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') - - pretrained_model = torch.load(model_path) - model.load_state_dict(pretrained_model, strict=True) - - return model.half().to(device) - -def upscale(img, tile=opts.ESRGAN_tile, tile_overlap=opts.ESRGAN_tile_overlap, window_size = 8, scale = 4): - img = cv2.imread(img, cv2.IMREAD_COLOR).astype(np.float16) / 255. - model = load_model() - with torch.no_grad(), precision_scope("cuda"): - _, _, h_old, w_old = img.size() - h_pad = (h_old // window_size + 1) * window_size - h_old - w_pad = (w_old // window_size + 1) * window_size - w_old - img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, :h_old + h_pad, :] - img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, :w_old + w_pad] - output = inference(img, model, tile, tile_overlap, window_size, scale) - output = output[..., :h_old * scale, :w_old * scale] - output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() - if output.ndim == 3: - output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR - output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 - return output - - -def inference(img, model, tile, tile_overlap, window_size, scale): - # test the image tile by tile - b, c, h, w = img.size() - tile = min(tile, h, w) - assert tile % window_size == 0, "tile size should be a multiple of window_size" - sf = scale - - stride = tile - tile_overlap - h_idx_list = list(range(0, h-tile, stride)) + [h-tile] - w_idx_list = list(range(0, w-tile, stride)) + [w-tile] - E = torch.zeros(b, c, h*sf, w*sf, dtype=torch.half, device=device).type_as(img) - W = torch.zeros_like(E, dtype=torch.half, device=device) - - for h_idx in h_idx_list: - for w_idx in w_idx_list: - in_patch = img[..., h_idx:h_idx+tile, w_idx:w_idx+tile] - out_patch = model(in_patch) - out_patch_mask = torch.ones_like(out_patch) - - E[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch) - W[..., h_idx*sf:(h_idx+tile)*sf, w_idx*sf:(w_idx+tile)*sf].add_(out_patch_mask) - output = E.div_(W) - - return output \ No newline at end of file -- cgit v1.2.3