From f741a98baccae100fcfb40c017b5c35c5cba1b0c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:43:42 +0300 Subject: imports cleanup for ruff --- extensions-builtin/ScuNET/scripts/scunet_model.py | 1 - 1 file changed, 1 deletion(-) (limited to 'extensions-builtin/ScuNET/scripts/scunet_model.py') diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index c7fd5739..aa2fdb3a 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -13,7 +13,6 @@ import modules.upscaler from modules import devices, modelloader from scunet_model_arch import SCUNet as net from modules.shared import opts -from modules import images class UpscalerScuNET(modules.upscaler.Upscaler): -- cgit v1.2.3 From a5121e7a0623db328a9462d340d389ed6737374a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:37:18 +0300 Subject: fixes for B007 --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- extensions-builtin/Lora/lora.py | 2 +- extensions-builtin/ScuNET/scripts/scunet_model.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 2 +- modules/codeformer_model.py | 2 +- modules/esrgan_model.py | 8 ++------ modules/extra_networks.py | 2 +- modules/generation_parameters_copypaste.py | 2 +- modules/hypernetworks/hypernetwork.py | 12 ++++++------ modules/images.py | 2 +- modules/interrogate.py | 4 ++-- modules/prompt_parser.py | 14 +++++++------- modules/safe.py | 4 ++-- modules/scripts.py | 10 +++++----- modules/scripts_postprocessing.py | 8 ++++---- modules/sd_hijack_clip.py | 2 +- modules/shared.py | 6 +++--- modules/textual_inversion/learn_schedule.py | 2 +- modules/textual_inversion/textual_inversion.py | 10 +++++----- modules/ui.py | 6 +++--- modules/ui_extra_networks.py | 2 +- modules/ui_tempdir.py | 2 +- modules/upscaler.py | 2 +- pyproject.toml | 1 - scripts/prompts_from_file.py | 2 +- scripts/sd_upscale.py | 4 ++-- scripts/xyz_grid.py | 2 +- 28 files changed, 57 insertions(+), 62 deletions(-) (limited to 'extensions-builtin/ScuNET/scripts/scunet_model.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index a5fb8907..27e38549 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -88,7 +88,7 @@ class LDSR: x_t = None logs = None - for n in range(n_runs): + for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 9795540f..7b56136f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -418,7 +418,7 @@ def infotext_pasted(infotext, params): added = [] - for k, v in params.items(): + for k in params: if not k.startswith("AddNet Model "): continue diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index aa2fdb3a..1f5ea0d3 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -132,7 +132,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(filename), strict=True) model.eval() - for k, v in model.named_parameters(): + for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 75f7bedc..de195d9b 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -848,7 +848,7 @@ class SwinIR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index d4c0b0da..15777af9 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -1001,7 +1001,7 @@ class Swin2SR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8e56cb89..ececdbae 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -94,7 +94,7 @@ def setup_model(dirname): self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(self.face_helper.cropped_faces): + for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 85aa6934..a009eb42 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -16,9 +16,7 @@ def mod2normal(state_dict): # this code is copied from https://github.com/victorca25/iNNfer if 'conv_first.weight' in state_dict: crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] @@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23): if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: re8x = 0 crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 1978673d..f9db41bc 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -91,7 +91,7 @@ def deactivate(p, extra_network_data): """call deactivate for extra networks in extra_network_data in specified order, then call deactivate for all remaining registered networks""" - for extra_network_name, extra_network_args in extra_network_data.items(): + for extra_network_name in extra_network_data: extra_network = extra_network_registry.get(extra_network_name, None) if extra_network is None: continue diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 7fbbe707..b0e945a1 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model lines.append(lastline) lastline = '' - for i, line in enumerate(lines): + for line in lines: line = line.strip() if line.startswith("Negative prompt:"): done_with_prompt = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6ef0bfdf..38ef074f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -177,34 +177,34 @@ class Hypernetwork: def weights(self): res = [] - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: res += layer.parameters() return res def train(self, mode=True): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.train(mode=mode) for param in layer.parameters(): param.requires_grad = mode def to(self, device): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.to(device) return self def set_multiplier(self, multiplier): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.multiplier = multiplier return self def eval(self): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.eval() for param in layer.parameters(): @@ -619,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/images.py b/modules/images.py index 7392cb8b..c4e98c75 100644 --- a/modules/images.py +++ b/modules/images.py @@ -149,7 +149,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): return ImageFont.truetype(Roboto, fontsize) def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): - for i, line in enumerate(lines): + for line in lines: fnt = initial_fnt fontsize = initial_fontsize while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: diff --git a/modules/interrogate.py b/modules/interrogate.py index a1c8e537..111b1322 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -207,8 +207,8 @@ class InterrogateModels: image_features /= image_features.norm(dim=-1, keepdim=True) - for name, topn, items in self.categories(): - matches = self.rank(image_features, items, top_count=topn) + for cat in self.categories(): + matches = self.rank(image_features, cat.items, top_count=cat.topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 3a720721..b4aff704 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -143,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps): conds = model.get_learned_conditioning(texts) cond_schedule = [] - for i, (end_at_step, text) in enumerate(prompt_schedule): + for i, (end_at_step, _) in enumerate(prompt_schedule): cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) cache[prompt] = cond_schedule @@ -219,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for i, cond_schedule in enumerate(c): target_index = 0 - for current, (end_at, cond) in enumerate(cond_schedule): - if current_step <= end_at: + for current, entry in enumerate(cond_schedule): + if current_step <= entry.end_at_step: target_index = current break res[i] = cond_schedule[target_index].cond @@ -234,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): tensors = [] conds_list = [] - for batch_no, composable_prompts in enumerate(c.batch): + for composable_prompts in c.batch: conds_for_batch = [] - for cond_index, composable_prompt in enumerate(composable_prompts): + for composable_prompt in composable_prompts: target_index = 0 - for current, (end_at, cond) in enumerate(composable_prompt.schedules): - if current_step <= end_at: + for current, entry in enumerate(composable_prompt.schedules): + if current_step <= entry.end_at_step: target_index = current break diff --git a/modules/safe.py b/modules/safe.py index 2d5b972f..1e791c5b 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -95,11 +95,11 @@ def check_pt(filename, extra_handler): except zipfile.BadZipfile: - # if it's not a zip file, it's an olf pytorch format, with five objects written to pickle + # if it's not a zip file, it's an old pytorch format, with five objects written to pickle with open(filename, "rb") as file: unpickler = RestrictedUnpickler(file) unpickler.extra_handler = extra_handler - for i in range(5): + for _ in range(5): unpickler.load() diff --git a/modules/scripts.py b/modules/scripts.py index d945b89f..0c12ebd5 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -231,7 +231,7 @@ def load_scripts(): syspath = sys.path def register_scripts_from_module(module): - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) != type: continue @@ -295,9 +295,9 @@ class ScriptRunner: auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() - for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: - script = script_class() - script.filename = path + for script_data in auto_processing_scripts + scripts_data: + script = script_data.script_class() + script.filename = script_data.path script.is_txt2img = not is_img2img script.is_img2img = is_img2img @@ -492,7 +492,7 @@ class ScriptRunner: module = script_loading.load_module(script.filename) cache[filename] = module - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) == type and issubclass(script_class, Script): self.scripts[si] = script_class() self.scripts[si].filename = filename diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index b11568c0..6751406c 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -66,9 +66,9 @@ class ScriptPostprocessingRunner: def initialize_scripts(self, scripts_data): self.scripts = [] - for script_class, path, basedir, script_module in scripts_data: - script: ScriptPostprocessing = script_class() - script.filename = path + for script_data in scripts_data: + script: ScriptPostprocessing = script_data.script_class() + script.filename = script_data.path if script.name == "Simple Upscale": continue @@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to] process_args = {} - for (name, component), value in zip(script.controls.items(), script_args): + for (name, component), value in zip(script.controls.items(), script_args): # noqa B007 process_args[name] = value script.process(pp, **process_args) diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9fa5c5c5..c0c350f6 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk] for fixes in self.hijack.fixes: - for position, embedding in fixes: + for position, embedding in fixes: # noqa: B007 used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) diff --git a/modules/shared.py b/modules/shared.py index e2691585..913c9e63 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -211,7 +211,7 @@ class OptionInfo: def options_section(section_identifier, options_dict): - for k, v in options_dict.items(): + for v in options_dict.values(): v.section = section_identifier return options_dict @@ -579,7 +579,7 @@ class Options: section_ids = {} settings_items = self.data_labels.items() - for k, item in settings_items: + for _, item in settings_items: if item.section not in section_ids: section_ids[item.section] = len(section_ids) @@ -740,7 +740,7 @@ def walk_files(path, allowed_extensions=None): if allowed_extensions is not None: allowed_extensions = set(allowed_extensions) - for root, dirs, files in os.walk(path): + for root, _, files in os.walk(path): for filename in files: if allowed_extensions is not None: _, ext = os.path.splitext(filename) diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index fda58898..c56bea45 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -12,7 +12,7 @@ class LearnScheduleIterator: self.it = 0 self.maxit = 0 try: - for i, pair in enumerate(pairs): + for pair in pairs: if not pair.strip(): continue tmp = pair.split(':') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c37bb2ad..47035332 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -29,7 +29,7 @@ textual_inversion_templates = {} def list_textual_inversion_templates(): textual_inversion_templates.clear() - for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): for fn in fns: path = os.path.join(root, fn) @@ -198,7 +198,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path): return - for root, dirs, fns in os.walk(embdir.path, followlinks=True): + for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) @@ -215,7 +215,7 @@ class EmbeddingDatabase: def load_textual_inversion_embeddings(self, force_reload=False): if not force_reload: need_reload = False - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): if embdir.has_changed(): need_reload = True break @@ -228,7 +228,7 @@ class EmbeddingDatabase: self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() @@ -469,7 +469,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/ui.py b/modules/ui.py index 84d661b2..83bfb7d8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -416,7 +416,7 @@ def create_sampler_and_steps_selection(choices, tabname): def ordered_ui_categories(): user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))} - for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): + for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): yield category @@ -1646,7 +1646,7 @@ def create_ui(): with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo: with gr.Row(elem_id="quicksettings", variant="compact"): - for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): + for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component @@ -1673,7 +1673,7 @@ def create_ui(): outputs=[text_settings, result], ) - for i, k, item in quicksettings_list: + for _i, k, _item in quicksettings_list: component = component_dict[k] info = opts.data_labels[k] diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index ab585917..2fd82e8e 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -90,7 +90,7 @@ class ExtraNetworksPage: subdirs = {} for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: - for root, dirs, files in os.walk(parentdir): + for root, dirs, _ in os.walk(parentdir): for dirname in dirs: x = os.path.join(root, dirname) diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index cac73c51..f05049e1 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -72,7 +72,7 @@ def cleanup_tmpdr(): if temp_dir == "" or not os.path.isdir(temp_dir): return - for root, dirs, files in os.walk(temp_dir, topdown=False): + for root, _, files in os.walk(temp_dir, topdown=False): for name in files: _, extension = os.path.splitext(name) if extension != ".png": diff --git a/modules/upscaler.py b/modules/upscaler.py index e145be30..8acb6e96 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -55,7 +55,7 @@ class Upscaler: dest_w = int(img.width * scale) dest_h = int(img.height * scale) - for i in range(3): + for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) diff --git a/pyproject.toml b/pyproject.toml index 346a0cde..c88907be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,7 +20,6 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - "B007", # Loop control variable not used within loop body ] diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 149bc85f..27af5ff6 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -156,7 +156,7 @@ class Script(scripts.Script): images = [] all_prompts = [] infotexts = [] - for n, args in enumerate(jobs): + for args in jobs: state.job = f"{state.job_no + 1} out of {state.job_count}" copy_p = copy.copy(p) diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index d873a09c..0b1d3096 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -56,7 +56,7 @@ class Script(scripts.Script): work = [] - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) @@ -85,7 +85,7 @@ class Script(scripts.Script): work_results += processed.images image_index = 0 - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) image_index += 1 diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 332e0ecd..38a20381 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -704,7 +704,7 @@ class Script(scripts.Script): if not include_sub_grids: # Done with sub-grids, drop all related information: - for sg in range(z_count): + for _ in range(z_count): del processed.images[1] del processed.all_prompts[1] del processed.all_seeds[1] -- cgit v1.2.3 From a00e42556ffbc1b757fda5ba3f85a9e11c931441 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 14 May 2023 11:04:21 +0300 Subject: add a bunch of descriptions and reword a lot of settings (sorry, localizers) --- extensions-builtin/ScuNET/scripts/scunet_model.py | 13 +++- javascript/ui_settings_hints.js | 3 +- modules/shared.py | 94 ++++++++++++----------- style.css | 4 +- 4 files changed, 65 insertions(+), 49 deletions(-) (limited to 'extensions-builtin/ScuNET/scripts/scunet_model.py') diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index 1f5ea0d3..cc2cbc6a 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -10,7 +10,7 @@ from tqdm import tqdm from basicsr.utils.download_util import load_file_from_url import modules.upscaler -from modules import devices, modelloader +from modules import devices, modelloader, script_callbacks from scunet_model_arch import SCUNet as net from modules.shared import opts @@ -137,3 +137,14 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = model.to(device) return model + + +def on_ui_settings(): + import gradio as gr + from modules import shared + + shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling")) + shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam")) + + +script_callbacks.on_ui_settings(on_ui_settings) diff --git a/javascript/ui_settings_hints.js b/javascript/ui_settings_hints.js index 9251fd71..6d1933dc 100644 --- a/javascript/ui_settings_hints.js +++ b/javascript/ui_settings_hints.js @@ -15,7 +15,8 @@ onOptionsChanged(function(){ var span = null if(div.classList.contains('gradio-checkbox')) span = div.querySelector('label span') - else if(div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span') + else if(div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span').firstChild + else if(div.classList.contains('gradio-radio')) span = div.querySelector('span').firstChild else span = div.querySelector('label span').firstChild if(!span) return diff --git a/modules/shared.py b/modules/shared.py index 24fdcd59..a0577644 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -228,6 +228,12 @@ class OptionInfo: self.comment_after += f"({info})" return self + def needs_restart(self): + self.comment_after += " (requires restart)" + return self + + + def options_section(section_identifier, options_dict): for v in options_dict.values(): @@ -278,10 +284,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), - "export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"), + "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"), "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number), "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number), - "img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number), + "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"), "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), @@ -314,23 +320,21 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo })) options_templates.update(options_section(('upscaling', "Upscaling"), { - "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), - "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), + "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"), + "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"), + "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), - "SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), - "SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), - "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"), "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), })) options_templates.update(options_section(('system', "System"), { "show_warnings": OptionInfo(False, "Show warnings in console."), - "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), + "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), @@ -355,20 +359,20 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), - "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), + "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), - "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), + "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), - "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), - "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), + "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), + "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), - "randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}), + "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"), "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio_hr": OptionInfo(0.0, "Togen merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}), })) @@ -382,30 +386,32 @@ options_templates.update(options_section(('compatibility', "Compatibility"), { })) options_templates.update(options_section(('interrogate', "Interrogate Options"), { - "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), - "interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."), - "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), - "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), - "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"), + "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"), + "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"), + "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), + "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), + "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), + "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"), "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), - "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"), - "deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"), - "deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"), - "deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"), + "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"), + "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"), + "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"), + "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"), })) options_templates.update(options_section(('extra_networks', "Extra Networks"), { "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}), "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"), - "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"), - "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"), + "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), + "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), + "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { + "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_restart(), + "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).needs_restart(), "return_grid": OptionInfo(True, "Show grid in results for web"), "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"), "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"), @@ -418,17 +424,15 @@ options_templates.update(options_section(('ui', "User interface"), { "js_modal_lightbox_gamepad": OptionInfo(True, "Navigate image viewer with gamepad"), "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"), "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), - "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"), - "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"), + "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_restart(), + "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_restart(), "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), - "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings"), - "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}), + "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(), + "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"), - "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"), - "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), - "gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}) + "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(), })) options_templates.update(options_section(('infotext', "Infotext"), { @@ -443,26 +447,26 @@ options_templates.update(options_section(('ui', "Live previews"), { "live_previews_enable": OptionInfo(True, "Show live previews of the created image"), "live_previews_format": OptionInfo("auto", "Live preview file format", gr.Radio, {"choices": ["auto", "jpeg", "png", "webp"]}), "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), - "show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}), - "show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}), + "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), + "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}).info("Full = slow but pretty; Approx NN = fast but low quality; Approx cheap = super fast but terrible otherwise"), "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), - "live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds") + "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { - "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}), - "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_restart(), + "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"), + "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), - 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), + 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), + 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}), - 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}), + 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"), 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"), })) diff --git a/style.css b/style.css index 1e978592..0c2f453c 100644 --- a/style.css +++ b/style.css @@ -425,11 +425,11 @@ table.settings-value-table td{ color: var(--body-text-color); } -#settings .gradio-textbox, #settings .gradio-slider, #settings .gradio-number, #settings .gradio-dropdown, #settings .gradio-checkboxgroup{ +#settings .gradio-textbox, #settings .gradio-slider, #settings .gradio-number, #settings .gradio-dropdown, #settings .gradio-checkboxgroup, #settings .gradio-radio{ margin-top: 0.75em; } -.gradio-textbox .settings-comment, .gradio-slider .settings-comment, .gradio-number .settings-comment, .gradio-dropdown .settings-comment, .gradio-checkboxgroup .settings-comment { +#settings span .settings-comment { display: inline } -- cgit v1.2.3