From 60e95f1d8c4e7296803389a46f542bd6e0a02770 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 23 Aug 2022 11:58:50 +0300 Subject: silence the warning from transformers add feature demonstrations to readme --- webui.py | 34 ++++++++++++++++++++++------------ 1 file changed, 22 insertions(+), 12 deletions(-) (limited to 'webui.py') diff --git a/webui.py b/webui.py index 5b990a5f..1a2fa56c 100644 --- a/webui.py +++ b/webui.py @@ -13,13 +13,20 @@ from contextlib import contextmanager, nullcontext import mimetypes import random import math -import csv import k_diffusion as K from ldm.util import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.plms import PLMSSampler +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + + from transformers import logging + logging.set_verbosity_error() +except: + pass + # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') @@ -28,7 +35,7 @@ mimetypes.add_type('application/javascript', '.js') opt_C = 4 opt_f = 8 -invalid_filename_chars = '<>:"/\|?*' +invalid_filename_chars = '<>:"/\|?*\n' parser = argparse.ArgumentParser() parser.add_argument("--outdir", type=str, nargs="?", help="dir to write results to", default=None) @@ -121,7 +128,6 @@ if os.path.exists(GFPGAN_dir): print("Error loading GFPGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml") model = load_model_from_config(config, "models/ldm/stable-diffusion-v1/model.ckpt") @@ -296,7 +302,9 @@ class Flagging(gr.FlaggingCallback): def setup(self, components, flagging_dir: str): pass - def flag(self, flag_data, flag_option=None, flag_index=None, username=None) -> int: + def flag(self, flag_data, flag_option=None, flag_index=None, username=None): + import csv + os.makedirs("log/images", exist_ok=True) # those must match the "dream" function @@ -341,7 +349,7 @@ dream_interface = gr.Interface( gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False), gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1), gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1), - gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly should the image follow the prompt)', value=7.0), + gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0), gr.Number(label='Seed', value=-1), gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512), gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512), @@ -456,13 +464,13 @@ img2img_interface = gr.Interface( gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False), - gr.Slider(minimum=1, maximum=16, step=1, label='Sampling iterations', value=1), - gr.Slider(minimum=1, maximum=4, step=1, label='Samples per iteration', value=1), - gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale', value=7.0), + gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1), + gr.Slider(minimum=1, maximum=4, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1), + gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75), gr.Number(label='Seed', value=-1), - gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Height", value=512), - gr.Slider(minimum=64, maximum=2048, step=64, label="Resize Width", value=512), + gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512), + gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512), ], outputs=[ gr.Gallery(), @@ -470,11 +478,12 @@ img2img_interface = gr.Interface( ], title="Stable Diffusion Image-to-Image", description="Generate images from images with Stable Diffusion", + allow_flagging="never", ) interfaces = [ - (dream_interface, "Dream"), - (img2img_interface, "Image Translation") + (dream_interface, "txt2img"), + (img2img_interface, "img2img") ] def run_GFPGAN(image, strength): @@ -501,6 +510,7 @@ if GFPGAN is not None: ], title="GFPGAN", description="Fix faces on images", + allow_flagging="never", ), "GFPGAN")) demo = gr.TabbedInterface(interface_list=[x[0] for x in interfaces], tab_names=[x[1] for x in interfaces]) -- cgit v1.2.3