From a958f9b3fdea95c01d360aba1b6fe0ce3ea6b349 Mon Sep 17 00:00:00 2001 From: Jairo Correa Date: Fri, 7 Oct 2022 20:05:47 -0300 Subject: edit-attention browser compatibility and readme typo --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'README.md') diff --git a/README.md b/README.md index a14a6330..0516c2cd 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - Attention, specify parts of text that the model should pay more attention to - a man in a ((tuxedo)) - will pay more attention to tuxedo - a man in a (tuxedo:1.21) - alternative syntax - - select text and press ctrl+up or ctrl+down to aduotmatically adjust attention to selected text + - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text - Loopback, run img2img processing multiple times - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters - Textual Inversion -- cgit v1.2.3 From 87db6f01cc6b118fe0c82c36c6686d72d060c417 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 8 Oct 2022 10:15:29 +0300 Subject: add info about cross attention javascript shortcut code --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'README.md') diff --git a/README.md b/README.md index 0516c2cd..d6e1d50b 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - Attention, specify parts of text that the model should pay more attention to - a man in a ((tuxedo)) - will pay more attention to tuxedo - a man in a (tuxedo:1.21) - alternative syntax - - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text + - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters - Textual Inversion -- cgit v1.2.3 From 4999eb2ef9b30e8c42ca7e4a94d4bbffe4d1f015 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 8 Oct 2022 14:25:47 +0300 Subject: do not let user choose his own prompt token count limit --- README.md | 1 + modules/processing.py | 5 ----- modules/sd_hijack.py | 25 ++++++++++++------------- modules/shared.py | 3 --- 4 files changed, 13 insertions(+), 21 deletions(-) (limited to 'README.md') diff --git a/README.md b/README.md index d6e1d50b..ef9b5e31 100644 --- a/README.md +++ b/README.md @@ -65,6 +65,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` +- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. diff --git a/modules/processing.py b/modules/processing.py index 3657fe69..d5162ddc 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -123,7 +123,6 @@ class Processed: self.index_of_first_image = index_of_first_image self.styles = p.styles self.job_timestamp = state.job_timestamp - self.max_prompt_tokens = opts.max_prompt_tokens self.eta = p.eta self.ddim_discretize = p.ddim_discretize @@ -171,7 +170,6 @@ class Processed: "infotexts": self.infotexts, "styles": self.styles, "job_timestamp": self.job_timestamp, - "max_prompt_tokens": self.max_prompt_tokens, } return json.dumps(obj) @@ -269,8 +267,6 @@ def fix_seed(p): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): index = position_in_batch + iteration * p.batch_size - max_tokens = getattr(p, 'max_prompt_tokens', opts.max_prompt_tokens) - generation_params = { "Steps": p.steps, "Sampler": sd_samplers.samplers[p.sampler_index].name, @@ -286,7 +282,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), - "Max tokens": (None if max_tokens == shared.vanilla_max_prompt_tokens else max_tokens) } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 340329c0..2c1332c9 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -36,6 +36,13 @@ def undo_optimizations(): ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward +def get_target_prompt_token_count(token_count): + if token_count < 75: + return 75 + + return math.ceil(token_count / 10) * 10 + + class StableDiffusionModelHijack: fixes = None comments = [] @@ -84,7 +91,7 @@ class StableDiffusionModelHijack: def tokenize(self, text): max_length = opts.max_prompt_tokens - 2 _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) - return remade_batch_tokens[0], token_count, max_length + return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count) class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): @@ -114,7 +121,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def tokenize_line(self, line, used_custom_terms, hijack_comments): id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id - maxlen = opts.max_prompt_tokens if opts.enable_emphasis: parsed = prompt_parser.parse_prompt_attention(line) @@ -146,19 +152,12 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): used_custom_terms.append((embedding.name, embedding.checksum())) i += embedding_length_in_tokens - if len(remade_tokens) > maxlen - 2: - vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} - ovf = remade_tokens[maxlen - 2:] - overflowing_words = [vocab.get(int(x), "") for x in ovf] - overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) - hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") - token_count = len(remade_tokens) - remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) - remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] + prompt_target_length = get_target_prompt_token_count(token_count) + tokens_to_add = prompt_target_length - len(remade_tokens) + 1 - multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) - multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] + remade_tokens = [id_start] + remade_tokens + [id_end] * tokens_to_add + multipliers = [1.0] + multipliers + [1.0] * tokens_to_add return remade_tokens, fixes, multipliers, token_count diff --git a/modules/shared.py b/modules/shared.py index ca462628..475d7e52 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -123,8 +123,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] -vanilla_max_prompt_tokens = 77 - def realesrgan_models_names(): import modules.realesrgan_model @@ -225,7 +223,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"), - "max_prompt_tokens": OptionInfo(vanilla_max_prompt_tokens, f"Max prompt token count. Two tokens are reserved for for start and end. Default is {vanilla_max_prompt_tokens}. Setting this to a different value will result in different pictures for same seed.", gr.Number, {"precision": 0}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), })) -- cgit v1.2.3 From 01f8cb44474e454903c11718e6a4f33dbde34bb8 Mon Sep 17 00:00:00 2001 From: Greendayle Date: Sat, 8 Oct 2022 18:02:56 +0200 Subject: made deepdanbooru optional, added to readme, automatic download of deepbooru model --- README.md | 2 ++ launch.py | 4 ++++ modules/deepbooru.py | 20 ++++++++++---------- modules/shared.py | 1 + modules/ui.py | 19 ++++++++++++------- requirements.txt | 3 --- requirements_versions.txt | 3 --- 7 files changed, 29 insertions(+), 23 deletions(-) (limited to 'README.md') diff --git a/README.md b/README.md index ef9b5e31..6cd7a1f9 100644 --- a/README.md +++ b/README.md @@ -66,6 +66,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) +- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args) ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. @@ -123,4 +124,5 @@ The documentation was moved from this README over to the project's [wiki](https: - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. +- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru - (You) diff --git a/launch.py b/launch.py index 61f62096..d46426eb 100644 --- a/launch.py +++ b/launch.py @@ -33,6 +33,7 @@ def extract_arg(args, name): args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') xformers = '--xformers' in args +deepdanbooru = '--deepdanbooru' in args def repo_dir(name): @@ -132,6 +133,9 @@ if not is_installed("xformers") and xformers: elif platform.system() == "Linux": run_pip("install xformers", "xformers") +if not is_installed("deepdanbooru") and deepdanbooru: + run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru") + os.makedirs(dir_repos, exist_ok=True) git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 781b2249..7e3c0618 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -9,16 +9,16 @@ def _load_tf_and_return_tags(pil_image, threshold): import numpy as np this_folder = os.path.dirname(__file__) - model_path = os.path.join(this_folder, '..', 'models', 'deepbooru', 'deepdanbooru-v3-20211112-sgd-e28') - - model_good = False - for path_candidate in [model_path, os.path.dirname(model_path)]: - if os.path.exists(os.path.join(path_candidate, 'project.json')): - model_path = path_candidate - model_good = True - if not model_good: - return ("Download https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/" - "deepdanbooru-v3-20211112-sgd-e28.zip unpack and put into models/deepbooru") + model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru')) + if not os.path.exists(os.path.join(model_path, 'project.json')): + # there is no point importing these every time + import zipfile + from basicsr.utils.download_util import load_file_from_url + load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip", + model_path) + with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref: + zip_ref.extractall(model_path) + os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip")) tags = dd.project.load_tags_from_project(model_path) model = dd.project.load_model_from_project( diff --git a/modules/shared.py b/modules/shared.py index 02cb2722..c87b726e 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -44,6 +44,7 @@ parser.add_argument("--scunet-models-path", type=str, help="Path to directory wi parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR')) parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR')) parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers") +parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator") parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.") parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") diff --git a/modules/ui.py b/modules/ui.py index 30583fe9..c5c11c3c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -23,9 +23,10 @@ import gradio.utils import gradio.routes from modules import sd_hijack -from modules.deepbooru import get_deepbooru_tags from modules.paths import script_path from modules.shared import opts, cmd_opts +if cmd_opts.deepdanbooru: + from modules.deepbooru import get_deepbooru_tags import modules.shared as shared from modules.sd_samplers import samplers, samplers_for_img2img from modules.sd_hijack import model_hijack @@ -437,7 +438,10 @@ def create_toprow(is_img2img): with gr.Row(scale=1): if is_img2img: interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") - deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") + if cmd_opts.deepdanbooru: + deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") + else: + deepbooru = None else: interrogate = None deepbooru = None @@ -782,11 +786,12 @@ def create_ui(wrap_gradio_gpu_call): outputs=[img2img_prompt], ) - img2img_deepbooru.click( - fn=interrogate_deepbooru, - inputs=[init_img], - outputs=[img2img_prompt], - ) + if cmd_opts.deepdanbooru: + img2img_deepbooru.click( + fn=interrogate_deepbooru, + inputs=[init_img], + outputs=[img2img_prompt], + ) save.click( fn=wrap_gradio_call(save_files), diff --git a/requirements.txt b/requirements.txt index cd3953c6..81641d68 100644 --- a/requirements.txt +++ b/requirements.txt @@ -23,7 +23,4 @@ resize-right torchdiffeq kornia lark -deepdanbooru -tensorflow -tensorflow-io functorch diff --git a/requirements_versions.txt b/requirements_versions.txt index 2d256a54..fec3e9d5 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -22,7 +22,4 @@ resize-right==0.0.2 torchdiffeq==0.2.3 kornia==0.6.7 lark==1.1.2 -git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] -tensorflow==2.10.0 -tensorflow-io==0.27.0 functorch==0.2.1 -- cgit v1.2.3 From 432782163ae53e605470bcefc9a6f796c4556912 Mon Sep 17 00:00:00 2001 From: Aidan Holland Date: Sat, 8 Oct 2022 15:12:24 -0400 Subject: chore: Fix typos --- README.md | 2 +- javascript/imageviewer.js | 2 +- modules/interrogate.py | 4 ++-- modules/processing.py | 2 +- modules/scunet_model_arch.py | 4 ++-- modules/sd_models.py | 4 ++-- modules/sd_samplers.py | 4 ++-- modules/shared.py | 6 +++--- modules/swinir_model_arch.py | 2 +- modules/ui.py | 4 ++-- 10 files changed, 17 insertions(+), 17 deletions(-) (limited to 'README.md') diff --git a/README.md b/README.md index ef9b5e31..63dd0c18 100644 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - Sampling method selection - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) -- Correct seeds for batches +- Correct seeds for batches - Prompt length validation - get length of prompt in tokens as you type - get a warning after generation if some text was truncated diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index 4c0e8f4b..6a00c0da 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -95,7 +95,7 @@ function showGalleryImage(){ e.addEventListener('click', function (evt) { if(!opts.js_modal_lightbox) return; - modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initialy_zoomed) + modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) showModal(evt) },true); } diff --git a/modules/interrogate.py b/modules/interrogate.py index eed87144..635e266e 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -140,11 +140,11 @@ class InterrogateModels: res = caption - cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) + clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext with torch.no_grad(), precision_scope("cuda"): - image_features = self.clip_model.encode_image(cilp_image).type(self.dtype) + image_features = self.clip_model.encode_image(clip_image).type(self.dtype) image_features /= image_features.norm(dim=-1, keepdim=True) diff --git a/modules/processing.py b/modules/processing.py index 515fc91a..31220881 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -386,7 +386,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if state.interrupted or state.skipped: - # if we are interruped, sample returns just noise + # if we are interrupted, sample returns just noise # use the image collected previously in sampler loop samples_ddim = shared.state.current_latent diff --git a/modules/scunet_model_arch.py b/modules/scunet_model_arch.py index 972a2639..43ca8d36 100644 --- a/modules/scunet_model_arch.py +++ b/modules/scunet_model_arch.py @@ -40,7 +40,7 @@ class WMSA(nn.Module): Returns: attn_mask: should be (1 1 w p p), """ - # supporting sqaure. + # supporting square. attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device) if self.type == 'W': return attn_mask @@ -65,7 +65,7 @@ class WMSA(nn.Module): x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) - # sqaure validation + # square validation # assert h_windows == w_windows x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size) diff --git a/modules/sd_models.py b/modules/sd_models.py index 9409d070..a09866ce 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -147,7 +147,7 @@ def load_model_weights(model, checkpoint_file, sd_model_hash): model.first_stage_model.load_state_dict(vae_dict) model.sd_model_hash = sd_model_hash - model.sd_model_checkpint = checkpoint_file + model.sd_model_checkpoint = checkpoint_file def load_model(): @@ -175,7 +175,7 @@ def reload_model_weights(sd_model, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() - if sd_model.sd_model_checkpint == checkpoint_info.filename: + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index eade0dbb..6e743f7e 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -181,7 +181,7 @@ class VanillaStableDiffusionSampler: self.initialize(p) - # existing code fails with cetain step counts, like 9 + # existing code fails with certain step counts, like 9 try: self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) except Exception: @@ -204,7 +204,7 @@ class VanillaStableDiffusionSampler: steps = steps or p.steps - # existing code fails with cetin step counts, like 9 + # existing code fails with certain step counts, like 9 try: samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta) except Exception: diff --git a/modules/shared.py b/modules/shared.py index af8dc744..2dc092d6 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -141,9 +141,9 @@ class OptionInfo: self.section = None -def options_section(section_identifer, options_dict): +def options_section(section_identifier, options_dict): for k, v in options_dict.items(): - v.section = section_identifer + v.section = section_identifier return options_dict @@ -246,7 +246,7 @@ options_templates.update(options_section(('ui', "User interface"), { "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "font": OptionInfo("", "Font for image grids that have text"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), - "js_modal_lightbox_initialy_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), + "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), })) diff --git a/modules/swinir_model_arch.py b/modules/swinir_model_arch.py index 461fb354..863f42db 100644 --- a/modules/swinir_model_arch.py +++ b/modules/swinir_model_arch.py @@ -166,7 +166,7 @@ class SwinTransformerBlock(nn.Module): Args: dim (int): Number of input channels. - input_resolution (tuple[int]): Input resulotion. + input_resolution (tuple[int]): Input resolution. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. diff --git a/modules/ui.py b/modules/ui.py index b09359aa..b51af121 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -38,7 +38,7 @@ from modules import prompt_parser from modules.images import save_image import modules.textual_inversion.ui -# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI +# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI mimetypes.init() mimetypes.add_type('application/javascript', '.js') @@ -102,7 +102,7 @@ def save_files(js_data, images, index): import csv filenames = [] - #quick dictionary to class object conversion. Its neccesary due apply_filename_pattern requiring it + #quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it class MyObject: def __init__(self, d=None): if d is not None: -- cgit v1.2.3