From 762265eab58cdb8f2d6398769bab43d8b8db0075 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 07:52:45 +0300 Subject: autofixes from ruff --- extensions-builtin/LDSR/ldsr_model_arch.py | 1 - extensions-builtin/LDSR/sd_hijack_autoencoder.py | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index bc11cc6e..2339de7f 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -110,7 +110,6 @@ class LDSR: diffusion_steps = int(steps) eta = 1.0 - down_sample_method = 'Lanczos' gc.collect() if torch.cuda.is_available: diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 8e03c7f8..db2231dd 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -165,7 +165,7 @@ class VQModel(pl.LightningModule): def validation_step(self, batch, batch_idx): log_dict = self._validation_step(batch, batch_idx) with self.ema_scope(): - log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") + self._validation_step(batch, batch_idx, suffix="_ema") return log_dict def _validation_step(self, batch, batch_idx, suffix=""): -- cgit v1.2.3 From 96d6ca4199e7c5eee8d451618de5161cea317c40 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:25:25 +0300 Subject: manual fixes for ruff --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- extensions-builtin/LDSR/scripts/ldsr_model.py | 3 +- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 26 ++--- extensions-builtin/ScuNET/scunet_model_arch.py | 9 +- extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +- modules/api/api.py | 129 +++++++++++----------- modules/api/models.py | 5 +- modules/codeformer/codeformer_arch.py | 2 +- modules/esrgan_model_arch.py | 2 + modules/extra_networks_hypernet.py | 2 +- modules/images.py | 4 +- modules/img2img.py | 1 - modules/interrogate.py | 1 - modules/modelloader.py | 6 +- modules/models/diffusion/ddpm_edit.py | 26 ++--- modules/models/diffusion/uni_pc/sampler.py | 3 +- modules/processing.py | 2 +- modules/prompt_parser.py | 11 +- modules/textual_inversion/autocrop.py | 2 +- modules/ui.py | 8 +- modules/upscaler.py | 2 +- 22 files changed, 129 insertions(+), 129 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 2339de7f..a5fb8907 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -243,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) - except: + except Exception: pass log["sample"] = x_sample diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index da19cff1..e8dc083c 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url from modules.upscaler import Upscaler, UpscalerData from ldsr_model_arch import LDSR from modules import shared, script_callbacks -import sd_hijack_autoencoder, sd_hijack_ddpm_v1 +import sd_hijack_autoencoder +import sd_hijack_ddpm_v1 class UpscalerLDSR(Upscaler): diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index db2231dd..6303fed5 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -1,16 +1,21 @@ # The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder - +import numpy as np import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager + +from torch.optim.lr_scheduler import LambdaLR + +from ldm.modules.ema import LitEma from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.util import instantiate_from_config import ldm.models.autoencoder +from packaging import version class VQModel(pl.LightningModule): def __init__(self, @@ -249,7 +254,8 @@ class VQModel(pl.LightningModule): if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) + if x.shape[1] > 3: + xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 5c0488e5..4d3f6c56 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -450,7 +450,7 @@ class LatentDiffusionV1(DDPMV1): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 43ca8d36..8028918a 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -61,7 +61,9 @@ class WMSA(nn.Module): Returns: output: tensor shape [b h w c] """ - if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + if self.type != 'W': + x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) @@ -85,8 +87,9 @@ class WMSA(nn.Module): output = self.linear(output) output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) - if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), - dims=(1, 2)) + if self.type != 'W': + output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2)) + return output def relative_embedding(self): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index e8783bca..d77c3a92 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -45,7 +45,7 @@ class UpscalerSwinIR(Upscaler): img = upscale(img, model) try: torch.cuda.empty_cache() - except: + except Exception: pass return img diff --git a/modules/api/api.py b/modules/api/api.py index d47c39fc..f52d371b 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,7 +15,8 @@ from secrets import compare_digest import modules.shared as shared from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing -from modules.api.models import * +from modules.api import models +from modules.shared import opts from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.preprocess import preprocess @@ -25,20 +26,21 @@ from modules.sd_models import checkpoints_list, unload_model_weights, reload_mod from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices -from typing import List +from typing import Dict, List, Any import piexif import piexif.helper + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") + except Exception: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except: + except Exception: raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): @@ -99,7 +101,7 @@ def api_middleware(app: FastAPI): import starlette # importing just so it can be placed on silent list from rich.console import Console console = Console() - except: + except Exception: import traceback rich_available = False @@ -166,36 +168,36 @@ class Api: self.app = app self.queue_lock = queue_lock api_middleware(self.app) - self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) - self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) - self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) - self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) - self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) - self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) - self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) - self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) - self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) - self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) - self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) - self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem]) - self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) + self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) - self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) - self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) + self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) + self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) - self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList) + self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.default_script_arg_txt2img = [] self.default_script_arg_img2img = [] @@ -224,7 +226,7 @@ class Api: t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] - return ScriptsList(txt2img = t2ilist, img2img = i2ilist) + return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) def get_script(self, script_name, script_runner): if script_name is None or script_name == "": @@ -276,7 +278,7 @@ class Api: script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] return script_args - def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): script_runner = scripts.scripts_txt2img if not script_runner.scripts: script_runner.initialize_scripts(False) @@ -320,9 +322,9 @@ class Api: b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] - return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) - def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -381,9 +383,9 @@ class Api: img2imgreq.init_images = None img2imgreq.mask = None - return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) - def extras_single_image_api(self, req: ExtrasSingleImageRequest): + def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): reqDict = setUpscalers(req) reqDict['image'] = decode_base64_to_image(reqDict['image']) @@ -391,9 +393,9 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) - def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): reqDict = setUpscalers(req) image_list = reqDict.pop('imageList', []) @@ -402,15 +404,15 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) - def pnginfoapi(self, req: PNGInfoRequest): + def pnginfoapi(self, req: models.PNGInfoRequest): if(not req.image.strip()): - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") image = decode_base64_to_image(req.image.strip()) if image is None: - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") geninfo, items = images.read_info_from_image(image) if geninfo is None: @@ -418,13 +420,13 @@ class Api: items = {**{'parameters': geninfo}, **items} - return PNGInfoResponse(info=geninfo, items=items) + return models.PNGInfoResponse(info=geninfo, items=items) - def progressapi(self, req: ProgressRequest = Depends()): + def progressapi(self, req: models.ProgressRequest = Depends()): # copy from check_progress_call of ui.py if shared.state.job_count == 0: - return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) # avoid dividing zero progress = 0.01 @@ -446,9 +448,9 @@ class Api: if shared.state.current_image and not req.skip_current_image: current_image = encode_pil_to_base64(shared.state.current_image) - return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) - def interrogateapi(self, interrogatereq: InterrogateRequest): + def interrogateapi(self, interrogatereq: models.InterrogateRequest): image_b64 = interrogatereq.image if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") @@ -465,7 +467,7 @@ class Api: else: raise HTTPException(status_code=404, detail="Model not found") - return InterrogateResponse(caption=processed) + return models.InterrogateResponse(caption=processed) def interruptapi(self): shared.state.interrupt() @@ -570,36 +572,36 @@ class Api: filename = create_embedding(**args) # create empty embedding sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used shared.state.end() - return CreateResponse(info=f"create embedding filename: {filename}") + return models.CreateResponse(info=f"create embedding filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create embedding error: {e}") + return models.TrainResponse(info=f"create embedding error: {e}") def create_hypernetwork(self, args: dict): try: shared.state.begin() filename = create_hypernetwork(**args) # create empty embedding shared.state.end() - return CreateResponse(info=f"create hypernetwork filename: {filename}") + return models.CreateResponse(info=f"create hypernetwork filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create hypernetwork error: {e}") + return models.TrainResponse(info=f"create hypernetwork error: {e}") def preprocess(self, args: dict): try: shared.state.begin() preprocess(**args) # quick operation unless blip/booru interrogation is enabled shared.state.end() - return PreprocessResponse(info = 'preprocess complete') + return models.PreprocessResponse(info = 'preprocess complete') except KeyError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: invalid token: {e}") + return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") except AssertionError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: {e}") + return models.PreprocessResponse(info=f"preprocess error: {e}") except FileNotFoundError as e: shared.state.end() - return PreprocessResponse(info=f'preprocess error: {e}') + return models.PreprocessResponse(info=f'preprocess error: {e}') def train_embedding(self, args: dict): try: @@ -617,10 +619,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info=f"train embedding error: {msg}") + return models.TrainResponse(info=f"train embedding error: {msg}") def train_hypernetwork(self, args: dict): try: @@ -641,14 +643,15 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError: shared.state.end() - return TrainResponse(info=f"train embedding error: {error}") + return models.TrainResponse(info=f"train embedding error: {error}") def get_memory(self): try: - import os, psutil + import os + import psutil process = psutil.Process(os.getpid()) res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe @@ -675,10 +678,10 @@ class Api: 'events': warnings, } else: - cuda = { 'error': 'unavailable' } + cuda = {'error': 'unavailable'} except Exception as err: - cuda = { 'error': f'{err}' } - return MemoryResponse(ram = ram, cuda = cuda) + cuda = {'error': f'{err}'} + return models.MemoryResponse(ram=ram, cuda=cuda) def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py index 4a70f440..4d291076 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -223,8 +223,9 @@ for key in _options: if(_options[key].dest != 'help'): flag = _options[key] _type = str - if _options[key].default is not None: _type = type(_options[key].default) - flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) + if _options[key].default is not None: + _type = type(_options[key].default) + flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))}) FlagsModel = create_model("Flags", **flags) diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 11dcc3ee..f1a7cf09 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -7,7 +7,7 @@ from torch import nn, Tensor import torch.nn.functional as F from typing import Optional, List -from modules.codeformer.vqgan_arch import * +from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 6071fea7..7f8bc7c0 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -438,9 +438,11 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias= padding = padding if pad_type == 'zero' else 0 if convtype=='PartialConv2D': + from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='DeformConv2D': + from torchvision.ops import DeformConv2d # not tested c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='Conv3D': diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 04f27c9f..aa2a14ef 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -1,4 +1,4 @@ -from modules import extra_networks, shared, extra_networks +from modules import extra_networks, shared from modules.hypernetworks import hypernetwork diff --git a/modules/images.py b/modules/images.py index 3d5d76cc..5eb6d855 100644 --- a/modules/images.py +++ b/modules/images.py @@ -472,9 +472,9 @@ def get_next_sequence_number(path, basename): prefix_length = len(basename) for p in os.listdir(path): if p.startswith(basename): - l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) + parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) try: - result = max(int(l[0]), result) + result = max(int(parts[0]), result) except ValueError: pass diff --git a/modules/img2img.py b/modules/img2img.py index cdae301a..32b1ecd6 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -13,7 +13,6 @@ from modules.shared import opts, state import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html -import modules.images as images import modules.scripts diff --git a/modules/interrogate.py b/modules/interrogate.py index 9f7d657f..22df9216 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -11,7 +11,6 @@ import torch.hub from torchvision import transforms from torchvision.transforms.functional import InterpolationMode -import modules.shared as shared from modules import devices, paths, shared, lowvram, modelloader, errors blip_image_eval_size = 384 diff --git a/modules/modelloader.py b/modules/modelloader.py index cb85ac4f..cf685000 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -108,12 +108,12 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None): print(f"Moving {file} from {src_path} to {dest_path}.") try: shutil.move(fullpath, dest_path) - except: + except Exception: pass if len(os.listdir(src_path)) == 0: print(f"Removing empty folder: {src_path}") shutil.rmtree(src_path, True) - except: + except Exception: pass @@ -141,7 +141,7 @@ def load_upscalers(): full_model = f"modules.{model_name}_model" try: importlib.import_module(full_model) - except: + except Exception: pass datas = [] diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f880bc3c..611c2b69 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -479,7 +479,7 @@ class LatentDiffusion(DDPM): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -891,16 +891,6 @@ class LatentDiffusion(DDPM): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1171,8 +1161,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1219,8 +1211,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1337,7 +1331,7 @@ class LatentDiffusion(DDPM): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index a241c8a7..0a9defa1 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -54,7 +54,8 @@ class UniPCSampler(object): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] + while isinstance(ctmp, list): + ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") diff --git a/modules/processing.py b/modules/processing.py index 1a76e552..6f5233c1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -664,7 +664,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not shared.opts.dont_fix_second_order_samplers_schedule: try: step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1 - except: + except Exception: pass uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc) c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c) diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index e084e948..3a720721 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -54,18 +54,21 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): """ def collect_steps(steps, tree): - l = [steps] + res = [steps] + class CollectSteps(lark.Visitor): def scheduled(self, tree): tree.children[-1] = float(tree.children[-1]) if tree.children[-1] < 1: tree.children[-1] *= steps tree.children[-1] = min(steps, int(tree.children[-1])) - l.append(tree.children[-1]) + res.append(tree.children[-1]) + def alternate(self, tree): - l.extend(range(1, steps+1)) + res.extend(range(1, steps+1)) + CollectSteps().visit(tree) - return sorted(set(l)) + return sorted(set(res)) def at_step(step, tree): class AtStep(lark.Transformer): diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index ba1bdcd4..d7d8d2e3 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -185,7 +185,7 @@ def image_face_points(im, settings): try: faces = classifier.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) - except: + except Exception: continue if len(faces) > 0: diff --git a/modules/ui.py b/modules/ui.py index 2171f3aa..6beda76f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1,15 +1,9 @@ -import html import json -import math import mimetypes import os -import platform -import random import sys -import tempfile -import time import traceback -from functools import partial, reduce +from functools import reduce import warnings import gradio as gr diff --git a/modules/upscaler.py b/modules/upscaler.py index e2eaa730..0ad4fe99 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -45,7 +45,7 @@ class Upscaler: try: import cv2 self.can_tile = True - except: + except Exception: pass @abstractmethod -- cgit v1.2.3 From f741a98baccae100fcfb40c017b5c35c5cba1b0c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:43:42 +0300 Subject: imports cleanup for ruff --- extensions-builtin/Lora/lora.py | 1 - extensions-builtin/ScuNET/scripts/scunet_model.py | 1 - extensions-builtin/SwinIR/scripts/swinir_model.py | 3 +-- modules/codeformer/codeformer_arch.py | 4 +--- modules/codeformer/vqgan_arch.py | 2 -- modules/codeformer_model.py | 4 +--- modules/config_states.py | 2 +- modules/esrgan_model.py | 2 +- modules/esrgan_model_arch.py | 1 - modules/extensions.py | 1 - modules/generation_parameters_copypaste.py | 4 ---- modules/hypernetworks/hypernetwork.py | 3 +-- modules/hypernetworks/ui.py | 2 -- modules/images.py | 2 +- modules/img2img.py | 5 +---- modules/mac_specific.py | 1 - modules/modelloader.py | 1 - modules/models/diffusion/uni_pc/uni_pc.py | 1 - modules/processing.py | 5 ++--- modules/sd_hijack.py | 2 +- modules/sd_hijack_inpainting.py | 6 ------ modules/sd_hijack_ip2p.py | 5 +---- modules/sd_hijack_xlmr.py | 2 -- modules/sd_models.py | 2 +- modules/sd_models_config.py | 1 - modules/sd_samplers_kdiffusion.py | 1 - modules/sd_vae.py | 3 --- modules/shared.py | 3 --- modules/styles.py | 9 --------- modules/textual_inversion/autocrop.py | 4 +--- modules/textual_inversion/image_embedding.py | 2 +- modules/textual_inversion/preprocess.py | 4 ---- modules/textual_inversion/textual_inversion.py | 1 - modules/txt2img.py | 9 +++------ modules/ui.py | 5 ++--- modules/ui_extra_networks.py | 1 - modules/ui_postprocessing.py | 2 +- modules/upscaler.py | 2 -- modules/xlmr.py | 2 +- pyproject.toml | 11 +++++++---- scripts/custom_code.py | 2 +- scripts/outpainting_mk_2.py | 4 ++-- scripts/poor_mans_outpainting.py | 4 ++-- scripts/prompt_matrix.py | 7 ++----- scripts/prompts_from_file.py | 5 +---- scripts/sd_upscale.py | 4 ++-- scripts/xyz_grid.py | 6 ++---- webui.py | 2 +- 48 files changed, 42 insertions(+), 114 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index ba1293df..0ab43229 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -1,4 +1,3 @@ -import glob import os import re import torch diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index c7fd5739..aa2fdb3a 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -13,7 +13,6 @@ import modules.upscaler from modules import devices, modelloader from scunet_model_arch import SCUNet as net from modules.shared import opts -from modules import images class UpscalerScuNET(modules.upscaler.Upscaler): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index d77c3a92..55dd94ab 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -1,4 +1,3 @@ -import contextlib import os import numpy as np @@ -8,7 +7,7 @@ from basicsr.utils.download_util import load_file_from_url from tqdm import tqdm from modules import modelloader, devices, script_callbacks, shared -from modules.shared import cmd_opts, opts, state +from modules.shared import opts, state from swinir_model_arch import SwinIR as net from swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index f1a7cf09..00c407de 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -1,14 +1,12 @@ # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py import math -import numpy as np import torch from torch import nn, Tensor import torch.nn.functional as F -from typing import Optional, List +from typing import Optional from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock -from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY def calc_mean_std(feat, eps=1e-5): diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index e7293683..820e6b12 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -5,11 +5,9 @@ VQGAN code, adapted from the original created by the Unleashing Transformers aut https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py ''' -import numpy as np import torch import torch.nn as nn import torch.nn.functional as F -import copy from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8d84bbc9..8e56cb89 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -33,11 +33,9 @@ def setup_model(dirname): try: from torchvision.transforms.functional import normalize from modules.codeformer.codeformer_arch import CodeFormer - from basicsr.utils.download_util import load_file_from_url - from basicsr.utils import imwrite, img2tensor, tensor2img + from basicsr.utils import img2tensor, tensor2img from facelib.utils.face_restoration_helper import FaceRestoreHelper from facelib.detection.retinaface import retinaface - from modules.shared import cmd_opts net_class = CodeFormer diff --git a/modules/config_states.py b/modules/config_states.py index 2ea00929..8f1ff428 100644 --- a/modules/config_states.py +++ b/modules/config_states.py @@ -14,7 +14,7 @@ from collections import OrderedDict import git from modules import shared, extensions -from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path, config_states_dir +from modules.paths_internal import script_path, config_states_dir all_config_states = OrderedDict() diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index f4369257..85aa6934 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -6,7 +6,7 @@ from PIL import Image from basicsr.utils.download_util import load_file_from_url import modules.esrgan_model_arch as arch -from modules import shared, modelloader, images, devices +from modules import modelloader, images, devices from modules.upscaler import Upscaler, UpscalerData from modules.shared import opts diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 7f8bc7c0..4de9dd8d 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -2,7 +2,6 @@ from collections import OrderedDict import math -import functools import torch import torch.nn as nn import torch.nn.functional as F diff --git a/modules/extensions.py b/modules/extensions.py index 34d9d654..829f8cd9 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -3,7 +3,6 @@ import sys import traceback import time -from datetime import datetime import git from modules import shared diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index fe8b18b2..f1c59c46 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,15 +1,11 @@ import base64 -import html import io -import math import os import re -from pathlib import Path import gradio as gr from modules.paths import data_path from modules import shared, ui_tempdir, script_callbacks -import tempfile from PIL import Image re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 1fc49537..9fe749b7 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -1,4 +1,3 @@ -import csv import datetime import glob import html @@ -18,7 +17,7 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ -from collections import defaultdict, deque +from collections import deque from statistics import stdev, mean diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 76599f5a..be168736 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -1,6 +1,4 @@ import html -import os -import re import gradio as gr import modules.hypernetworks.hypernetwork diff --git a/modules/images.py b/modules/images.py index 5eb6d855..7392cb8b 100644 --- a/modules/images.py +++ b/modules/images.py @@ -19,7 +19,7 @@ import json import hashlib from modules import sd_samplers, shared, script_callbacks, errors -from modules.shared import opts, cmd_opts +from modules.shared import opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) diff --git a/modules/img2img.py b/modules/img2img.py index 32b1ecd6..d704bf90 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -1,12 +1,9 @@ -import math import os -import sys -import traceback import numpy as np from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError -from modules import devices, sd_samplers +from modules import sd_samplers from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 40ce2101..5c2f92a1 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -1,6 +1,5 @@ import torch import platform -from modules import paths from modules.sd_hijack_utils import CondFunc from packaging import version diff --git a/modules/modelloader.py b/modules/modelloader.py index cf685000..92ada694 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -1,4 +1,3 @@ -import glob import os import shutil import importlib diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 11b330bc..a4c4ef4e 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,5 +1,4 @@ import torch -import torch.nn.functional as F import math from tqdm.auto import trange diff --git a/modules/processing.py b/modules/processing.py index 6f5233c1..c3932d6b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -2,7 +2,6 @@ import json import math import os import sys -import warnings import hashlib import torch @@ -11,10 +10,10 @@ from PIL import Image, ImageFilter, ImageOps import random import cv2 from skimage import exposure -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index d8135211..81573b78 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -3,7 +3,7 @@ from torch.nn.functional import silu from types import MethodType import modules.textual_inversion.textual_inversion -from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint +from modules import devices, sd_hijack_optimizations, shared from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 55a2ce4d..344d75c8 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -1,15 +1,9 @@ -import os import torch -from einops import repeat -from omegaconf import ListConfig - import ldm.models.diffusion.ddpm import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from ldm.models.diffusion.ddpm import LatentDiffusion -from ldm.models.diffusion.plms import PLMSSampler from ldm.models.diffusion.ddim import DDIMSampler, noise_like from ldm.models.diffusion.sampling_util import norm_thresholding diff --git a/modules/sd_hijack_ip2p.py b/modules/sd_hijack_ip2p.py index 41ed54a2..6fe6b6ff 100644 --- a/modules/sd_hijack_ip2p.py +++ b/modules/sd_hijack_ip2p.py @@ -1,8 +1,5 @@ -import collections import os.path -import sys -import gc -import time + def should_hijack_ip2p(checkpoint_info): from modules import sd_models_config diff --git a/modules/sd_hijack_xlmr.py b/modules/sd_hijack_xlmr.py index 4ac51c38..28528329 100644 --- a/modules/sd_hijack_xlmr.py +++ b/modules/sd_hijack_xlmr.py @@ -1,8 +1,6 @@ -import open_clip.tokenizer import torch from modules import sd_hijack_clip, devices -from modules.shared import opts class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords): diff --git a/modules/sd_models.py b/modules/sd_models.py index 11c1a344..1c09c709 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -565,7 +565,7 @@ def reload_model_weights(sd_model=None, info=None): def unload_model_weights(sd_model=None, info=None): - from modules import lowvram, devices, sd_hijack + from modules import devices, sd_hijack timer = Timer() if model_data.sd_model: diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 7a79925a..9bfe1237 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -1,4 +1,3 @@ -import re import os import torch diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 0fc9f456..3b8e9622 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,7 +1,6 @@ from collections import deque import torch import inspect -import einops import k_diffusion.sampling from modules import prompt_parser, devices, sd_samplers_common diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 521e485a..b7176125 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,8 +1,5 @@ -import torch -import safetensors.torch import os import collections -from collections import namedtuple from modules import paths, shared, devices, script_callbacks, sd_models import glob from copy import deepcopy diff --git a/modules/shared.py b/modules/shared.py index 4631965b..44cd2c0c 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,12 +1,9 @@ -import argparse import datetime import json import os import sys import time -import requests -from PIL import Image import gradio as gr import tqdm diff --git a/modules/styles.py b/modules/styles.py index 11642075..c22769cf 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -1,18 +1,9 @@ -# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime -from __future__ import annotations - import csv import os import os.path import typing -import collections.abc as abc -import tempfile import shutil -if typing.TYPE_CHECKING: - # Only import this when code is being type-checked, it doesn't have any effect at runtime - from .processing import StableDiffusionProcessing - class PromptStyle(typing.NamedTuple): name: str diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index d7d8d2e3..7770d22f 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -1,10 +1,8 @@ import cv2 import requests import os -from collections import defaultdict -from math import log, sqrt import numpy as np -from PIL import Image, ImageDraw +from PIL import ImageDraw GREEN = "#0F0" BLUE = "#00F" diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index 5593f88c..ee0e850a 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -2,7 +2,7 @@ import base64 import json import numpy as np import zlib -from PIL import Image, PngImagePlugin, ImageDraw, ImageFont +from PIL import Image, ImageDraw, ImageFont from fonts.ttf import Roboto import torch from modules.shared import opts diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index da0bcb26..d0cad09e 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,13 +1,9 @@ import os from PIL import Image, ImageOps import math -import platform -import sys import tqdm -import time from modules import paths, shared, images, deepbooru -from modules.shared import opts, cmd_opts from modules.textual_inversion import autocrop diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index f753b75f..9ed9ba45 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -1,7 +1,6 @@ import os import sys import traceback -import inspect from collections import namedtuple import torch diff --git a/modules/txt2img.py b/modules/txt2img.py index 16841d0f..f022381c 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,18 +1,15 @@ import modules.scripts -from modules import sd_samplers +from modules import sd_samplers, processing from modules.generation_parameters_copypaste import create_override_settings_dict -from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ - StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, cmd_opts import modules.shared as shared -import modules.processing as processing from modules.ui import plaintext_to_html def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) - p = StableDiffusionProcessingTxt2Img( + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids, @@ -53,7 +50,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step processed = modules.scripts.scripts_txt2img.run(p, *args) if processed is None: - processed = process_images(p) + processed = processing.process_images(p) p.close() diff --git a/modules/ui.py b/modules/ui.py index 6beda76f..f7e57593 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -14,10 +14,10 @@ from PIL import Image, PngImagePlugin from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing, progress -from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML +from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path, data_path -from modules.shared import opts, cmd_opts, restricted_opts +from modules.shared import opts, cmd_opts import modules.codeformer_model import modules.generation_parameters_copypaste as parameters_copypaste @@ -28,7 +28,6 @@ import modules.shared as shared import modules.styles import modules.textual_inversion.ui from modules import prompt_parser -from modules.images import save_image from modules.sd_hijack import model_hijack from modules.sd_samplers import samplers, samplers_for_img2img from modules.textual_inversion import textual_inversion diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 49e06289..800e467a 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -1,4 +1,3 @@ -import glob import os.path import urllib.parse from pathlib import Path diff --git a/modules/ui_postprocessing.py b/modules/ui_postprocessing.py index f25639e5..c7dc1154 100644 --- a/modules/ui_postprocessing.py +++ b/modules/ui_postprocessing.py @@ -1,5 +1,5 @@ import gradio as gr -from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue +from modules import scripts, shared, ui_common, postprocessing, call_queue import modules.generation_parameters_copypaste as parameters_copypaste diff --git a/modules/upscaler.py b/modules/upscaler.py index 0ad4fe99..777593b0 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -2,8 +2,6 @@ import os from abc import abstractmethod import PIL -import numpy as np -import torch from PIL import Image import modules.shared diff --git a/modules/xlmr.py b/modules/xlmr.py index beab3fdf..e056c3f6 100644 --- a/modules/xlmr.py +++ b/modules/xlmr.py @@ -1,4 +1,4 @@ -from transformers import BertPreTrainedModel,BertModel,BertConfig +from transformers import BertPreTrainedModel, BertConfig import torch.nn as nn import torch from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig diff --git a/pyproject.toml b/pyproject.toml index 1e164abc..9caa9ba2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,10 +1,13 @@ [tool.ruff] +exclude = ["extensions"] + ignore = [ "E501", - "E731", - "E402", # Module level import not at top of file - "F401" # Module imported but unused + + "F401", # Module imported but unused ] -exclude = ["extensions"] + +[tool.ruff.per-file-ignores] +"webui.py" = ["E402"] # Module level import not at top of file \ No newline at end of file diff --git a/scripts/custom_code.py b/scripts/custom_code.py index f36a3675..cc6f0d49 100644 --- a/scripts/custom_code.py +++ b/scripts/custom_code.py @@ -4,7 +4,7 @@ import ast import copy from modules.processing import Processed -from modules.shared import opts, cmd_opts, state +from modules.shared import cmd_opts def convertExpr2Expression(expr): diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py index b10fed6c..665dbe89 100644 --- a/scripts/outpainting_mk_2.py +++ b/scripts/outpainting_mk_2.py @@ -7,9 +7,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image, ImageDraw -from modules import images, processing, devices +from modules import images from modules.processing import Processed, process_images -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state # this function is taken from https://github.com/parlance-zz/g-diffuser-bot diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py index ddcbd2d3..c0bbecc1 100644 --- a/scripts/poor_mans_outpainting.py +++ b/scripts/poor_mans_outpainting.py @@ -4,9 +4,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image, ImageDraw -from modules import images, processing, devices +from modules import images, devices from modules.processing import Processed, process_images -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state class Script(scripts.Script): diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index e9b11517..fb06beab 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -1,14 +1,11 @@ import math -from collections import namedtuple -from copy import copy -import random import modules.scripts as scripts import gradio as gr from modules import images -from modules.processing import process_images, Processed -from modules.shared import opts, cmd_opts, state +from modules.processing import process_images +from modules.shared import opts, state import modules.sd_samplers diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 76dc5778..149bc85f 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -1,6 +1,4 @@ import copy -import math -import os import random import sys import traceback @@ -11,8 +9,7 @@ import gradio as gr from modules import sd_samplers from modules.processing import Processed, process_images -from PIL import Image -from modules.shared import opts, cmd_opts, state +from modules.shared import state def process_string_tag(tag): diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index 332d76d9..d873a09c 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -4,9 +4,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image -from modules import processing, shared, sd_samplers, images, devices +from modules import processing, shared, images, devices from modules.processing import Processed -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state class Script(scripts.Script): diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 2ff42ef8..332e0ecd 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -10,15 +10,13 @@ import numpy as np import modules.scripts as scripts import gradio as gr -from modules import images, paths, sd_samplers, processing, sd_models, sd_vae +from modules import images, sd_samplers, processing, sd_models, sd_vae from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state import modules.shared as shared import modules.sd_samplers import modules.sd_models import modules.sd_vae -import glob -import os import re from modules.ui_components import ToolButton diff --git a/webui.py b/webui.py index ec3d2aba..48277075 100644 --- a/webui.py +++ b/webui.py @@ -43,7 +43,7 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__: torch.__long_version__ = torch.__version__ torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) -from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states +from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states import modules.codeformer_model as codeformer import modules.face_restoration import modules.gfpgan_model as gfpgan -- cgit v1.2.3 From 4b854806d98cf5ccd48e5cd99c172613da7937f0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 09:02:23 +0300 Subject: F401 fixes for ruff --- extensions-builtin/LDSR/scripts/ldsr_model.py | 4 ++-- modules/cmd_args.py | 2 +- modules/deepbooru.py | 1 - modules/extensions.py | 2 +- modules/gfpgan_model.py | 2 +- modules/models/diffusion/uni_pc/__init__.py | 2 +- modules/paths.py | 4 ++-- modules/realesrgan_model.py | 6 +++--- modules/script_loading.py | 1 - modules/sd_hijack_inpainting.py | 2 +- modules/sd_models.py | 4 +--- modules/sd_samplers.py | 2 +- modules/shared.py | 2 +- modules/ui.py | 4 ++-- modules/upscaler.py | 2 +- pyproject.toml | 9 +++++---- webui.py | 8 ++++---- 17 files changed, 27 insertions(+), 30 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index e8dc083c..fbbe9005 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -7,8 +7,8 @@ from basicsr.utils.download_util import load_file_from_url from modules.upscaler import Upscaler, UpscalerData from ldsr_model_arch import LDSR from modules import shared, script_callbacks -import sd_hijack_autoencoder -import sd_hijack_ddpm_v1 +import sd_hijack_autoencoder # noqa: F401 +import sd_hijack_ddpm_v1 # noqa: F401 class UpscalerLDSR(Upscaler): diff --git a/modules/cmd_args.py b/modules/cmd_args.py index d906a571..e01ca655 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -1,6 +1,6 @@ import argparse import os -from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file +from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir, sd_default_config, sd_model_file # noqa: F401 parser = argparse.ArgumentParser() diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 122fce7f..1c4554a2 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -2,7 +2,6 @@ import os import re import torch -from PIL import Image import numpy as np from modules import modelloader, paths, deepbooru_model, devices, images, shared diff --git a/modules/extensions.py b/modules/extensions.py index 829f8cd9..bc2c0450 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -6,7 +6,7 @@ import time import git from modules import shared -from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path +from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401 extensions = [] diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index fbe6215a..0131dea4 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -78,7 +78,7 @@ def setup_model(dirname): try: from gfpgan import GFPGANer - from facexlib import detection, parsing + from facexlib import detection, parsing # noqa: F401 global user_path global have_gfpgan global gfpgan_constructor diff --git a/modules/models/diffusion/uni_pc/__init__.py b/modules/models/diffusion/uni_pc/__init__.py index e1265e3f..dbb35964 100644 --- a/modules/models/diffusion/uni_pc/__init__.py +++ b/modules/models/diffusion/uni_pc/__init__.py @@ -1 +1 @@ -from .sampler import UniPCSampler +from .sampler import UniPCSampler # noqa: F401 diff --git a/modules/paths.py b/modules/paths.py index acf1894b..5f6474c0 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -1,8 +1,8 @@ import os import sys -from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir +from modules.paths_internal import models_path, script_path, data_path, extensions_dir, extensions_builtin_dir # noqa: F401 -import modules.safe +import modules.safe # noqa: F401 # data_path = cmd_opts_pre.data diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py index 9ec1adf2..c24d8dbb 100644 --- a/modules/realesrgan_model.py +++ b/modules/realesrgan_model.py @@ -17,9 +17,9 @@ class UpscalerRealESRGAN(Upscaler): self.user_path = path super().__init__() try: - from basicsr.archs.rrdbnet_arch import RRDBNet - from realesrgan import RealESRGANer - from realesrgan.archs.srvgg_arch import SRVGGNetCompact + from basicsr.archs.rrdbnet_arch import RRDBNet # noqa: F401 + from realesrgan import RealESRGANer # noqa: F401 + from realesrgan.archs.srvgg_arch import SRVGGNetCompact # noqa: F401 self.enable = True self.scalers = [] scalers = self.load_models(path) diff --git a/modules/script_loading.py b/modules/script_loading.py index a7d2203f..57b15862 100644 --- a/modules/script_loading.py +++ b/modules/script_loading.py @@ -2,7 +2,6 @@ import os import sys import traceback import importlib.util -from types import ModuleType def load_module(path): diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 344d75c8..058575b7 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -4,7 +4,7 @@ import ldm.models.diffusion.ddpm import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from ldm.models.diffusion.ddim import DDIMSampler, noise_like +from ldm.models.diffusion.ddim import noise_like from ldm.models.diffusion.sampling_util import norm_thresholding diff --git a/modules/sd_models.py b/modules/sd_models.py index 1c09c709..d1e946a5 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -15,7 +15,6 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config -from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.timer import Timer @@ -87,8 +86,7 @@ class CheckpointInfo: try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. - - from transformers import logging, CLIPModel + from transformers import logging, CLIPModel # noqa: F401 logging.set_verbosity_error() except Exception: diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index ff361f22..4f1bf21d 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,7 +1,7 @@ from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared # imports for functions that previously were here and are used by other modules -from modules.sd_samplers_common import samples_to_image_grid, sample_to_image +from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401 all_samplers = [ *sd_samplers_kdiffusion.samplers_data_k_diffusion, diff --git a/modules/shared.py b/modules/shared.py index 44cd2c0c..7d70f041 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -12,7 +12,7 @@ import modules.memmon import modules.styles import modules.devices as devices from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args -from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir +from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401 from ldm.models.diffusion.ddpm import LatentDiffusion demo = None diff --git a/modules/ui.py b/modules/ui.py index f7e57593..782b569d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -10,10 +10,10 @@ import gradio as gr import gradio.routes import gradio.utils import numpy as np -from PIL import Image, PngImagePlugin +from PIL import Image, PngImagePlugin # noqa: F401 from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call -from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing, progress +from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path, data_path diff --git a/modules/upscaler.py b/modules/upscaler.py index 777593b0..e145be30 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -41,7 +41,7 @@ class Upscaler: os.makedirs(self.model_path, exist_ok=True) try: - import cv2 + import cv2 # noqa: F401 self.can_tile = True except Exception: pass diff --git a/pyproject.toml b/pyproject.toml index 9caa9ba2..0883c127 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,13 +1,14 @@ [tool.ruff] +target-version = "py310" + exclude = ["extensions"] ignore = [ - "E501", - - "F401", # Module imported but unused + "E501", # Line too long + "E731", # Do not assign a `lambda` expression, use a `def` ] [tool.ruff.per-file-ignores] -"webui.py" = ["E402"] # Module level import not at top of file \ No newline at end of file +"webui.py" = ["E402"] # Module level import not at top of file diff --git a/webui.py b/webui.py index 48277075..5d5e80b5 100644 --- a/webui.py +++ b/webui.py @@ -16,12 +16,12 @@ from packaging import version import logging logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) -from modules import paths, timer, import_hook, errors +from modules import paths, timer, import_hook, errors # noqa: F401 startup_timer = timer.Timer() import torch -import pytorch_lightning # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them +import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning") warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision") @@ -31,12 +31,12 @@ startup_timer.record("import torch") import gradio startup_timer.record("import gradio") -import ldm.modules.encoders.modules +import ldm.modules.encoders.modules # noqa: F401 startup_timer.record("import ldm") from modules import extra_networks, ui_extra_networks_checkpoints from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion -from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call +from modules.call_queue import wrap_queued_call, queue_lock # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors if ".dev" in torch.__version__ or "+git" in torch.__version__: -- cgit v1.2.3 From 028d3f6425d85f122027c127fba8bcbf4f66ee75 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:05:02 +0300 Subject: ruff auto fixes --- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 4 ++-- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 12 ++++++------ extensions-builtin/Lora/lora.py | 12 ++++++------ extensions-builtin/Lora/scripts/lora_script.py | 2 +- modules/config_states.py | 2 +- modules/deepbooru.py | 2 +- modules/devices.py | 2 +- modules/hypernetworks/hypernetwork.py | 2 +- modules/hypernetworks/ui.py | 4 ++-- modules/interrogate.py | 2 +- modules/modelloader.py | 2 +- modules/models/diffusion/ddpm_edit.py | 4 ++-- modules/scripts_auto_postprocessing.py | 2 +- modules/sd_hijack.py | 2 +- modules/sd_hijack_optimizations.py | 14 +++++++------- modules/sd_samplers_compvis.py | 2 +- modules/sd_samplers_kdiffusion.py | 2 +- modules/shared.py | 6 +++--- modules/textual_inversion/textual_inversion.py | 2 +- modules/ui.py | 8 ++++---- modules/ui_extra_networks.py | 4 ++-- modules/ui_tempdir.py | 2 +- 22 files changed, 47 insertions(+), 47 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 6303fed5..f457ca93 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -288,5 +288,5 @@ class VQModelInterface(VQModel): dec = self.decoder(quant) return dec -setattr(ldm.models.autoencoder, "VQModel", VQModel) -setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface) +ldm.models.autoencoder.VQModel = VQModel +ldm.models.autoencoder.VQModelInterface = VQModelInterface diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 4d3f6c56..d8fc30e3 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -1116,7 +1116,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1215,7 +1215,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, @@ -1437,7 +1437,7 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): logs['bbox_image'] = cond_img return logs -setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1) -setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1) -setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1) -setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1) +ldm.models.diffusion.ddpm.DDPMV1 = DDPMV1 +ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV1 +ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV1 +ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1 diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 0ab43229..9795540f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -172,7 +172,7 @@ def load_lora(name, filename): else: print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}') continue - assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' + raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}") with torch.no_grad(): module.weight.copy_(weight) @@ -184,7 +184,7 @@ def load_lora(name, filename): elif lora_key == "lora_down.weight": lora_module.down = module else: - assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' + raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha") if len(keys_failed_to_match) > 0: print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") @@ -202,7 +202,7 @@ def load_loras(names, multipliers=None): loaded_loras.clear() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - if any([x is None for x in loras_on_disk]): + if any(x is None for x in loras_on_disk): list_available_loras() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] @@ -309,7 +309,7 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu print(f'failed to calculate lora weights for layer {lora_layer_name}') - setattr(self, "lora_current_names", wanted_names) + self.lora_current_names = wanted_names def lora_forward(module, input, original_forward): @@ -343,8 +343,8 @@ def lora_forward(module, input, original_forward): def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): - setattr(self, "lora_current_names", ()) - setattr(self, "lora_weights_backup", None) + self.lora_current_names = () + self.lora_weights_backup = None def lora_Linear_forward(self, input): diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 7db971fd..b70e2de7 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -53,7 +53,7 @@ script_callbacks.on_infotext_pasted(lora.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { - "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), + "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(lora.available_loras)}, refresh=lora.list_available_loras), })) diff --git a/modules/config_states.py b/modules/config_states.py index 8f1ff428..75da862a 100644 --- a/modules/config_states.py +++ b/modules/config_states.py @@ -35,7 +35,7 @@ def list_config_states(): j["filepath"] = path config_states.append(j) - config_states = list(sorted(config_states, key=lambda cs: cs["created_at"], reverse=True)) + config_states = sorted(config_states, key=lambda cs: cs["created_at"], reverse=True) for cs in config_states: timestamp = time.asctime(time.gmtime(cs["created_at"])) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 1c4554a2..547e1b4c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -78,7 +78,7 @@ class DeepDanbooru: res = [] - filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")]) + filtertags = {x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")} for tag in [x for x in tags if x not in filtertags]: probability = probability_dict[tag] diff --git a/modules/devices.py b/modules/devices.py index c705a3cb..d8a34a0f 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -65,7 +65,7 @@ def enable_tf32(): # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 - if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]): + if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())): torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 9fe749b7..6ef0bfdf 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -403,7 +403,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): k = self.to_k(context_k) v = self.to_v(context_v) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index be168736..e3f9eb13 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -5,13 +5,13 @@ import modules.hypernetworks.hypernetwork from modules import devices, sd_hijack, shared not_available = ["hardswish", "multiheadattention"] -keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) +keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available] def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure) - return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", "" + return gr.Dropdown.update(choices=sorted(shared.hypernetworks.keys())), f"Created: {filename}", "" def train_hypernetwork(*args): diff --git a/modules/interrogate.py b/modules/interrogate.py index 22df9216..a1c8e537 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -159,7 +159,7 @@ class InterrogateModels: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] top_count = min(top_count, len(text_array)) - text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate) + text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate) text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) text_features /= text_features.norm(dim=-1, keepdim=True) diff --git a/modules/modelloader.py b/modules/modelloader.py index 92ada694..25612bf8 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -39,7 +39,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None if os.path.islink(full_path) and not os.path.exists(full_path): print(f"Skipping broken symlink: {full_path}") continue - if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): + if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): continue if full_path not in output: output.append(full_path) diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 611c2b69..09432117 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -1130,7 +1130,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1229,7 +1229,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, diff --git a/modules/scripts_auto_postprocessing.py b/modules/scripts_auto_postprocessing.py index 30d6d658..d63078de 100644 --- a/modules/scripts_auto_postprocessing.py +++ b/modules/scripts_auto_postprocessing.py @@ -17,7 +17,7 @@ class ScriptPostprocessingForMainUI(scripts.Script): return self.postprocessing_controls.values() def postprocess_image(self, p, script_pp, *args): - args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)} + args_dict = dict(zip(self.postprocessing_controls, args)) pp = scripts_postprocessing.PostprocessedImage(script_pp.image) pp.info = {} diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 81573b78..e374aeb8 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -37,7 +37,7 @@ def apply_optimizations(): optimization_method = None - can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp + can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index b623d53d..a174bbe1 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -49,7 +49,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): v_in = self.to_v(context_v) del context, context_k, context_v, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in dtype = q.dtype @@ -98,7 +98,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): del context, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) @@ -229,7 +229,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k = k * self.scale - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) r = einsum_op(q, k, v) r = r.to(dtype) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) @@ -334,7 +334,7 @@ def xformers_attention_forward(self, x, context=None, mask=None): k_in = self.to_k(context_k) v_in = self.to_v(context_v) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in dtype = q.dtype @@ -460,7 +460,7 @@ def xformers_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) dtype = q.dtype if shared.opts.upcast_attn: q, k = q.float(), k.float() @@ -482,7 +482,7 @@ def sdp_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) dtype = q.dtype if shared.opts.upcast_attn: q, k = q.float(), k.float() @@ -506,7 +506,7 @@ def sub_quad_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) q = q.contiguous() k = k.contiguous() v = v.contiguous() diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index bfcc5574..7427648f 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -83,7 +83,7 @@ class VanillaStableDiffusionSampler: conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' + assert all(len(conds) == 1 for conds in conds_list), 'composition via AND is not supported for DDIM/PLMS samplers' cond = tensor # for DDIM, shapes must match, we can't just process cond and uncond independently; diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 3b8e9622..2f733cf5 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -86,7 +86,7 @@ class CFGDenoiser(torch.nn.Module): conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" + assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] diff --git a/modules/shared.py b/modules/shared.py index 7d70f041..e2691585 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -381,7 +381,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), { "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"), "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"), "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"), - "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), + "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(hypernetworks.keys())}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { @@ -403,7 +403,7 @@ options_templates.update(options_section(('ui', "User interface"), { "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}), - "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}), + "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}), "ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"), "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"), "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), @@ -583,7 +583,7 @@ class Options: if item.section not in section_ids: section_ids[item.section] = len(section_ids) - self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} + self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section])) def cast_value(self, key, value): """casts an arbitrary to the same type as this setting's value with key diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 9ed9ba45..c37bb2ad 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -167,7 +167,7 @@ class EmbeddingDatabase: if 'string_to_param' in data: param_dict = data['string_to_param'] if hasattr(param_dict, '_parameters'): - param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 + param_dict = param_dict._parameters # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, 'embedding file has multiple terms in it' emb = next(iter(param_dict.items()))[1] # diffuser concepts diff --git a/modules/ui.py b/modules/ui.py index 782b569d..84d661b2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1222,7 +1222,7 @@ def create_ui(): ) def get_textual_inversion_template_names(): - return sorted([x for x in textual_inversion.textual_inversion_templates]) + return sorted(textual_inversion.textual_inversion_templates) with gr.Tab(label="Train", id="train"): gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") @@ -1230,8 +1230,8 @@ def create_ui(): train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) - create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=list(shared.hypernetworks.keys())) + create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks.keys())}, "refresh_train_hypernetwork_name") with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") @@ -1808,7 +1808,7 @@ def create_ui(): if type(x) == gr.Dropdown: def check_dropdown(val): if getattr(x, 'multiselect', False): - return all([value in x.choices for value in val]) + return all(value in x.choices for value in val) else: return val in x.choices diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 800e467a..ab585917 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -26,7 +26,7 @@ def register_page(page): def fetch_file(filename: str = ""): from starlette.responses import FileResponse - if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]): + if not any(Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs): raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") ext = os.path.splitext(filename)[1].lower() @@ -326,7 +326,7 @@ def setup_ui(ui, gallery): is_allowed = False for extra_page in ui.stored_extra_pages: - if any([path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()]): + if any(path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()): is_allowed = True break diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index 46fa9cb0..cac73c51 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -23,7 +23,7 @@ def register_tmp_file(gradio, filename): def check_tmp_file(gradio, filename): if hasattr(gradio, 'temp_file_sets'): - return any([filename in fileset for fileset in gradio.temp_file_sets]) + return any(filename in fileset for fileset in gradio.temp_file_sets) if hasattr(gradio, 'temp_dirs'): return any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in gradio.temp_dirs) -- cgit v1.2.3 From 550256db1ce18778a9d56ff343d844c61b9f9b83 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:19:16 +0300 Subject: ruff manual fixes --- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +++++----- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 14 +++++++------- extensions-builtin/SwinIR/swinir_model_arch.py | 6 +++++- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 11 +++++++++-- modules/api/api.py | 18 ++++++++++++------ modules/codeformer/codeformer_arch.py | 7 +++++-- modules/codeformer/vqgan_arch.py | 4 ++-- modules/generation_parameters_copypaste.py | 4 ++-- modules/models/diffusion/ddpm_edit.py | 14 ++++++++------ modules/models/diffusion/uni_pc/uni_pc.py | 7 +++++-- modules/safe.py | 2 +- modules/sd_samplers_compvis.py | 2 +- modules/textual_inversion/image_embedding.py | 2 +- modules/textual_inversion/learn_schedule.py | 4 ++-- pyproject.toml | 5 ++++- 15 files changed, 69 insertions(+), 41 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index f457ca93..8cc82d54 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -24,7 +24,7 @@ class VQModel(pl.LightningModule): n_embed, embed_dim, ckpt_path=None, - ignore_keys=[], + ignore_keys=None, image_key="image", colorize_nlabels=None, monitor=None, @@ -62,7 +62,7 @@ class VQModel(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or []) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @@ -81,11 +81,11 @@ class VQModel(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list()): + def init_from_ckpt(self, path, ignore_keys=None): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -270,7 +270,7 @@ class VQModel(pl.LightningModule): class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) + super().__init__(*args, embed_dim=embed_dim, **kwargs) self.embed_dim = embed_dim def encode(self, x): diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index d8fc30e3..f16d6504 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule): if monitor is not None: self.monitor = monitor if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) @@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -444,7 +444,7 @@ class LatentDiffusionV1(DDPMV1): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1418,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 863f42db..75f7bedc 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -644,13 +644,17 @@ class SwinIR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(SwinIR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 0e28ae6e..d4c0b0da 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -74,9 +74,12 @@ class WindowAttention(nn.Module): """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., - pretrained_window_size=[0, 0]): + pretrained_window_size=None): super().__init__() + + pretrained_window_size = pretrained_window_size or [0, 0] + self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size @@ -698,13 +701,17 @@ class Swin2SR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(Swin2SR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/modules/api/api.py b/modules/api/api.py index f52d371b..9efb558e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -34,14 +34,16 @@ import piexif.helper def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except Exception: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") + except Exception as e: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e + def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except Exception: - raise HTTPException(status_code=422, detail=f"Script '{name}' not found") + except Exception as e: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e + def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -50,20 +52,23 @@ def validate_sampler_name(name): return name + def setUpscalers(req: dict): reqDict = vars(req) reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) return reqDict + def decode_base64_to_image(encoding): if encoding.startswith("data:image/"): encoding = encoding.split(";")[1].split(",")[1] try: image = Image.open(BytesIO(base64.b64decode(encoding))) return image - except Exception: - raise HTTPException(status_code=500, detail="Invalid encoded image") + except Exception as e: + raise HTTPException(status_code=500, detail="Invalid encoded image") from e + def encode_pil_to_base64(image): with io.BytesIO() as output_bytes: @@ -94,6 +99,7 @@ def encode_pil_to_base64(image): return base64.b64encode(bytes_data) + def api_middleware(app: FastAPI): rich_available = True try: diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 00c407de..ff1c0b4b 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -161,10 +161,13 @@ class Fuse_sft_block(nn.Module): class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize','generator']): + connect_list=None, + fix_modules=None): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) + connect_list = connect_list or ['32', '64', '128', '256'] + fix_modules = fix_modules or ['quantize', 'generator'] + if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index 820e6b12..b24a0394 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -326,7 +326,7 @@ class Generator(nn.Module): @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() @@ -337,7 +337,7 @@ class VQAutoEncoder(nn.Module): self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size - self.attn_resolutions = attn_resolutions + self.attn_resolutions = attn_resolutions or [16] self.quantizer_type = quantizer self.encoder = Encoder( self.in_channels, diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index f1c59c46..7fbbe707 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -19,14 +19,14 @@ registered_param_bindings = [] class ParamBinding: - def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]): + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None): self.paste_button = paste_button self.tabname = tabname self.source_text_component = source_text_component self.source_image_component = source_image_component self.source_tabname = source_tabname self.override_settings_component = override_settings_component - self.paste_field_names = paste_field_names + self.paste_field_names = paste_field_names or [] def reset(): diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 09432117..af4dea15 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -52,7 +52,7 @@ class DDPM(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -107,7 +107,7 @@ class DDPM(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) # If initialing from EMA-only checkpoint, create EMA model after loading. if self.use_ema and not load_ema: @@ -194,7 +194,9 @@ class DDPM(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): + ignore_keys = ignore_keys or [] + sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] @@ -473,7 +475,7 @@ class LatentDiffusion(DDPM): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1433,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index a4c4ef4e..6f8ad631 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -178,13 +178,13 @@ def model_wrapper( model, noise_schedule, model_type="noise", - model_kwargs={}, + model_kwargs=None, guidance_type="uncond", #condition=None, #unconditional_condition=None, guidance_scale=1., classifier_fn=None, - classifier_kwargs={}, + classifier_kwargs=None, ): """Create a wrapper function for the noise prediction model. @@ -275,6 +275,9 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ + model_kwargs = model_kwargs or [] + classifier_kwargs = classifier_kwargs or [] + def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. diff --git a/modules/safe.py b/modules/safe.py index e6c2f2c0..2d5b972f 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -104,7 +104,7 @@ def check_pt(filename, extra_handler): def load(filename, *args, **kwargs): - return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs) + return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs) def load_with_extra(filename, extra_handler=None, *args, **kwargs): diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index 7427648f..b1ee3be7 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler: def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning) - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) + res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs) x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res) diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index ee0e850a..d85a4888 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -17,7 +17,7 @@ class EmbeddingEncoder(json.JSONEncoder): class EmbeddingDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): - json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) + json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs) def object_hook(self, d): if 'TORCHTENSOR' in d: diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index f63fc72f..fda58898 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -32,8 +32,8 @@ class LearnScheduleIterator: self.maxit += 1 return assert self.rates - except (ValueError, AssertionError): - raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') + except (ValueError, AssertionError) as e: + raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e def __iter__(self): diff --git a/pyproject.toml b/pyproject.toml index 2f65fd6c..346a0cde 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -24,6 +24,9 @@ ignore = [ ] - [tool.ruff.per-file-ignores] "webui.py" = ["E402"] # Module level import not at top of file + +[tool.ruff.flake8-bugbear] +# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`. +extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file -- cgit v1.2.3 From a5121e7a0623db328a9462d340d389ed6737374a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:37:18 +0300 Subject: fixes for B007 --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- extensions-builtin/Lora/lora.py | 2 +- extensions-builtin/ScuNET/scripts/scunet_model.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 2 +- modules/codeformer_model.py | 2 +- modules/esrgan_model.py | 8 ++------ modules/extra_networks.py | 2 +- modules/generation_parameters_copypaste.py | 2 +- modules/hypernetworks/hypernetwork.py | 12 ++++++------ modules/images.py | 2 +- modules/interrogate.py | 4 ++-- modules/prompt_parser.py | 14 +++++++------- modules/safe.py | 4 ++-- modules/scripts.py | 10 +++++----- modules/scripts_postprocessing.py | 8 ++++---- modules/sd_hijack_clip.py | 2 +- modules/shared.py | 6 +++--- modules/textual_inversion/learn_schedule.py | 2 +- modules/textual_inversion/textual_inversion.py | 10 +++++----- modules/ui.py | 6 +++--- modules/ui_extra_networks.py | 2 +- modules/ui_tempdir.py | 2 +- modules/upscaler.py | 2 +- pyproject.toml | 1 - scripts/prompts_from_file.py | 2 +- scripts/sd_upscale.py | 4 ++-- scripts/xyz_grid.py | 2 +- 28 files changed, 57 insertions(+), 62 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index a5fb8907..27e38549 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -88,7 +88,7 @@ class LDSR: x_t = None logs = None - for n in range(n_runs): + for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 9795540f..7b56136f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -418,7 +418,7 @@ def infotext_pasted(infotext, params): added = [] - for k, v in params.items(): + for k in params: if not k.startswith("AddNet Model "): continue diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index aa2fdb3a..1f5ea0d3 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -132,7 +132,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(filename), strict=True) model.eval() - for k, v in model.named_parameters(): + for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 75f7bedc..de195d9b 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -848,7 +848,7 @@ class SwinIR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index d4c0b0da..15777af9 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -1001,7 +1001,7 @@ class Swin2SR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8e56cb89..ececdbae 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -94,7 +94,7 @@ def setup_model(dirname): self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(self.face_helper.cropped_faces): + for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 85aa6934..a009eb42 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -16,9 +16,7 @@ def mod2normal(state_dict): # this code is copied from https://github.com/victorca25/iNNfer if 'conv_first.weight' in state_dict: crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] @@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23): if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: re8x = 0 crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 1978673d..f9db41bc 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -91,7 +91,7 @@ def deactivate(p, extra_network_data): """call deactivate for extra networks in extra_network_data in specified order, then call deactivate for all remaining registered networks""" - for extra_network_name, extra_network_args in extra_network_data.items(): + for extra_network_name in extra_network_data: extra_network = extra_network_registry.get(extra_network_name, None) if extra_network is None: continue diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 7fbbe707..b0e945a1 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model lines.append(lastline) lastline = '' - for i, line in enumerate(lines): + for line in lines: line = line.strip() if line.startswith("Negative prompt:"): done_with_prompt = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6ef0bfdf..38ef074f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -177,34 +177,34 @@ class Hypernetwork: def weights(self): res = [] - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: res += layer.parameters() return res def train(self, mode=True): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.train(mode=mode) for param in layer.parameters(): param.requires_grad = mode def to(self, device): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.to(device) return self def set_multiplier(self, multiplier): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.multiplier = multiplier return self def eval(self): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.eval() for param in layer.parameters(): @@ -619,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/images.py b/modules/images.py index 7392cb8b..c4e98c75 100644 --- a/modules/images.py +++ b/modules/images.py @@ -149,7 +149,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): return ImageFont.truetype(Roboto, fontsize) def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): - for i, line in enumerate(lines): + for line in lines: fnt = initial_fnt fontsize = initial_fontsize while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: diff --git a/modules/interrogate.py b/modules/interrogate.py index a1c8e537..111b1322 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -207,8 +207,8 @@ class InterrogateModels: image_features /= image_features.norm(dim=-1, keepdim=True) - for name, topn, items in self.categories(): - matches = self.rank(image_features, items, top_count=topn) + for cat in self.categories(): + matches = self.rank(image_features, cat.items, top_count=cat.topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 3a720721..b4aff704 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -143,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps): conds = model.get_learned_conditioning(texts) cond_schedule = [] - for i, (end_at_step, text) in enumerate(prompt_schedule): + for i, (end_at_step, _) in enumerate(prompt_schedule): cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) cache[prompt] = cond_schedule @@ -219,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for i, cond_schedule in enumerate(c): target_index = 0 - for current, (end_at, cond) in enumerate(cond_schedule): - if current_step <= end_at: + for current, entry in enumerate(cond_schedule): + if current_step <= entry.end_at_step: target_index = current break res[i] = cond_schedule[target_index].cond @@ -234,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): tensors = [] conds_list = [] - for batch_no, composable_prompts in enumerate(c.batch): + for composable_prompts in c.batch: conds_for_batch = [] - for cond_index, composable_prompt in enumerate(composable_prompts): + for composable_prompt in composable_prompts: target_index = 0 - for current, (end_at, cond) in enumerate(composable_prompt.schedules): - if current_step <= end_at: + for current, entry in enumerate(composable_prompt.schedules): + if current_step <= entry.end_at_step: target_index = current break diff --git a/modules/safe.py b/modules/safe.py index 2d5b972f..1e791c5b 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -95,11 +95,11 @@ def check_pt(filename, extra_handler): except zipfile.BadZipfile: - # if it's not a zip file, it's an olf pytorch format, with five objects written to pickle + # if it's not a zip file, it's an old pytorch format, with five objects written to pickle with open(filename, "rb") as file: unpickler = RestrictedUnpickler(file) unpickler.extra_handler = extra_handler - for i in range(5): + for _ in range(5): unpickler.load() diff --git a/modules/scripts.py b/modules/scripts.py index d945b89f..0c12ebd5 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -231,7 +231,7 @@ def load_scripts(): syspath = sys.path def register_scripts_from_module(module): - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) != type: continue @@ -295,9 +295,9 @@ class ScriptRunner: auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() - for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: - script = script_class() - script.filename = path + for script_data in auto_processing_scripts + scripts_data: + script = script_data.script_class() + script.filename = script_data.path script.is_txt2img = not is_img2img script.is_img2img = is_img2img @@ -492,7 +492,7 @@ class ScriptRunner: module = script_loading.load_module(script.filename) cache[filename] = module - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) == type and issubclass(script_class, Script): self.scripts[si] = script_class() self.scripts[si].filename = filename diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index b11568c0..6751406c 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -66,9 +66,9 @@ class ScriptPostprocessingRunner: def initialize_scripts(self, scripts_data): self.scripts = [] - for script_class, path, basedir, script_module in scripts_data: - script: ScriptPostprocessing = script_class() - script.filename = path + for script_data in scripts_data: + script: ScriptPostprocessing = script_data.script_class() + script.filename = script_data.path if script.name == "Simple Upscale": continue @@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to] process_args = {} - for (name, component), value in zip(script.controls.items(), script_args): + for (name, component), value in zip(script.controls.items(), script_args): # noqa B007 process_args[name] = value script.process(pp, **process_args) diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9fa5c5c5..c0c350f6 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk] for fixes in self.hijack.fixes: - for position, embedding in fixes: + for position, embedding in fixes: # noqa: B007 used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) diff --git a/modules/shared.py b/modules/shared.py index e2691585..913c9e63 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -211,7 +211,7 @@ class OptionInfo: def options_section(section_identifier, options_dict): - for k, v in options_dict.items(): + for v in options_dict.values(): v.section = section_identifier return options_dict @@ -579,7 +579,7 @@ class Options: section_ids = {} settings_items = self.data_labels.items() - for k, item in settings_items: + for _, item in settings_items: if item.section not in section_ids: section_ids[item.section] = len(section_ids) @@ -740,7 +740,7 @@ def walk_files(path, allowed_extensions=None): if allowed_extensions is not None: allowed_extensions = set(allowed_extensions) - for root, dirs, files in os.walk(path): + for root, _, files in os.walk(path): for filename in files: if allowed_extensions is not None: _, ext = os.path.splitext(filename) diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index fda58898..c56bea45 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -12,7 +12,7 @@ class LearnScheduleIterator: self.it = 0 self.maxit = 0 try: - for i, pair in enumerate(pairs): + for pair in pairs: if not pair.strip(): continue tmp = pair.split(':') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c37bb2ad..47035332 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -29,7 +29,7 @@ textual_inversion_templates = {} def list_textual_inversion_templates(): textual_inversion_templates.clear() - for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): for fn in fns: path = os.path.join(root, fn) @@ -198,7 +198,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path): return - for root, dirs, fns in os.walk(embdir.path, followlinks=True): + for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) @@ -215,7 +215,7 @@ class EmbeddingDatabase: def load_textual_inversion_embeddings(self, force_reload=False): if not force_reload: need_reload = False - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): if embdir.has_changed(): need_reload = True break @@ -228,7 +228,7 @@ class EmbeddingDatabase: self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() @@ -469,7 +469,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/ui.py b/modules/ui.py index 84d661b2..83bfb7d8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -416,7 +416,7 @@ def create_sampler_and_steps_selection(choices, tabname): def ordered_ui_categories(): user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))} - for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): + for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): yield category @@ -1646,7 +1646,7 @@ def create_ui(): with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo: with gr.Row(elem_id="quicksettings", variant="compact"): - for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): + for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component @@ -1673,7 +1673,7 @@ def create_ui(): outputs=[text_settings, result], ) - for i, k, item in quicksettings_list: + for _i, k, _item in quicksettings_list: component = component_dict[k] info = opts.data_labels[k] diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index ab585917..2fd82e8e 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -90,7 +90,7 @@ class ExtraNetworksPage: subdirs = {} for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: - for root, dirs, files in os.walk(parentdir): + for root, dirs, _ in os.walk(parentdir): for dirname in dirs: x = os.path.join(root, dirname) diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index cac73c51..f05049e1 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -72,7 +72,7 @@ def cleanup_tmpdr(): if temp_dir == "" or not os.path.isdir(temp_dir): return - for root, dirs, files in os.walk(temp_dir, topdown=False): + for root, _, files in os.walk(temp_dir, topdown=False): for name in files: _, extension = os.path.splitext(name) if extension != ".png": diff --git a/modules/upscaler.py b/modules/upscaler.py index e145be30..8acb6e96 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -55,7 +55,7 @@ class Upscaler: dest_w = int(img.width * scale) dest_h = int(img.height * scale) - for i in range(3): + for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) diff --git a/pyproject.toml b/pyproject.toml index 346a0cde..c88907be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,7 +20,6 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - "B007", # Loop control variable not used within loop body ] diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 149bc85f..27af5ff6 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -156,7 +156,7 @@ class Script(scripts.Script): images = [] all_prompts = [] infotexts = [] - for n, args in enumerate(jobs): + for args in jobs: state.job = f"{state.job_no + 1} out of {state.job_count}" copy_p = copy.copy(p) diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index d873a09c..0b1d3096 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -56,7 +56,7 @@ class Script(scripts.Script): work = [] - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) @@ -85,7 +85,7 @@ class Script(scripts.Script): work_results += processed.images image_index = 0 - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) image_index += 1 diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 332e0ecd..38a20381 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -704,7 +704,7 @@ class Script(scripts.Script): if not include_sub_grids: # Done with sub-grids, drop all related information: - for sg in range(z_count): + for _ in range(z_count): del processed.images[1] del processed.all_prompts[1] del processed.all_seeds[1] -- cgit v1.2.3 From d25219b7e889cf34bccae9cb88497708796efda2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:55:09 +0300 Subject: manual fixes for some C408 --- extensions-builtin/LDSR/ldsr_model_arch.py | 4 ++-- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 2 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 8 ++++---- modules/api/api.py | 2 +- modules/models/diffusion/ddpm_edit.py | 8 ++++---- modules/models/diffusion/uni_pc/uni_pc.py | 4 ++-- modules/sd_hijack_inpainting.py | 2 +- 7 files changed, 15 insertions(+), 15 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 27e38549..2173de79 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -157,7 +157,7 @@ class LDSR: def get_cond(selected_path): - example = dict() + example = {} up_f = 4 c = selected_path.convert('RGB') c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) @@ -195,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s @torch.no_grad() def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): - log = dict() + log = {} z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 8cc82d54..81c5101b 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -237,7 +237,7 @@ class VQModel(pl.LightningModule): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index f16d6504..57c02d12 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -1247,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1): use_ddim = ddim_steps is not None - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1274,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: diff --git a/modules/api/api.py b/modules/api/api.py index 9efb558e..594fa655 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -165,7 +165,7 @@ def api_middleware(app: FastAPI): class Api: def __init__(self, app: FastAPI, queue_lock: Lock): if shared.cmd_opts.api_auth: - self.credentials = dict() + self.credentials = {} for auth in shared.cmd_opts.api_auth.split(","): user, password = auth.split(":") self.credentials[user] = password diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index af4dea15..3fb76b65 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -405,7 +405,7 @@ class DDPM(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -413,7 +413,7 @@ class DDPM(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -1263,7 +1263,7 @@ class LatentDiffusion(DDPM): use_ddim = False - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1291,7 +1291,7 @@ class LatentDiffusion(DDPM): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 6f8ad631..f6c49f87 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -344,7 +344,7 @@ def model_wrapper( t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) - c_in = dict() + c_in = {} for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ @@ -355,7 +355,7 @@ def model_wrapper( unconditional_condition[k], condition[k]]) elif isinstance(condition, list): - c_in = list() + c_in = [] assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 058575b7..c1977b19 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -23,7 +23,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) - c_in = dict() + c_in = {} for k in c: if isinstance(c[k], list): c_in[k] = [ -- cgit v1.2.3 From 3ec7b705c78b7aca9569c92a419837352c7a4ec6 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 21:21:32 +0300 Subject: suggestions and fixes from the PR --- extensions-builtin/Lora/scripts/lora_script.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 6 +----- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 11 ++--------- modules/codeformer/codeformer_arch.py | 7 ++----- modules/hypernetworks/ui.py | 4 ++-- modules/models/diffusion/uni_pc/uni_pc.py | 4 ++-- modules/scripts_postprocessing.py | 2 +- modules/sd_hijack_clip.py | 2 +- modules/shared.py | 2 +- modules/textual_inversion/textual_inversion.py | 3 +-- modules/ui.py | 4 ++-- 11 files changed, 16 insertions(+), 31 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index b70e2de7..13d297d7 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -53,7 +53,7 @@ script_callbacks.on_infotext_pasted(lora.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { - "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(lora.available_loras)}, refresh=lora.list_available_loras), + "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras), })) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index de195d9b..73e37cfa 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -644,17 +644,13 @@ class SwinIR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=None, num_heads=None, + embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6), window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(SwinIR, self).__init__() - - depths = depths or [6, 6, 6, 6] - num_heads = num_heads or [6, 6, 6, 6] - num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 15777af9..3ca9be78 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -74,12 +74,9 @@ class WindowAttention(nn.Module): """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., - pretrained_window_size=None): + pretrained_window_size=(0, 0)): super().__init__() - - pretrained_window_size = pretrained_window_size or [0, 0] - self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size @@ -701,17 +698,13 @@ class Swin2SR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=None, num_heads=None, + embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(Swin2SR, self).__init__() - - depths = depths or [6, 6, 6, 6] - num_heads = num_heads or [6, 6, 6, 6] - num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index ff1c0b4b..45c70f84 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -161,13 +161,10 @@ class Fuse_sft_block(nn.Module): class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, - connect_list=None, - fix_modules=None): + connect_list=('32', '64', '128', '256'), + fix_modules=('quantize', 'generator')): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) - connect_list = connect_list or ['32', '64', '128', '256'] - fix_modules = fix_modules or ['quantize', 'generator'] - if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index e3f9eb13..8b6255e2 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -5,13 +5,13 @@ import modules.hypernetworks.hypernetwork from modules import devices, sd_hijack, shared not_available = ["hardswish", "multiheadattention"] -keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available] +keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict if x not in not_available] def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure) - return gr.Dropdown.update(choices=sorted(shared.hypernetworks.keys())), f"Created: {filename}", "" + return gr.Dropdown.update(choices=sorted(shared.hypernetworks)), f"Created: {filename}", "" def train_hypernetwork(*args): diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index f6c49f87..a227b947 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -275,8 +275,8 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ - model_kwargs = model_kwargs or [] - classifier_kwargs = classifier_kwargs or [] + model_kwargs = model_kwargs or {} + classifier_kwargs = classifier_kwargs or {} def get_model_input_time(t_continuous): """ diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index 6751406c..bac1335d 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to] process_args = {} - for (name, component), value in zip(script.controls.items(), script_args): # noqa B007 + for (name, _component), value in zip(script.controls.items(), script_args): process_args[name] = value script.process(pp, **process_args) diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index c0c350f6..cc6e8c21 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk] for fixes in self.hijack.fixes: - for position, embedding in fixes: # noqa: B007 + for _position, embedding in fixes: used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) diff --git a/modules/shared.py b/modules/shared.py index 913c9e63..ac67adc0 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -381,7 +381,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), { "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"), "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"), "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"), - "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(hypernetworks.keys())}, refresh=reload_hypernetworks), + "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", hypernetworks]}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 47035332..9e1b2b9a 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -166,8 +166,7 @@ class EmbeddingDatabase: # textual inversion embeddings if 'string_to_param' in data: param_dict = data['string_to_param'] - if hasattr(param_dict, '_parameters'): - param_dict = param_dict._parameters # fix for torch 1.12.1 loading saved file from torch 1.11 + param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, 'embedding file has multiple terms in it' emb = next(iter(param_dict.items()))[1] # diffuser concepts diff --git a/modules/ui.py b/modules/ui.py index 83bfb7d8..7ee99473 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1230,8 +1230,8 @@ def create_ui(): train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=list(shared.hypernetworks.keys())) - create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks.keys())}, "refresh_train_hypernetwork_name") + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=sorted(shared.hypernetworks)) + create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks)}, "refresh_train_hypernetwork_name") with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") -- cgit v1.2.3 From 49a55b410b66b7dd9be9335d8a2e3a71e4f8b15c Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Thu, 11 May 2023 18:28:15 +0300 Subject: Autofix Ruff W (not W605) (mostly whitespace) --- extensions-builtin/LDSR/ldsr_model_arch.py | 4 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 6 +-- extensions-builtin/ScuNET/scunet_model_arch.py | 2 +- extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 52 +++++++++++------------ launch.py | 2 +- modules/api/api.py | 4 +- modules/api/models.py | 2 +- modules/cmd_args.py | 2 +- modules/codeformer/codeformer_arch.py | 14 +++--- modules/codeformer/vqgan_arch.py | 38 ++++++++--------- modules/esrgan_model_arch.py | 4 +- modules/extras.py | 2 +- modules/hypernetworks/hypernetwork.py | 12 +++--- modules/images.py | 2 +- modules/mac_specific.py | 4 +- modules/masking.py | 2 +- modules/ngrok.py | 4 +- modules/processing.py | 2 +- modules/script_callbacks.py | 14 +++--- modules/sd_hijack.py | 12 +++--- modules/sd_hijack_optimizations.py | 32 +++++++------- modules/sd_models.py | 4 +- modules/sd_samplers_kdiffusion.py | 18 ++++---- modules/sub_quadratic_attention.py | 2 +- modules/textual_inversion/dataset.py | 4 +- modules/textual_inversion/preprocess.py | 2 +- modules/textual_inversion/textual_inversion.py | 16 +++---- modules/ui.py | 18 ++++---- modules/ui_extensions.py | 6 +-- modules/xlmr.py | 6 +-- pyproject.toml | 5 ++- scripts/img2imgalt.py | 14 +++--- scripts/loopback.py | 8 ++-- scripts/poor_mans_outpainting.py | 2 +- scripts/prompt_matrix.py | 2 +- scripts/prompts_from_file.py | 4 +- scripts/sd_upscale.py | 2 +- 39 files changed, 167 insertions(+), 166 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 2173de79..7f450086 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -130,11 +130,11 @@ class LDSR: im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) else: print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") - + # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) - + logs = self.run(model["model"], im_padded, diffusion_steps, eta) sample = logs["sample"] diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 57c02d12..631a08ef 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -460,7 +460,7 @@ class LatentDiffusionV1(DDPMV1): self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False - self.bbox_tokenizer = None + self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: @@ -792,7 +792,7 @@ class LatentDiffusionV1(DDPMV1): z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): + if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] @@ -890,7 +890,7 @@ class LatentDiffusionV1(DDPMV1): if hasattr(self, "split_input_params"): assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids + assert not return_ids ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 8028918a..b51a8806 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -265,4 +265,4 @@ class SCUNet(nn.Module): nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) \ No newline at end of file + nn.init.constant_(m.weight, 1.0) diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index 55dd94ab..0ba50487 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -150,7 +150,7 @@ def inference(img, model, tile, tile_overlap, window_size, scale): for w_idx in w_idx_list: if state.interrupted or state.skipped: break - + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 73e37cfa..93b93274 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -805,7 +805,7 @@ class SwinIR(nn.Module): def forward(self, x): H, W = x.shape[2:] x = self.check_image_size(x) - + self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 3ca9be78..dad22cca 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -241,7 +241,7 @@ class SwinTransformerBlock(nn.Module): attn_mask = None self.register_buffer("attn_mask", attn_mask) - + def calculate_mask(self, x_size): # calculate attention mask for SW-MSA H, W = x_size @@ -263,7 +263,7 @@ class SwinTransformerBlock(nn.Module): attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) - return attn_mask + return attn_mask def forward(self, x, x_size): H, W = x_size @@ -288,7 +288,7 @@ class SwinTransformerBlock(nn.Module): attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C else: attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) - + # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C @@ -369,7 +369,7 @@ class PatchMerging(nn.Module): H, W = self.input_resolution flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim flops += H * W * self.dim // 2 - return flops + return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. @@ -447,7 +447,7 @@ class BasicLayer(nn.Module): nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) - + class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: @@ -492,7 +492,7 @@ class PatchEmbed(nn.Module): flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim - return flops + return flops class RSTB(nn.Module): """Residual Swin Transformer Block (RSTB). @@ -531,7 +531,7 @@ class RSTB(nn.Module): num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path, norm_layer=norm_layer, @@ -622,7 +622,7 @@ class Upsample(nn.Sequential): else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) - + class Upsample_hf(nn.Sequential): """Upsample module. @@ -642,7 +642,7 @@ class Upsample_hf(nn.Sequential): m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') - super(Upsample_hf, self).__init__(*m) + super(Upsample_hf, self).__init__(*m) class UpsampleOneStep(nn.Sequential): @@ -667,8 +667,8 @@ class UpsampleOneStep(nn.Sequential): H, W = self.input_resolution flops = H * W * self.num_feat * 3 * 9 return flops - - + + class Swin2SR(nn.Module): r""" Swin2SR @@ -699,7 +699,7 @@ class Swin2SR(nn.Module): def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6), - window_size=7, mlp_ratio=4., qkv_bias=True, + window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', @@ -764,7 +764,7 @@ class Swin2SR(nn.Module): num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results norm_layer=norm_layer, @@ -776,7 +776,7 @@ class Swin2SR(nn.Module): ) self.layers.append(layer) - + if self.upsampler == 'pixelshuffle_hf': self.layers_hf = nn.ModuleList() for i_layer in range(self.num_layers): @@ -787,7 +787,7 @@ class Swin2SR(nn.Module): num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results norm_layer=norm_layer, @@ -799,7 +799,7 @@ class Swin2SR(nn.Module): ) self.layers_hf.append(layer) - + self.norm = norm_layer(self.num_features) # build the last conv layer in deep feature extraction @@ -829,10 +829,10 @@ class Swin2SR(nn.Module): self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.conv_after_aux = nn.Sequential( nn.Conv2d(3, num_feat, 3, 1, 1), - nn.LeakyReLU(inplace=True)) + nn.LeakyReLU(inplace=True)) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - + elif self.upsampler == 'pixelshuffle_hf': self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) @@ -846,7 +846,7 @@ class Swin2SR(nn.Module): nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - + elif self.upsampler == 'pixelshuffledirect': # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, @@ -905,7 +905,7 @@ class Swin2SR(nn.Module): x = self.patch_unembed(x, x_size) return x - + def forward_features_hf(self, x): x_size = (x.shape[2], x.shape[3]) x = self.patch_embed(x) @@ -919,7 +919,7 @@ class Swin2SR(nn.Module): x = self.norm(x) # B L C x = self.patch_unembed(x, x_size) - return x + return x def forward(self, x): H, W = x.shape[2:] @@ -951,7 +951,7 @@ class Swin2SR(nn.Module): x = self.conv_after_body(self.forward_features(x)) + x x_before = self.conv_before_upsample(x) x_out = self.conv_last(self.upsample(x_before)) - + x_hf = self.conv_first_hf(x_before) x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf x_hf = self.conv_before_upsample_hf(x_hf) @@ -977,15 +977,15 @@ class Swin2SR(nn.Module): x_first = self.conv_first(x) res = self.conv_after_body(self.forward_features(x_first)) + x_first x = x + self.conv_last(res) - + x = x / self.img_range + self.mean if self.upsampler == "pixelshuffle_aux": return x[:, :, :H*self.upscale, :W*self.upscale], aux - + elif self.upsampler == "pixelshuffle_hf": x_out = x_out / self.img_range + self.mean return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale] - + else: return x[:, :, :H*self.upscale, :W*self.upscale] @@ -1014,4 +1014,4 @@ if __name__ == '__main__': x = torch.randn((1, 3, height, width)) x = model(x) - print(x.shape) \ No newline at end of file + print(x.shape) diff --git a/launch.py b/launch.py index 670af87c..62b33f14 100644 --- a/launch.py +++ b/launch.py @@ -327,7 +327,7 @@ def prepare_environment(): if args.update_all_extensions: git_pull_recursive(extensions_dir) - + if "--exit" in sys.argv: print("Exiting because of --exit argument") exit(0) diff --git a/modules/api/api.py b/modules/api/api.py index 594fa655..165985c3 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -227,7 +227,7 @@ class Api: script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) script = script_runner.selectable_scripts[script_idx] return script, script_idx - + def get_scripts_list(self): t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] @@ -237,7 +237,7 @@ class Api: def get_script(self, script_name, script_runner): if script_name is None or script_name == "": return None, None - + script_idx = script_name_to_index(script_name, script_runner.scripts) return script_runner.scripts[script_idx] diff --git a/modules/api/models.py b/modules/api/models.py index 4d291076..006ccdb7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -289,4 +289,4 @@ class MemoryResponse(BaseModel): class ScriptsList(BaseModel): txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)") - img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") \ No newline at end of file + img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") diff --git a/modules/cmd_args.py b/modules/cmd_args.py index e01ca655..f4a4ab36 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -102,4 +102,4 @@ parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gra parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers") parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False) parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False) -parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') \ No newline at end of file +parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 45c70f84..12db6814 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -119,7 +119,7 @@ class TransformerSALayer(nn.Module): tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): - + # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) @@ -159,7 +159,7 @@ class Fuse_sft_block(nn.Module): @ARCH_REGISTRY.register() class CodeFormer(VQAutoEncoder): - def __init__(self, dim_embd=512, n_head=8, n_layers=9, + def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, connect_list=('32', '64', '128', '256'), fix_modules=('quantize', 'generator')): @@ -179,14 +179,14 @@ class CodeFormer(VQAutoEncoder): self.feat_emb = nn.Linear(256, self.dim_embd) # transformer - self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) + self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) for _ in range(self.n_layers)]) # logits_predict head self.idx_pred_layer = nn.Sequential( nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) - + self.channels = { '16': 512, '32': 256, @@ -221,7 +221,7 @@ class CodeFormer(VQAutoEncoder): enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): - x = block(x) + x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() @@ -266,11 +266,11 @@ class CodeFormer(VQAutoEncoder): fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): - x = block(x) + x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if w>0: x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) out = x # logits doesn't need softmax before cross_entropy loss - return out, logits, lq_feat \ No newline at end of file + return out, logits, lq_feat diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index b24a0394..09ee6660 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -13,7 +13,7 @@ from basicsr.utils.registry import ARCH_REGISTRY def normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - + @torch.jit.script def swish(x): @@ -210,15 +210,15 @@ class AttnBlock(nn.Module): # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h*w) - q = q.permute(0, 2, 1) + q = q.permute(0, 2, 1) k = k.reshape(b, c, h*w) - w_ = torch.bmm(q, k) + w_ = torch.bmm(q, k) w_ = w_ * (int(c)**(-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h*w) - w_ = w_.permute(0, 2, 1) + w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) @@ -270,18 +270,18 @@ class Encoder(nn.Module): def forward(self, x): for block in self.blocks: x = block(x) - + return x class Generator(nn.Module): def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): super().__init__() - self.nf = nf - self.ch_mult = ch_mult + self.nf = nf + self.ch_mult = ch_mult self.num_resolutions = len(self.ch_mult) self.num_res_blocks = res_blocks - self.resolution = img_size + self.resolution = img_size self.attn_resolutions = attn_resolutions self.in_channels = emb_dim self.out_channels = 3 @@ -315,24 +315,24 @@ class Generator(nn.Module): blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) self.blocks = nn.ModuleList(blocks) - + def forward(self, x): for block in self.blocks: x = block(x) - + return x - + @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks self.codebook_size = codebook_size self.embed_dim = emb_dim self.ch_mult = ch_mult @@ -363,11 +363,11 @@ class VQAutoEncoder(nn.Module): self.kl_weight ) self.generator = Generator( - self.nf, + self.nf, self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, + self.ch_mult, + self.n_blocks, + self.resolution, self.attn_resolutions ) @@ -432,4 +432,4 @@ class VQGANDiscriminator(nn.Module): raise ValueError('Wrong params!') def forward(self, x): - return self.main(x) \ No newline at end of file + return self.main(x) diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 4de9dd8d..2b9888ba 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -105,7 +105,7 @@ class ResidualDenseBlock_5C(nn.Module): Modified options that can be used: - "Partial Convolution based Padding" arXiv:1811.11718 - "Spectral normalization" arXiv:1802.05957 - - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. + - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. {Rakotonirina} and A. {Rasoanaivo} """ @@ -170,7 +170,7 @@ class GaussianNoise(nn.Module): scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x sampled_noise = self.noise.repeat(*x.size()).normal_() * scale x = x + sampled_noise - return x + return x def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) diff --git a/modules/extras.py b/modules/extras.py index eb4f0b42..bdf9b3b7 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -199,7 +199,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ result_is_inpainting_model = True else: theta_0[key] = theta_func2(a, b, multiplier) - + theta_0[key] = to_half(theta_0[key], save_as_half) shared.state.sampling_step += 1 diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 38ef074f..570b5603 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -540,7 +540,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) - + clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None if clip_grad: clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) @@ -593,7 +593,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi print(e) scaler = torch.cuda.amp.GradScaler() - + batch_size = ds.batch_size gradient_step = ds.gradient_step # n steps = batch_size * gradient_step * n image processed @@ -636,7 +636,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi if clip_grad: clip_grad_sched.step(hypernetwork.step) - + with devices.autocast(): x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) if use_weight: @@ -657,14 +657,14 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step += loss.item() scaler.scale(loss).backward() - + # go back until we reach gradient accumulation steps if (j + 1) % gradient_step != 0: continue loss_logging.append(_loss_step) if clip_grad: clip_grad(weights, clip_grad_sched.learn_rate) - + scaler.step(optimizer) scaler.update() hypernetwork.step += 1 @@ -674,7 +674,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0 steps_done = hypernetwork.step + 1 - + epoch_num = hypernetwork.step // steps_per_epoch epoch_step = hypernetwork.step % steps_per_epoch diff --git a/modules/images.py b/modules/images.py index 3b8b62d9..b2de3662 100644 --- a/modules/images.py +++ b/modules/images.py @@ -367,7 +367,7 @@ class FilenameGenerator: self.seed = seed self.prompt = prompt self.image = image - + def hasprompt(self, *args): lower = self.prompt.lower() if self.p is None or self.prompt is None: diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 5c2f92a1..d74c6b95 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -42,7 +42,7 @@ if has_mps: # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) - # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 + # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 @@ -60,4 +60,4 @@ if has_mps: # MPS workaround for https://github.com/pytorch/pytorch/issues/92311 if platform.processor() == 'i386': for funcName in ['torch.argmax', 'torch.Tensor.argmax']: - CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') \ No newline at end of file + CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') diff --git a/modules/masking.py b/modules/masking.py index a5c4d2da..be9f84c7 100644 --- a/modules/masking.py +++ b/modules/masking.py @@ -4,7 +4,7 @@ from PIL import Image, ImageFilter, ImageOps def get_crop_region(mask, pad=0): """finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle. For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)""" - + h, w = mask.shape crop_left = 0 diff --git a/modules/ngrok.py b/modules/ngrok.py index 7a7b4b26..67a74e85 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -13,7 +13,7 @@ def connect(token, port, region): config = conf.PyngrokConfig( auth_token=token, region=region ) - + # Guard for existing tunnels existing = ngrok.get_tunnels(pyngrok_config=config) if existing: @@ -24,7 +24,7 @@ def connect(token, port, region): print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n' 'You can use this link after the launch is complete.') return - + try: if account is None: public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url diff --git a/modules/processing.py b/modules/processing.py index c3932d6b..f902b9df 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -164,7 +164,7 @@ class StableDiffusionProcessing: self.all_subseeds = None self.iteration = 0 self.is_hr_pass = False - + @property def sd_model(self): diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 17109732..7d9dd736 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -32,22 +32,22 @@ class CFGDenoiserParams: def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond): self.x = x """Latent image representation in the process of being denoised""" - + self.image_cond = image_cond """Conditioning image""" - + self.sigma = sigma """Current sigma noise step value""" - + self.sampling_step = sampling_step """Current Sampling step number""" - + self.total_sampling_steps = total_sampling_steps """Total number of sampling steps planned""" - + self.text_cond = text_cond """ Encoder hidden states of text conditioning from prompt""" - + self.text_uncond = text_uncond """ Encoder hidden states of text conditioning from negative prompt""" @@ -240,7 +240,7 @@ def add_callback(callbacks, fun): callbacks.append(ScriptCallback(filename, fun)) - + def remove_current_script_callbacks(): stack = [x for x in inspect.stack() if x.filename != __file__] filename = stack[0].filename if len(stack) > 0 else 'unknown file' diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index e374aeb8..7e50f1ab 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -34,7 +34,7 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th - + optimization_method = None can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp @@ -92,12 +92,12 @@ def fix_checkpoint(): def weighted_loss(sd_model, pred, target, mean=True): #Calculate the weight normally, but ignore the mean loss = sd_model._old_get_loss(pred, target, mean=False) - + #Check if we have weights available weight = getattr(sd_model, '_custom_loss_weight', None) if weight is not None: loss *= weight - + #Return the loss, as mean if specified return loss.mean() if mean else loss @@ -105,7 +105,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): try: #Temporarily append weights to a place accessible during loss calc sd_model._custom_loss_weight = w - + #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set if not hasattr(sd_model, '_old_get_loss'): @@ -120,7 +120,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): del sd_model._custom_loss_weight except AttributeError: pass - + #If we have an old loss function, reset the loss function to the original one if hasattr(sd_model, '_old_get_loss'): sd_model.get_loss = sd_model._old_get_loss @@ -184,7 +184,7 @@ class StableDiffusionModelHijack: def undo_hijack(self, m): if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: - m.cond_stage_model = m.cond_stage_model.wrapped + m.cond_stage_model = m.cond_stage_model.wrapped elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: m.cond_stage_model = m.cond_stage_model.wrapped diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index a174bbe1..f00fe55c 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -62,10 +62,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): end = i + 2 s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) s1 *= self.scale - + s2 = s1.softmax(dim=-1) del s1 - + r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) del s2 del q, k, v @@ -95,43 +95,43 @@ def split_cross_attention_forward(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k_in = k_in * self.scale - + del context, x - + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in - + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - + mem_free_total = get_available_vram() - + gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 - + if mem_required > mem_free_total: steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") - + if steps > 64: max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') - + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) - + s2 = s1.softmax(dim=-1, dtype=q.dtype) del s1 - + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 - + del q, k, v r1 = r1.to(dtype) @@ -228,7 +228,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k = k * self.scale - + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) r = einsum_op(q, k, v) r = r.to(dtype) @@ -369,7 +369,7 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None): q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2) k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2) v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2) - + del q_in, k_in, v_in dtype = q.dtype @@ -451,7 +451,7 @@ def cross_attention_attnblock_forward(self, x): h3 += x return h3 - + def xformers_attnblock_forward(self, x): try: h_ = x diff --git a/modules/sd_models.py b/modules/sd_models.py index d1e946a5..3316d021 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -165,7 +165,7 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint - + checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) if checkpoint_info is not None: return checkpoint_info @@ -372,7 +372,7 @@ def enable_midas_autodownload(): if not os.path.exists(path): if not os.path.exists(midas_path): mkdir(midas_path) - + print(f"Downloading midas model weights for {model_type} to {path}") request.urlretrieve(midas_urls[model_type], path) print(f"{model_type} downloaded") diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 2f733cf5..e9e41818 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -93,10 +93,10 @@ class CFGDenoiser(torch.nn.Module): if shared.sd_model.model.conditioning_key == "crossattn-adm": image_uncond = torch.zeros_like(image_cond) - make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} + make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} else: image_uncond = image_cond - make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} + make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} if not is_edit_model: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) @@ -316,7 +316,7 @@ class KDiffusionSampler: sigma_sched = sigmas[steps - t_enc - 1:] xi = x + noise * sigma_sched[0] - + extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters @@ -339,9 +339,9 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x self.last_latent = x extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond } @@ -374,9 +374,9 @@ class KDiffusionSampler: self.last_latent = x samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond }, disable=False, callback=self.callback_state, **extra_params_kwargs)) diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index cc38debd..497568eb 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -179,7 +179,7 @@ def efficient_dot_product_attention( chunk_idx, min(query_chunk_size, q_tokens) ) - + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk compute_query_chunk_attn: ComputeQueryChunkAttn = partial( diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 41610e03..b9621fc9 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -118,7 +118,7 @@ class PersonalizedBase(Dataset): weight = torch.ones(latent_sample.shape) else: weight = None - + if latent_sampling_method == "random": entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight) else: @@ -243,4 +243,4 @@ class BatchLoaderRandom(BatchLoader): return self def collate_wrapper_random(batch): - return BatchLoaderRandom(batch) \ No newline at end of file + return BatchLoaderRandom(batch) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index d0cad09e..a009d8e8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -125,7 +125,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr default=None ) return wh and center_crop(image, *wh) - + def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): width = process_width diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 9e1b2b9a..d489ed1e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -323,16 +323,16 @@ def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epo tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step) def tensorboard_add_scaler(tensorboard_writer, tag, value, step): - tensorboard_writer.add_scalar(tag=tag, + tensorboard_writer.add_scalar(tag=tag, scalar_value=value, global_step=step) def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): # Convert a pil image to a torch tensor img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) - img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], + img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands())) img_tensor = img_tensor.permute((2, 0, 1)) - + tensorboard_writer.add_image(tag, img_tensor, global_step=step) def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): @@ -402,7 +402,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if initial_step >= steps: shared.state.textinfo = "Model has already been trained beyond specified max steps" return embedding, filename - + scheduler = LearnRateScheduler(learn_rate, steps, initial_step) clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ @@ -412,7 +412,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." old_parallel_processing_allowed = shared.parallel_processing_allowed - + if shared.opts.training_enable_tensorboard: tensorboard_writer = tensorboard_setup(log_directory) @@ -439,7 +439,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu') if embedding.checksum() == optimizer_saved_dict.get('hash', None): optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) - + if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) print("Loaded existing optimizer from checkpoint") @@ -485,7 +485,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if clip_grad: clip_grad_sched.step(embedding.step) - + with devices.autocast(): x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) if use_weight: @@ -513,7 +513,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # go back until we reach gradient accumulation steps if (j + 1) % gradient_step != 0: continue - + if clip_grad: clip_grad(embedding.vec, clip_grad_sched.learn_rate) diff --git a/modules/ui.py b/modules/ui.py index 1efb656a..ff82fff6 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1171,7 +1171,7 @@ def create_ui(): process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") - + with gr.Column(visible=False) as process_multicrop_col: gr.Markdown('Each image is center-cropped with an automatically chosen width and height.') with gr.Row(): @@ -1183,7 +1183,7 @@ def create_ui(): with gr.Row(): process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective") process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold") - + with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") @@ -1226,7 +1226,7 @@ def create_ui(): with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - + with FormRow(): clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) @@ -1565,7 +1565,7 @@ def create_ui(): gr.HTML(shared.html("licenses.html"), elem_id="licenses") gr.Button(value="Show all pages", elem_id="settings_show_all_pages") - + def unload_sd_weights(): modules.sd_models.unload_model_weights() @@ -1841,15 +1841,15 @@ def versions_html(): return f""" version: {tag} - •  + • python: {python_version} - •  + • torch: {getattr(torch, '__long_version__',torch.__version__)} - •  + • xformers: {xformers_version} - •  + • gradio: {gr.__version__} - •  + • checkpoint: N/A """ diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index ed70abe5..af497733 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -467,7 +467,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=" {html.escape(description)}

Added: {html.escape(added)}

{install_code} - + """ for tag in [x for x in extension_tags if x not in tags]: @@ -535,9 +535,9 @@ def create_ui(): hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"]) sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index") - with gr.Row(): + with gr.Row(): search_extensions_text = gr.Text(label="Search").style(container=False) - + install_result = gr.HTML() available_extensions_table = gr.HTML() diff --git a/modules/xlmr.py b/modules/xlmr.py index e056c3f6..a407a3ca 100644 --- a/modules/xlmr.py +++ b/modules/xlmr.py @@ -28,7 +28,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): config_class = BertSeriesConfig def __init__(self, config=None, **kargs): - # modify initialization for autoloading + # modify initialization for autoloading if config is None: config = XLMRobertaConfig() config.attention_probs_dropout_prob= 0.1 @@ -74,7 +74,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): text["attention_mask"] = torch.tensor( text['attention_mask']).to(device) features = self(**text) - return features['projection_state'] + return features['projection_state'] def forward( self, @@ -134,4 +134,4 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation): base_model_prefix = 'roberta' - config_class= RobertaSeriesConfig \ No newline at end of file + config_class= RobertaSeriesConfig diff --git a/pyproject.toml b/pyproject.toml index c88907be..d4a1bbf4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,6 +6,7 @@ extend-select = [ "B", "C", "I", + "W", ] exclude = [ @@ -20,7 +21,7 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - + "W605", # invalid escape sequence, messes with some docstrings ] [tool.ruff.per-file-ignores] @@ -28,4 +29,4 @@ ignore = [ [tool.ruff.flake8-bugbear] # Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`. -extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file +extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index bb00fb3f..1e833fa8 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -149,9 +149,9 @@ class Script(scripts.Script): sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment")) return [ - info, + info, override_sampler, - override_prompt, original_prompt, original_negative_prompt, + override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment, @@ -191,17 +191,17 @@ class Script(scripts.Script): self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment) rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p) - + combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5) - + sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model) sigmas = sampler.model_wrap.get_sigmas(p.steps) - + noise_dt = combined_noise - (p.init_latent / sigmas[0]) - + p.seed = p.seed + 1 - + return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning) p.sample = sample_extra diff --git a/scripts/loopback.py b/scripts/loopback.py index ad6609be..2d5feaf9 100644 --- a/scripts/loopback.py +++ b/scripts/loopback.py @@ -14,7 +14,7 @@ class Script(scripts.Script): def show(self, is_img2img): return is_img2img - def ui(self, is_img2img): + def ui(self, is_img2img): loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear") @@ -104,7 +104,7 @@ class Script(scripts.Script): p.seed = processed.seed + 1 p.denoising_strength = calculate_denoising_strength(i + 1) - + if state.skipped: break @@ -121,7 +121,7 @@ class Script(scripts.Script): all_images.append(last_image) p.inpainting_fill = original_inpainting_fill - + if state.interrupted: break @@ -132,7 +132,7 @@ class Script(scripts.Script): if opts.return_grid: grids.append(grid) - + all_images = grids + all_images processed = Processed(p, all_images, initial_seed, initial_info) diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py index c0bbecc1..ea0632b6 100644 --- a/scripts/poor_mans_outpainting.py +++ b/scripts/poor_mans_outpainting.py @@ -19,7 +19,7 @@ class Script(scripts.Script): def ui(self, is_img2img): if not is_img2img: return None - + pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur")) inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill")) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index fb06beab..88324fe6 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -96,7 +96,7 @@ class Script(scripts.Script): p.prompt_for_display = positive_prompt processed = process_images(p) - grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) + grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size) processed.images.insert(0, grid) processed.index_of_first_image = 1 diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 9607077a..2378816f 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -109,7 +109,7 @@ class Script(scripts.Script): def title(self): return "Prompts from file or textbox" - def ui(self, is_img2img): + def ui(self, is_img2img): checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate")) checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch")) @@ -166,7 +166,7 @@ class Script(scripts.Script): proc = process_images(copy_p) images += proc.images - + if checkbox_iterate: p.seed = p.seed + (p.batch_size * p.n_iter) all_prompts += proc.all_prompts diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index 0b1d3096..e614c23b 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -16,7 +16,7 @@ class Script(scripts.Script): def show(self, is_img2img): return is_img2img - def ui(self, is_img2img): + def ui(self, is_img2img): info = gr.HTML("

Will upscale the image by the selected scale factor; use width and height sliders to set tile size

") overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap")) scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor")) -- cgit v1.2.3 From a00e42556ffbc1b757fda5ba3f85a9e11c931441 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 14 May 2023 11:04:21 +0300 Subject: add a bunch of descriptions and reword a lot of settings (sorry, localizers) --- extensions-builtin/ScuNET/scripts/scunet_model.py | 13 +++- javascript/ui_settings_hints.js | 3 +- modules/shared.py | 94 ++++++++++++----------- style.css | 4 +- 4 files changed, 65 insertions(+), 49 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index 1f5ea0d3..cc2cbc6a 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -10,7 +10,7 @@ from tqdm import tqdm from basicsr.utils.download_util import load_file_from_url import modules.upscaler -from modules import devices, modelloader +from modules import devices, modelloader, script_callbacks from scunet_model_arch import SCUNet as net from modules.shared import opts @@ -137,3 +137,14 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = model.to(device) return model + + +def on_ui_settings(): + import gradio as gr + from modules import shared + + shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling")) + shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam")) + + +script_callbacks.on_ui_settings(on_ui_settings) diff --git a/javascript/ui_settings_hints.js b/javascript/ui_settings_hints.js index 9251fd71..6d1933dc 100644 --- a/javascript/ui_settings_hints.js +++ b/javascript/ui_settings_hints.js @@ -15,7 +15,8 @@ onOptionsChanged(function(){ var span = null if(div.classList.contains('gradio-checkbox')) span = div.querySelector('label span') - else if(div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span') + else if(div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span').firstChild + else if(div.classList.contains('gradio-radio')) span = div.querySelector('span').firstChild else span = div.querySelector('label span').firstChild if(!span) return diff --git a/modules/shared.py b/modules/shared.py index 24fdcd59..a0577644 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -228,6 +228,12 @@ class OptionInfo: self.comment_after += f"({info})" return self + def needs_restart(self): + self.comment_after += " (requires restart)" + return self + + + def options_section(section_identifier, options_dict): for v in options_dict.values(): @@ -278,10 +284,10 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), - "export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"), + "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"), "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number), "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number), - "img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number), + "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"), "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), @@ -314,23 +320,21 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo })) options_templates.update(options_section(('upscaling', "Upscaling"), { - "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), - "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), + "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"), + "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"), + "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), - "SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), - "SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), - "code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"), "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), })) options_templates.update(options_section(('system', "System"), { "show_warnings": OptionInfo(False, "Show warnings in console."), - "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), + "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), @@ -355,20 +359,20 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), - "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), + "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), - "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), + "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), - "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), - "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), + "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), + "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP nrtwork; 1 ignores none, 2 ignores one layer"), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), - "randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}), + "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different vidocard vendors"), "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), "token_merging_ratio_hr": OptionInfo(0.0, "Togen merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}), })) @@ -382,30 +386,32 @@ options_templates.update(options_section(('compatibility', "Compatibility"), { })) options_templates.update(options_section(('interrogate', "Interrogate Options"), { - "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), - "interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."), - "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), - "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), - "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"), + "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"), + "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"), + "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), + "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), + "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), + "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"), "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), - "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"), - "deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"), - "deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"), - "deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"), + "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"), + "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"), + "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"), + "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"), })) options_templates.update(options_section(('extra_networks', "Extra Networks"), { "extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}), "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"), - "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"), - "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"), + "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), + "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), + "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { + "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_restart(), + "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).needs_restart(), "return_grid": OptionInfo(True, "Show grid in results for web"), "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"), "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"), @@ -418,17 +424,15 @@ options_templates.update(options_section(('ui', "User interface"), { "js_modal_lightbox_gamepad": OptionInfo(True, "Navigate image viewer with gamepad"), "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"), "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), - "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"), - "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"), + "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_restart(), + "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_restart(), "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), - "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings"), - "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}), + "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(), + "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(), "ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"), - "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"), - "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), - "gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}) + "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(), })) options_templates.update(options_section(('infotext', "Infotext"), { @@ -443,26 +447,26 @@ options_templates.update(options_section(('ui', "Live previews"), { "live_previews_enable": OptionInfo(True, "Show live previews of the created image"), "live_previews_format": OptionInfo("auto", "Live preview file format", gr.Radio, {"choices": ["auto", "jpeg", "png", "webp"]}), "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), - "show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}), - "show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}), + "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), + "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}).info("Full = slow but pretty; Approx NN = fast but low quality; Approx cheap = super fast but terrible otherwise"), "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), - "live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds") + "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { - "hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}), - "eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_restart(), + "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"), + "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), - 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"), + 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), + 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}), - 'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}), + 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"), 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"), })) diff --git a/style.css b/style.css index 1e978592..0c2f453c 100644 --- a/style.css +++ b/style.css @@ -425,11 +425,11 @@ table.settings-value-table td{ color: var(--body-text-color); } -#settings .gradio-textbox, #settings .gradio-slider, #settings .gradio-number, #settings .gradio-dropdown, #settings .gradio-checkboxgroup{ +#settings .gradio-textbox, #settings .gradio-slider, #settings .gradio-number, #settings .gradio-dropdown, #settings .gradio-checkboxgroup, #settings .gradio-radio{ margin-top: 0.75em; } -.gradio-textbox .settings-comment, .gradio-slider .settings-comment, .gradio-number .settings-comment, .gradio-dropdown .settings-comment, .gradio-checkboxgroup .settings-comment { +#settings span .settings-comment { display: inline } -- cgit v1.2.3 From 9c54b78d9dde5601e916f308d9a9d6953ec39430 Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Wed, 17 May 2023 15:46:58 +0300 Subject: Run `eslint --fix` (and normalize tabs to spaces) --- .../javascript/prompt-bracket-checker.js | 52 +-- javascript/aspectRatioOverlay.js | 224 +++++------ javascript/contextMenus.js | 338 +++++++++-------- javascript/dragdrop.js | 47 +-- javascript/edit-attention.js | 240 ++++++------ javascript/extensions.js | 145 +++---- javascript/extraNetworks.js | 420 +++++++++++---------- javascript/generationParams.js | 48 +-- javascript/hints.js | 72 ++-- javascript/hires_fix.js | 36 +- javascript/imageMaskFix.js | 20 +- javascript/imageParams.js | 4 +- javascript/imageviewer.js | 221 +++++------ javascript/imageviewerGamepad.js | 4 +- javascript/localization.js | 354 ++++++++--------- javascript/notification.js | 12 +- javascript/progressbar.js | 182 ++++----- javascript/textualInversion.js | 34 +- javascript/ui.js | 415 ++++++++++---------- javascript/ui_settings_hints.js | 124 +++--- script.js | 74 ++-- 21 files changed, 1554 insertions(+), 1512 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js index 5c7a836a..ed9baf9d 100644 --- a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js @@ -4,39 +4,39 @@ // If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong. function checkBrackets(textArea, counterElt) { - var counts = {}; - (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => { - counts[bracket] = (counts[bracket] || 0) + 1; - }); - var errors = []; + var counts = {}; + (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => { + counts[bracket] = (counts[bracket] || 0) + 1; + }); + var errors = []; - function checkPair(open, close, kind) { - if (counts[open] !== counts[close]) { - errors.push( - `${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.` - ); + function checkPair(open, close, kind) { + if (counts[open] !== counts[close]) { + errors.push( + `${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.` + ); + } } - } - checkPair('(', ')', 'round brackets'); - checkPair('[', ']', 'square brackets'); - checkPair('{', '}', 'curly brackets'); - counterElt.title = errors.join('\n'); - counterElt.classList.toggle('error', errors.length !== 0); + checkPair('(', ')', 'round brackets'); + checkPair('[', ']', 'square brackets'); + checkPair('{', '}', 'curly brackets'); + counterElt.title = errors.join('\n'); + counterElt.classList.toggle('error', errors.length !== 0); } function setupBracketChecking(id_prompt, id_counter) { - var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); - var counter = gradioApp().getElementById(id_counter) + var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); + var counter = gradioApp().getElementById(id_counter); - if (textarea && counter) { - textarea.addEventListener("input", () => checkBrackets(textarea, counter)); - } + if (textarea && counter) { + textarea.addEventListener("input", () => checkBrackets(textarea, counter)); + } } -onUiLoaded(function () { - setupBracketChecking('txt2img_prompt', 'txt2img_token_counter'); - setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter'); - setupBracketChecking('img2img_prompt', 'img2img_token_counter'); - setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter'); +onUiLoaded(function() { + setupBracketChecking('txt2img_prompt', 'txt2img_token_counter'); + setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter'); + setupBracketChecking('img2img_prompt', 'img2img_token_counter'); + setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter'); }); diff --git a/javascript/aspectRatioOverlay.js b/javascript/aspectRatioOverlay.js index 5160081d..059338d6 100644 --- a/javascript/aspectRatioOverlay.js +++ b/javascript/aspectRatioOverlay.js @@ -1,111 +1,113 @@ - -let currentWidth = null; -let currentHeight = null; -let arFrameTimeout = setTimeout(function(){},0); - -function dimensionChange(e, is_width, is_height){ - - if(is_width){ - currentWidth = e.target.value*1.0 - } - if(is_height){ - currentHeight = e.target.value*1.0 - } - - var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block"; - - if(!inImg2img){ - return; - } - - var targetElement = null; - - var tabIndex = get_tab_index('mode_img2img') - if(tabIndex == 0){ // img2img - targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img'); - } else if(tabIndex == 1){ //Sketch - targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img'); - } else if(tabIndex == 2){ // Inpaint - targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img'); - } else if(tabIndex == 3){ // Inpaint sketch - targetElement = gradioApp().querySelector('#inpaint_sketch div[data-testid=image] img'); - } - - - if(targetElement){ - - var arPreviewRect = gradioApp().querySelector('#imageARPreview'); - if(!arPreviewRect){ - arPreviewRect = document.createElement('div') - arPreviewRect.id = "imageARPreview"; - gradioApp().appendChild(arPreviewRect) - } - - - - var viewportOffset = targetElement.getBoundingClientRect(); - - var viewportscale = Math.min( targetElement.clientWidth/targetElement.naturalWidth, targetElement.clientHeight/targetElement.naturalHeight ) - - var scaledx = targetElement.naturalWidth*viewportscale - var scaledy = targetElement.naturalHeight*viewportscale - - var cleintRectTop = (viewportOffset.top+window.scrollY) - var cleintRectLeft = (viewportOffset.left+window.scrollX) - var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight/2) - var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth/2) - - var arscale = Math.min( scaledx/currentWidth, scaledy/currentHeight ) - var arscaledx = currentWidth*arscale - var arscaledy = currentHeight*arscale - - var arRectTop = cleintRectCentreY-(arscaledy/2) - var arRectLeft = cleintRectCentreX-(arscaledx/2) - var arRectWidth = arscaledx - var arRectHeight = arscaledy - - arPreviewRect.style.top = arRectTop+'px'; - arPreviewRect.style.left = arRectLeft+'px'; - arPreviewRect.style.width = arRectWidth+'px'; - arPreviewRect.style.height = arRectHeight+'px'; - - clearTimeout(arFrameTimeout); - arFrameTimeout = setTimeout(function(){ - arPreviewRect.style.display = 'none'; - },2000); - - arPreviewRect.style.display = 'block'; - - } - -} - - -onUiUpdate(function(){ - var arPreviewRect = gradioApp().querySelector('#imageARPreview'); - if(arPreviewRect){ - arPreviewRect.style.display = 'none'; - } - var tabImg2img = gradioApp().querySelector("#tab_img2img"); - if (tabImg2img) { - var inImg2img = tabImg2img.style.display == "block"; - if(inImg2img){ - let inputs = gradioApp().querySelectorAll('input'); - inputs.forEach(function(e){ - var is_width = e.parentElement.id == "img2img_width" - var is_height = e.parentElement.id == "img2img_height" - - if((is_width || is_height) && !e.classList.contains('scrollwatch')){ - e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} ) - e.classList.add('scrollwatch') - } - if(is_width){ - currentWidth = e.value*1.0 - } - if(is_height){ - currentHeight = e.value*1.0 - } - }) - } - } -}); + +let currentWidth = null; +let currentHeight = null; +let arFrameTimeout = setTimeout(function() {}, 0); + +function dimensionChange(e, is_width, is_height) { + + if (is_width) { + currentWidth = e.target.value * 1.0; + } + if (is_height) { + currentHeight = e.target.value * 1.0; + } + + var inImg2img = gradioApp().querySelector("#tab_img2img").style.display == "block"; + + if (!inImg2img) { + return; + } + + var targetElement = null; + + var tabIndex = get_tab_index('mode_img2img'); + if (tabIndex == 0) { // img2img + targetElement = gradioApp().querySelector('#img2img_image div[data-testid=image] img'); + } else if (tabIndex == 1) { //Sketch + targetElement = gradioApp().querySelector('#img2img_sketch div[data-testid=image] img'); + } else if (tabIndex == 2) { // Inpaint + targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img'); + } else if (tabIndex == 3) { // Inpaint sketch + targetElement = gradioApp().querySelector('#inpaint_sketch div[data-testid=image] img'); + } + + + if (targetElement) { + + var arPreviewRect = gradioApp().querySelector('#imageARPreview'); + if (!arPreviewRect) { + arPreviewRect = document.createElement('div'); + arPreviewRect.id = "imageARPreview"; + gradioApp().appendChild(arPreviewRect); + } + + + + var viewportOffset = targetElement.getBoundingClientRect(); + + var viewportscale = Math.min(targetElement.clientWidth / targetElement.naturalWidth, targetElement.clientHeight / targetElement.naturalHeight); + + var scaledx = targetElement.naturalWidth * viewportscale; + var scaledy = targetElement.naturalHeight * viewportscale; + + var cleintRectTop = (viewportOffset.top + window.scrollY); + var cleintRectLeft = (viewportOffset.left + window.scrollX); + var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight / 2); + var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth / 2); + + var arscale = Math.min(scaledx / currentWidth, scaledy / currentHeight); + var arscaledx = currentWidth * arscale; + var arscaledy = currentHeight * arscale; + + var arRectTop = cleintRectCentreY - (arscaledy / 2); + var arRectLeft = cleintRectCentreX - (arscaledx / 2); + var arRectWidth = arscaledx; + var arRectHeight = arscaledy; + + arPreviewRect.style.top = arRectTop + 'px'; + arPreviewRect.style.left = arRectLeft + 'px'; + arPreviewRect.style.width = arRectWidth + 'px'; + arPreviewRect.style.height = arRectHeight + 'px'; + + clearTimeout(arFrameTimeout); + arFrameTimeout = setTimeout(function() { + arPreviewRect.style.display = 'none'; + }, 2000); + + arPreviewRect.style.display = 'block'; + + } + +} + + +onUiUpdate(function() { + var arPreviewRect = gradioApp().querySelector('#imageARPreview'); + if (arPreviewRect) { + arPreviewRect.style.display = 'none'; + } + var tabImg2img = gradioApp().querySelector("#tab_img2img"); + if (tabImg2img) { + var inImg2img = tabImg2img.style.display == "block"; + if (inImg2img) { + let inputs = gradioApp().querySelectorAll('input'); + inputs.forEach(function(e) { + var is_width = e.parentElement.id == "img2img_width"; + var is_height = e.parentElement.id == "img2img_height"; + + if ((is_width || is_height) && !e.classList.contains('scrollwatch')) { + e.addEventListener('input', function(e) { + dimensionChange(e, is_width, is_height); + }); + e.classList.add('scrollwatch'); + } + if (is_width) { + currentWidth = e.value * 1.0; + } + if (is_height) { + currentHeight = e.value * 1.0; + } + }); + } + } +}); diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js index b2bdf053..f7a15cae 100644 --- a/javascript/contextMenus.js +++ b/javascript/contextMenus.js @@ -1,166 +1,172 @@ - -contextMenuInit = function(){ - let eventListenerApplied=false; - let menuSpecs = new Map(); - - const uid = function(){ - return Date.now().toString(36) + Math.random().toString(36).substring(2); - } - - function showContextMenu(event,element,menuEntries){ - let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft; - let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop; - - let oldMenu = gradioApp().querySelector('#context-menu') - if(oldMenu){ - oldMenu.remove() - } - - let baseStyle = window.getComputedStyle(uiCurrentTab) - - const contextMenu = document.createElement('nav') - contextMenu.id = "context-menu" - contextMenu.style.background = baseStyle.background - contextMenu.style.color = baseStyle.color - contextMenu.style.fontFamily = baseStyle.fontFamily - contextMenu.style.top = posy+'px' - contextMenu.style.left = posx+'px' - - - - const contextMenuList = document.createElement('ul') - contextMenuList.className = 'context-menu-items'; - contextMenu.append(contextMenuList); - - menuEntries.forEach(function(entry){ - let contextMenuEntry = document.createElement('a') - contextMenuEntry.innerHTML = entry['name'] - contextMenuEntry.addEventListener("click", function() { - entry['func'](); - }) - contextMenuList.append(contextMenuEntry); - - }) - - gradioApp().appendChild(contextMenu) - - let menuWidth = contextMenu.offsetWidth + 4; - let menuHeight = contextMenu.offsetHeight + 4; - - let windowWidth = window.innerWidth; - let windowHeight = window.innerHeight; - - if ( (windowWidth - posx) < menuWidth ) { - contextMenu.style.left = windowWidth - menuWidth + "px"; - } - - if ( (windowHeight - posy) < menuHeight ) { - contextMenu.style.top = windowHeight - menuHeight + "px"; - } - - } - - function appendContextMenuOption(targetElementSelector,entryName,entryFunction){ - - var currentItems = menuSpecs.get(targetElementSelector) - - if(!currentItems){ - currentItems = [] - menuSpecs.set(targetElementSelector,currentItems); - } - let newItem = {'id':targetElementSelector+'_'+uid(), - 'name':entryName, - 'func':entryFunction, - 'isNew':true} - - currentItems.push(newItem) - return newItem['id'] - } - - function removeContextMenuOption(uid){ - menuSpecs.forEach(function(v) { - let index = -1 - v.forEach(function(e,ei){if(e['id']==uid){index=ei}}) - if(index>=0){ - v.splice(index, 1); - } - }) - } - - function addContextMenuEventListener(){ - if(eventListenerApplied){ - return; - } - gradioApp().addEventListener("click", function(e) { - if(! e.isTrusted){ - return - } - - let oldMenu = gradioApp().querySelector('#context-menu') - if(oldMenu){ - oldMenu.remove() - } - }); - gradioApp().addEventListener("contextmenu", function(e) { - let oldMenu = gradioApp().querySelector('#context-menu') - if(oldMenu){ - oldMenu.remove() - } - menuSpecs.forEach(function(v,k) { - if(e.composedPath()[0].matches(k)){ - showContextMenu(e,e.composedPath()[0],v) - e.preventDefault() - } - }) - }); - eventListenerApplied=true - - } - - return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener] -} - -initResponse = contextMenuInit(); -appendContextMenuOption = initResponse[0]; -removeContextMenuOption = initResponse[1]; -addContextMenuEventListener = initResponse[2]; - -(function(){ - //Start example Context Menu Items - let generateOnRepeat = function(genbuttonid,interruptbuttonid){ - let genbutton = gradioApp().querySelector(genbuttonid); - let interruptbutton = gradioApp().querySelector(interruptbuttonid); - if(!interruptbutton.offsetParent){ - genbutton.click(); - } - clearInterval(window.generateOnRepeatInterval) - window.generateOnRepeatInterval = setInterval(function(){ - if(!interruptbutton.offsetParent){ - genbutton.click(); - } - }, - 500) - } - - appendContextMenuOption('#txt2img_generate','Generate forever',function(){ - generateOnRepeat('#txt2img_generate','#txt2img_interrupt'); - }) - appendContextMenuOption('#img2img_generate','Generate forever',function(){ - generateOnRepeat('#img2img_generate','#img2img_interrupt'); - }) - - let cancelGenerateForever = function(){ - clearInterval(window.generateOnRepeatInterval) - } - - appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever) - appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever) - appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever) - appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever) - -})(); -//End example Context Menu Items - -onUiUpdate(function(){ - addContextMenuEventListener() -}); + +contextMenuInit = function() { + let eventListenerApplied = false; + let menuSpecs = new Map(); + + const uid = function() { + return Date.now().toString(36) + Math.random().toString(36).substring(2); + }; + + function showContextMenu(event, element, menuEntries) { + let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft; + let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop; + + let oldMenu = gradioApp().querySelector('#context-menu'); + if (oldMenu) { + oldMenu.remove(); + } + + let baseStyle = window.getComputedStyle(uiCurrentTab); + + const contextMenu = document.createElement('nav'); + contextMenu.id = "context-menu"; + contextMenu.style.background = baseStyle.background; + contextMenu.style.color = baseStyle.color; + contextMenu.style.fontFamily = baseStyle.fontFamily; + contextMenu.style.top = posy + 'px'; + contextMenu.style.left = posx + 'px'; + + + + const contextMenuList = document.createElement('ul'); + contextMenuList.className = 'context-menu-items'; + contextMenu.append(contextMenuList); + + menuEntries.forEach(function(entry) { + let contextMenuEntry = document.createElement('a'); + contextMenuEntry.innerHTML = entry['name']; + contextMenuEntry.addEventListener("click", function() { + entry['func'](); + }); + contextMenuList.append(contextMenuEntry); + + }); + + gradioApp().appendChild(contextMenu); + + let menuWidth = contextMenu.offsetWidth + 4; + let menuHeight = contextMenu.offsetHeight + 4; + + let windowWidth = window.innerWidth; + let windowHeight = window.innerHeight; + + if ((windowWidth - posx) < menuWidth) { + contextMenu.style.left = windowWidth - menuWidth + "px"; + } + + if ((windowHeight - posy) < menuHeight) { + contextMenu.style.top = windowHeight - menuHeight + "px"; + } + + } + + function appendContextMenuOption(targetElementSelector, entryName, entryFunction) { + + var currentItems = menuSpecs.get(targetElementSelector); + + if (!currentItems) { + currentItems = []; + menuSpecs.set(targetElementSelector, currentItems); + } + let newItem = { + id: targetElementSelector + '_' + uid(), + name: entryName, + func: entryFunction, + isNew: true + }; + + currentItems.push(newItem); + return newItem['id']; + } + + function removeContextMenuOption(uid) { + menuSpecs.forEach(function(v) { + let index = -1; + v.forEach(function(e, ei) { + if (e['id'] == uid) { + index = ei; + } + }); + if (index >= 0) { + v.splice(index, 1); + } + }); + } + + function addContextMenuEventListener() { + if (eventListenerApplied) { + return; + } + gradioApp().addEventListener("click", function(e) { + if (!e.isTrusted) { + return; + } + + let oldMenu = gradioApp().querySelector('#context-menu'); + if (oldMenu) { + oldMenu.remove(); + } + }); + gradioApp().addEventListener("contextmenu", function(e) { + let oldMenu = gradioApp().querySelector('#context-menu'); + if (oldMenu) { + oldMenu.remove(); + } + menuSpecs.forEach(function(v, k) { + if (e.composedPath()[0].matches(k)) { + showContextMenu(e, e.composedPath()[0], v); + e.preventDefault(); + } + }); + }); + eventListenerApplied = true; + + } + + return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]; +}; + +initResponse = contextMenuInit(); +appendContextMenuOption = initResponse[0]; +removeContextMenuOption = initResponse[1]; +addContextMenuEventListener = initResponse[2]; + +(function() { + //Start example Context Menu Items + let generateOnRepeat = function(genbuttonid, interruptbuttonid) { + let genbutton = gradioApp().querySelector(genbuttonid); + let interruptbutton = gradioApp().querySelector(interruptbuttonid); + if (!interruptbutton.offsetParent) { + genbutton.click(); + } + clearInterval(window.generateOnRepeatInterval); + window.generateOnRepeatInterval = setInterval(function() { + if (!interruptbutton.offsetParent) { + genbutton.click(); + } + }, + 500); + }; + + appendContextMenuOption('#txt2img_generate', 'Generate forever', function() { + generateOnRepeat('#txt2img_generate', '#txt2img_interrupt'); + }); + appendContextMenuOption('#img2img_generate', 'Generate forever', function() { + generateOnRepeat('#img2img_generate', '#img2img_interrupt'); + }); + + let cancelGenerateForever = function() { + clearInterval(window.generateOnRepeatInterval); + }; + + appendContextMenuOption('#txt2img_interrupt', 'Cancel generate forever', cancelGenerateForever); + appendContextMenuOption('#txt2img_generate', 'Cancel generate forever', cancelGenerateForever); + appendContextMenuOption('#img2img_interrupt', 'Cancel generate forever', cancelGenerateForever); + appendContextMenuOption('#img2img_generate', 'Cancel generate forever', cancelGenerateForever); + +})(); +//End example Context Menu Items + +onUiUpdate(function() { + addContextMenuEventListener(); +}); diff --git a/javascript/dragdrop.js b/javascript/dragdrop.js index fe008924..e316a365 100644 --- a/javascript/dragdrop.js +++ b/javascript/dragdrop.js @@ -1,11 +1,11 @@ // allows drag-dropping files into gradio image elements, and also pasting images from clipboard -function isValidImageList( files ) { +function isValidImageList(files) { return files && files?.length === 1 && ['image/png', 'image/gif', 'image/jpeg'].includes(files[0].type); } -function dropReplaceImage( imgWrap, files ) { - if ( ! isValidImageList( files ) ) { +function dropReplaceImage(imgWrap, files) { + if (!isValidImageList(files)) { return; } @@ -14,44 +14,44 @@ function dropReplaceImage( imgWrap, files ) { imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click(); const callback = () => { const fileInput = imgWrap.querySelector('input[type="file"]'); - if ( fileInput ) { - if ( files.length === 0 ) { + if (fileInput) { + if (files.length === 0) { files = new DataTransfer(); files.items.add(tmpFile); fileInput.files = files.files; } else { fileInput.files = files; } - fileInput.dispatchEvent(new Event('change')); + fileInput.dispatchEvent(new Event('change')); } }; - - if ( imgWrap.closest('#pnginfo_image') ) { + + if (imgWrap.closest('#pnginfo_image')) { // special treatment for PNG Info tab, wait for fetch request to finish const oldFetch = window.fetch; - window.fetch = async (input, options) => { + window.fetch = async(input, options) => { const response = await oldFetch(input, options); - if ( 'api/predict/' === input ) { + if ('api/predict/' === input) { const content = await response.text(); window.fetch = oldFetch; - window.requestAnimationFrame( () => callback() ); + window.requestAnimationFrame(() => callback()); return new Response(content, { status: response.status, statusText: response.statusText, headers: response.headers - }) + }); } return response; - }; + }; } else { - window.requestAnimationFrame( () => callback() ); + window.requestAnimationFrame(() => callback()); } } window.document.addEventListener('dragover', e => { const target = e.composedPath()[0]; const imgWrap = target.closest('[data-testid="image"]'); - if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) { + if (!imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) { return; } e.stopPropagation(); @@ -65,33 +65,34 @@ window.document.addEventListener('drop', e => { return; } const imgWrap = target.closest('[data-testid="image"]'); - if ( !imgWrap ) { + if (!imgWrap) { return; } e.stopPropagation(); e.preventDefault(); const files = e.dataTransfer.files; - dropReplaceImage( imgWrap, files ); + dropReplaceImage(imgWrap, files); }); window.addEventListener('paste', e => { const files = e.clipboardData.files; - if ( ! isValidImageList( files ) ) { + if (!isValidImageList(files)) { return; } const visibleImageFields = [...gradioApp().querySelectorAll('[data-testid="image"]')] .filter(el => uiElementIsVisible(el)); - if ( ! visibleImageFields.length ) { + if (!visibleImageFields.length) { return; } - + const firstFreeImageField = visibleImageFields .filter(el => el.querySelector('input[type=file]'))?.[0]; dropReplaceImage( firstFreeImageField ? - firstFreeImageField : - visibleImageFields[visibleImageFields.length - 1] - , files ); + firstFreeImageField : + visibleImageFields[visibleImageFields.length - 1] + , files + ); }); diff --git a/javascript/edit-attention.js b/javascript/edit-attention.js index d2c2f190..fdf00b4d 100644 --- a/javascript/edit-attention.js +++ b/javascript/edit-attention.js @@ -1,120 +1,120 @@ -function keyupEditAttention(event){ - let target = event.originalTarget || event.composedPath()[0]; - if (! target.matches("[id*='_toprow'] [id*='_prompt'] textarea")) return; - if (! (event.metaKey || event.ctrlKey)) return; - - let isPlus = event.key == "ArrowUp" - let isMinus = event.key == "ArrowDown" - if (!isPlus && !isMinus) return; - - let selectionStart = target.selectionStart; - let selectionEnd = target.selectionEnd; - let text = target.value; - - function selectCurrentParenthesisBlock(OPEN, CLOSE){ - if (selectionStart !== selectionEnd) return false; - - // Find opening parenthesis around current cursor - const before = text.substring(0, selectionStart); - let beforeParen = before.lastIndexOf(OPEN); - if (beforeParen == -1) return false; - let beforeParenClose = before.lastIndexOf(CLOSE); - while (beforeParenClose !== -1 && beforeParenClose > beforeParen) { - beforeParen = before.lastIndexOf(OPEN, beforeParen - 1); - beforeParenClose = before.lastIndexOf(CLOSE, beforeParenClose - 1); - } - - // Find closing parenthesis around current cursor - const after = text.substring(selectionStart); - let afterParen = after.indexOf(CLOSE); - if (afterParen == -1) return false; - let afterParenOpen = after.indexOf(OPEN); - while (afterParenOpen !== -1 && afterParen > afterParenOpen) { - afterParen = after.indexOf(CLOSE, afterParen + 1); - afterParenOpen = after.indexOf(OPEN, afterParenOpen + 1); - } - if (beforeParen === -1 || afterParen === -1) return false; - - // Set the selection to the text between the parenthesis - const parenContent = text.substring(beforeParen + 1, selectionStart + afterParen); - const lastColon = parenContent.lastIndexOf(":"); - selectionStart = beforeParen + 1; - selectionEnd = selectionStart + lastColon; - target.setSelectionRange(selectionStart, selectionEnd); - return true; - } - - function selectCurrentWord(){ - if (selectionStart !== selectionEnd) return false; - const delimiters = opts.keyedit_delimiters + " \r\n\t"; - - // seek backward until to find beggining - while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) { - selectionStart--; - } - - // seek forward to find end - while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) { - selectionEnd++; - } - - target.setSelectionRange(selectionStart, selectionEnd); - return true; - } - - // If the user hasn't selected anything, let's select their current parenthesis block or word - if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) { - selectCurrentWord(); - } - - event.preventDefault(); - - var closeCharacter = ')' - var delta = opts.keyedit_precision_attention - - if (selectionStart > 0 && text[selectionStart - 1] == '<'){ - closeCharacter = '>' - delta = opts.keyedit_precision_extra - } else if (selectionStart == 0 || text[selectionStart - 1] != "(") { - - // do not include spaces at the end - while(selectionEnd > selectionStart && text[selectionEnd-1] == ' '){ - selectionEnd -= 1; - } - if(selectionStart == selectionEnd){ - return - } - - text = text.slice(0, selectionStart) + "(" + text.slice(selectionStart, selectionEnd) + ":1.0)" + text.slice(selectionEnd); - - selectionStart += 1; - selectionEnd += 1; - } - - var end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1; - var weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end)); - if (isNaN(weight)) return; - - weight += isPlus ? delta : -delta; - weight = parseFloat(weight.toPrecision(12)); - if(String(weight).length == 1) weight += ".0" - - if (closeCharacter == ')' && weight == 1) { - text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5); - selectionStart--; - selectionEnd--; - } else { - text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1); - } - - target.focus(); - target.value = text; - target.selectionStart = selectionStart; - target.selectionEnd = selectionEnd; - - updateInput(target) -} - -addEventListener('keydown', (event) => { - keyupEditAttention(event); -}); +function keyupEditAttention(event) { + let target = event.originalTarget || event.composedPath()[0]; + if (!target.matches("[id*='_toprow'] [id*='_prompt'] textarea")) return; + if (!(event.metaKey || event.ctrlKey)) return; + + let isPlus = event.key == "ArrowUp"; + let isMinus = event.key == "ArrowDown"; + if (!isPlus && !isMinus) return; + + let selectionStart = target.selectionStart; + let selectionEnd = target.selectionEnd; + let text = target.value; + + function selectCurrentParenthesisBlock(OPEN, CLOSE) { + if (selectionStart !== selectionEnd) return false; + + // Find opening parenthesis around current cursor + const before = text.substring(0, selectionStart); + let beforeParen = before.lastIndexOf(OPEN); + if (beforeParen == -1) return false; + let beforeParenClose = before.lastIndexOf(CLOSE); + while (beforeParenClose !== -1 && beforeParenClose > beforeParen) { + beforeParen = before.lastIndexOf(OPEN, beforeParen - 1); + beforeParenClose = before.lastIndexOf(CLOSE, beforeParenClose - 1); + } + + // Find closing parenthesis around current cursor + const after = text.substring(selectionStart); + let afterParen = after.indexOf(CLOSE); + if (afterParen == -1) return false; + let afterParenOpen = after.indexOf(OPEN); + while (afterParenOpen !== -1 && afterParen > afterParenOpen) { + afterParen = after.indexOf(CLOSE, afterParen + 1); + afterParenOpen = after.indexOf(OPEN, afterParenOpen + 1); + } + if (beforeParen === -1 || afterParen === -1) return false; + + // Set the selection to the text between the parenthesis + const parenContent = text.substring(beforeParen + 1, selectionStart + afterParen); + const lastColon = parenContent.lastIndexOf(":"); + selectionStart = beforeParen + 1; + selectionEnd = selectionStart + lastColon; + target.setSelectionRange(selectionStart, selectionEnd); + return true; + } + + function selectCurrentWord() { + if (selectionStart !== selectionEnd) return false; + const delimiters = opts.keyedit_delimiters + " \r\n\t"; + + // seek backward until to find beggining + while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) { + selectionStart--; + } + + // seek forward to find end + while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) { + selectionEnd++; + } + + target.setSelectionRange(selectionStart, selectionEnd); + return true; + } + + // If the user hasn't selected anything, let's select their current parenthesis block or word + if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) { + selectCurrentWord(); + } + + event.preventDefault(); + + var closeCharacter = ')'; + var delta = opts.keyedit_precision_attention; + + if (selectionStart > 0 && text[selectionStart - 1] == '<') { + closeCharacter = '>'; + delta = opts.keyedit_precision_extra; + } else if (selectionStart == 0 || text[selectionStart - 1] != "(") { + + // do not include spaces at the end + while (selectionEnd > selectionStart && text[selectionEnd - 1] == ' ') { + selectionEnd -= 1; + } + if (selectionStart == selectionEnd) { + return; + } + + text = text.slice(0, selectionStart) + "(" + text.slice(selectionStart, selectionEnd) + ":1.0)" + text.slice(selectionEnd); + + selectionStart += 1; + selectionEnd += 1; + } + + var end = text.slice(selectionEnd + 1).indexOf(closeCharacter) + 1; + var weight = parseFloat(text.slice(selectionEnd + 1, selectionEnd + 1 + end)); + if (isNaN(weight)) return; + + weight += isPlus ? delta : -delta; + weight = parseFloat(weight.toPrecision(12)); + if (String(weight).length == 1) weight += ".0"; + + if (closeCharacter == ')' && weight == 1) { + text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5); + selectionStart--; + selectionEnd--; + } else { + text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1); + } + + target.focus(); + target.value = text; + target.selectionStart = selectionStart; + target.selectionEnd = selectionEnd; + + updateInput(target); +} + +addEventListener('keydown', (event) => { + keyupEditAttention(event); +}); diff --git a/javascript/extensions.js b/javascript/extensions.js index 2a2d2f8e..efeaf3a5 100644 --- a/javascript/extensions.js +++ b/javascript/extensions.js @@ -1,71 +1,74 @@ - -function extensions_apply(_disabled_list, _update_list, disable_all){ - var disable = [] - var update = [] - - gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){ - if(x.name.startsWith("enable_") && ! x.checked) - disable.push(x.name.substring(7)) - - if(x.name.startsWith("update_") && x.checked) - update.push(x.name.substring(7)) - }) - - restart_reload() - - return [JSON.stringify(disable), JSON.stringify(update), disable_all] -} - -function extensions_check(){ - var disable = [] - - gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){ - if(x.name.startsWith("enable_") && ! x.checked) - disable.push(x.name.substring(7)) - }) - - gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){ - x.innerHTML = "Loading..." - }) - - - var id = randomId() - requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function(){ - - }) - - return [id, JSON.stringify(disable)] -} - -function install_extension_from_index(button, url){ - button.disabled = "disabled" - button.value = "Installing..." - - var textarea = gradioApp().querySelector('#extension_to_install textarea') - textarea.value = url - updateInput(textarea) - - gradioApp().querySelector('#install_extension_button').click() -} - -function config_state_confirm_restore(_, config_state_name, config_restore_type) { - if (config_state_name == "Current") { - return [false, config_state_name, config_restore_type]; - } - let restored = ""; - if (config_restore_type == "extensions") { - restored = "all saved extension versions"; - } else if (config_restore_type == "webui") { - restored = "the webui version"; - } else { - restored = "the webui version and all saved extension versions"; - } - let confirmed = confirm("Are you sure you want to restore from this state?\nThis will reset " + restored + "."); - if (confirmed) { - restart_reload(); - gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){ - x.innerHTML = "Loading..." - }) - } - return [confirmed, config_state_name, config_restore_type]; -} + +function extensions_apply(_disabled_list, _update_list, disable_all) { + var disable = []; + var update = []; + + gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x) { + if (x.name.startsWith("enable_") && !x.checked) { + disable.push(x.name.substring(7)); + } + + if (x.name.startsWith("update_") && x.checked) { + update.push(x.name.substring(7)); + } + }); + + restart_reload(); + + return [JSON.stringify(disable), JSON.stringify(update), disable_all]; +} + +function extensions_check() { + var disable = []; + + gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x) { + if (x.name.startsWith("enable_") && !x.checked) { + disable.push(x.name.substring(7)); + } + }); + + gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x) { + x.innerHTML = "Loading..."; + }); + + + var id = randomId(); + requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function() { + + }); + + return [id, JSON.stringify(disable)]; +} + +function install_extension_from_index(button, url) { + button.disabled = "disabled"; + button.value = "Installing..."; + + var textarea = gradioApp().querySelector('#extension_to_install textarea'); + textarea.value = url; + updateInput(textarea); + + gradioApp().querySelector('#install_extension_button').click(); +} + +function config_state_confirm_restore(_, config_state_name, config_restore_type) { + if (config_state_name == "Current") { + return [false, config_state_name, config_restore_type]; + } + let restored = ""; + if (config_restore_type == "extensions") { + restored = "all saved extension versions"; + } else if (config_restore_type == "webui") { + restored = "the webui version"; + } else { + restored = "the webui version and all saved extension versions"; + } + let confirmed = confirm("Are you sure you want to restore from this state?\nThis will reset " + restored + "."); + if (confirmed) { + restart_reload(); + gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x) { + x.innerHTML = "Loading..."; + }); + } + return [confirmed, config_state_name, config_restore_type]; +} diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js index 4d9a522c..0c80fa74 100644 --- a/javascript/extraNetworks.js +++ b/javascript/extraNetworks.js @@ -1,205 +1,215 @@ -function setupExtraNetworksForTab(tabname){ - gradioApp().querySelector('#'+tabname+'_extra_tabs').classList.add('extra-networks') - - var tabs = gradioApp().querySelector('#'+tabname+'_extra_tabs > div') - var search = gradioApp().querySelector('#'+tabname+'_extra_search textarea') - var refresh = gradioApp().getElementById(tabname+'_extra_refresh') - - search.classList.add('search') - tabs.appendChild(search) - tabs.appendChild(refresh) - - var applyFilter = function(){ - var searchTerm = search.value.toLowerCase() - - gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){ - var searchOnly = elem.querySelector('.search_only') - var text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase() - - var visible = text.indexOf(searchTerm) != -1 - - if(searchOnly && searchTerm.length < 4){ - visible = false - } - - elem.style.display = visible ? "" : "none" - }) - } - - search.addEventListener("input", applyFilter); - applyFilter(); - - extraNetworksApplyFilter[tabname] = applyFilter; -} - -function applyExtraNetworkFilter(tabname){ - setTimeout(extraNetworksApplyFilter[tabname], 1); -} - -var extraNetworksApplyFilter = {} -var activePromptTextarea = {}; - -function setupExtraNetworks(){ - setupExtraNetworksForTab('txt2img') - setupExtraNetworksForTab('img2img') - - function registerPrompt(tabname, id){ - var textarea = gradioApp().querySelector("#" + id + " > label > textarea"); - - if (! activePromptTextarea[tabname]){ - activePromptTextarea[tabname] = textarea - } - - textarea.addEventListener("focus", function(){ - activePromptTextarea[tabname] = textarea; - }); - } - - registerPrompt('txt2img', 'txt2img_prompt') - registerPrompt('txt2img', 'txt2img_neg_prompt') - registerPrompt('img2img', 'img2img_prompt') - registerPrompt('img2img', 'img2img_neg_prompt') -} - -onUiLoaded(setupExtraNetworks) - -var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/; -var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g; - -function tryToRemoveExtraNetworkFromPrompt(textarea, text){ - var m = text.match(re_extranet) - var replaced = false - var newTextareaText - if(m) { - var partToSearch = m[1] - newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found){ - m = found.match(re_extranet); - if(m[1] == partToSearch){ - replaced = true; - return "" - } - return found; - }) - } else { - newTextareaText = textarea.value.replaceAll(new RegExp(text, "g"), function(found){ - if(found == text) { - replaced = true; - return "" - } - return found; - }) - } - - if(replaced){ - textarea.value = newTextareaText - return true; - } - - return false -} - -function cardClicked(tabname, textToAdd, allowNegativePrompt){ - var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea") - - if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){ - textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd - } - - updateInput(textarea) -} - -function saveCardPreview(event, tabname, filename){ - var textarea = gradioApp().querySelector("#" + tabname + '_preview_filename > label > textarea') - var button = gradioApp().getElementById(tabname + '_save_preview') - - textarea.value = filename - updateInput(textarea) - - button.click() - - event.stopPropagation() - event.preventDefault() -} - -function extraNetworksSearchButton(tabs_id, event){ - var searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea') - var button = event.target - var text = button.classList.contains("search-all") ? "" : button.textContent.trim() - - searchTextarea.value = text - updateInput(searchTextarea) -} - -var globalPopup = null; -var globalPopupInner = null; -function popup(contents){ - if(! globalPopup){ - globalPopup = document.createElement('div') - globalPopup.onclick = function(){ globalPopup.style.display = "none"; }; - globalPopup.classList.add('global-popup'); - - var close = document.createElement('div') - close.classList.add('global-popup-close'); - close.onclick = function(){ globalPopup.style.display = "none"; }; - close.title = "Close"; - globalPopup.appendChild(close) - - globalPopupInner = document.createElement('div') - globalPopupInner.onclick = function(event){ event.stopPropagation(); return false; }; - globalPopupInner.classList.add('global-popup-inner'); - globalPopup.appendChild(globalPopupInner) - - gradioApp().appendChild(globalPopup); - } - - globalPopupInner.innerHTML = ''; - globalPopupInner.appendChild(contents); - - globalPopup.style.display = "flex"; -} - -function extraNetworksShowMetadata(text){ - var elem = document.createElement('pre') - elem.classList.add('popup-metadata'); - elem.textContent = text; - - popup(elem); -} - -function requestGet(url, data, handler, errorHandler){ - var xhr = new XMLHttpRequest(); - var args = Object.keys(data).map(function(k){ return encodeURIComponent(k) + '=' + encodeURIComponent(data[k]) }).join('&') - xhr.open("GET", url + "?" + args, true); - - xhr.onreadystatechange = function () { - if (xhr.readyState === 4) { - if (xhr.status === 200) { - try { - var js = JSON.parse(xhr.responseText); - handler(js) - } catch (error) { - console.error(error); - errorHandler() - } - } else{ - errorHandler() - } - } - }; - var js = JSON.stringify(data); - xhr.send(js); -} - -function extraNetworksRequestMetadata(event, extraPage, cardName){ - var showError = function(){ extraNetworksShowMetadata("there was an error getting metadata"); } - - requestGet("./sd_extra_networks/metadata", {"page": extraPage, "item": cardName}, function(data){ - if(data && data.metadata){ - extraNetworksShowMetadata(data.metadata) - } else{ - showError() - } - }, showError) - - event.stopPropagation() -} +function setupExtraNetworksForTab(tabname) { + gradioApp().querySelector('#' + tabname + '_extra_tabs').classList.add('extra-networks'); + + var tabs = gradioApp().querySelector('#' + tabname + '_extra_tabs > div'); + var search = gradioApp().querySelector('#' + tabname + '_extra_search textarea'); + var refresh = gradioApp().getElementById(tabname + '_extra_refresh'); + + search.classList.add('search'); + tabs.appendChild(search); + tabs.appendChild(refresh); + + var applyFilter = function() { + var searchTerm = search.value.toLowerCase(); + + gradioApp().querySelectorAll('#' + tabname + '_extra_tabs div.card').forEach(function(elem) { + var searchOnly = elem.querySelector('.search_only'); + var text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase(); + + var visible = text.indexOf(searchTerm) != -1; + + if (searchOnly && searchTerm.length < 4) { + visible = false; + } + + elem.style.display = visible ? "" : "none"; + }); + }; + + search.addEventListener("input", applyFilter); + applyFilter(); + + extraNetworksApplyFilter[tabname] = applyFilter; +} + +function applyExtraNetworkFilter(tabname) { + setTimeout(extraNetworksApplyFilter[tabname], 1); +} + +var extraNetworksApplyFilter = {}; +var activePromptTextarea = {}; + +function setupExtraNetworks() { + setupExtraNetworksForTab('txt2img'); + setupExtraNetworksForTab('img2img'); + + function registerPrompt(tabname, id) { + var textarea = gradioApp().querySelector("#" + id + " > label > textarea"); + + if (!activePromptTextarea[tabname]) { + activePromptTextarea[tabname] = textarea; + } + + textarea.addEventListener("focus", function() { + activePromptTextarea[tabname] = textarea; + }); + } + + registerPrompt('txt2img', 'txt2img_prompt'); + registerPrompt('txt2img', 'txt2img_neg_prompt'); + registerPrompt('img2img', 'img2img_prompt'); + registerPrompt('img2img', 'img2img_neg_prompt'); +} + +onUiLoaded(setupExtraNetworks); + +var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/; +var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g; + +function tryToRemoveExtraNetworkFromPrompt(textarea, text) { + var m = text.match(re_extranet); + var replaced = false; + var newTextareaText; + if (m) { + var partToSearch = m[1]; + newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found) { + m = found.match(re_extranet); + if (m[1] == partToSearch) { + replaced = true; + return ""; + } + return found; + }); + } else { + newTextareaText = textarea.value.replaceAll(new RegExp(text, "g"), function(found) { + if (found == text) { + replaced = true; + return ""; + } + return found; + }); + } + + if (replaced) { + textarea.value = newTextareaText; + return true; + } + + return false; +} + +function cardClicked(tabname, textToAdd, allowNegativePrompt) { + var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea"); + + if (!tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)) { + textarea.value = textarea.value + opts.extra_networks_add_text_separator + textToAdd; + } + + updateInput(textarea); +} + +function saveCardPreview(event, tabname, filename) { + var textarea = gradioApp().querySelector("#" + tabname + '_preview_filename > label > textarea'); + var button = gradioApp().getElementById(tabname + '_save_preview'); + + textarea.value = filename; + updateInput(textarea); + + button.click(); + + event.stopPropagation(); + event.preventDefault(); +} + +function extraNetworksSearchButton(tabs_id, event) { + var searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea'); + var button = event.target; + var text = button.classList.contains("search-all") ? "" : button.textContent.trim(); + + searchTextarea.value = text; + updateInput(searchTextarea); +} + +var globalPopup = null; +var globalPopupInner = null; +function popup(contents) { + if (!globalPopup) { + globalPopup = document.createElement('div'); + globalPopup.onclick = function() { + globalPopup.style.display = "none"; + }; + globalPopup.classList.add('global-popup'); + + var close = document.createElement('div'); + close.classList.add('global-popup-close'); + close.onclick = function() { + globalPopup.style.display = "none"; + }; + close.title = "Close"; + globalPopup.appendChild(close); + + globalPopupInner = document.createElement('div'); + globalPopupInner.onclick = function(event) { + event.stopPropagation(); return false; + }; + globalPopupInner.classList.add('global-popup-inner'); + globalPopup.appendChild(globalPopupInner); + + gradioApp().appendChild(globalPopup); + } + + globalPopupInner.innerHTML = ''; + globalPopupInner.appendChild(contents); + + globalPopup.style.display = "flex"; +} + +function extraNetworksShowMetadata(text) { + var elem = document.createElement('pre'); + elem.classList.add('popup-metadata'); + elem.textContent = text; + + popup(elem); +} + +function requestGet(url, data, handler, errorHandler) { + var xhr = new XMLHttpRequest(); + var args = Object.keys(data).map(function(k) { + return encodeURIComponent(k) + '=' + encodeURIComponent(data[k]); + }).join('&'); + xhr.open("GET", url + "?" + args, true); + + xhr.onreadystatechange = function() { + if (xhr.readyState === 4) { + if (xhr.status === 200) { + try { + var js = JSON.parse(xhr.responseText); + handler(js); + } catch (error) { + console.error(error); + errorHandler(); + } + } else { + errorHandler(); + } + } + }; + var js = JSON.stringify(data); + xhr.send(js); +} + +function extraNetworksRequestMetadata(event, extraPage, cardName) { + var showError = function() { + extraNetworksShowMetadata("there was an error getting metadata"); + }; + + requestGet("./sd_extra_networks/metadata", {page: extraPage, item: cardName}, function(data) { + if (data && data.metadata) { + extraNetworksShowMetadata(data.metadata); + } else { + showError(); + } + }, showError); + + event.stopPropagation(); +} diff --git a/javascript/generationParams.js b/javascript/generationParams.js index ef64ee2e..f9e84e70 100644 --- a/javascript/generationParams.js +++ b/javascript/generationParams.js @@ -1,33 +1,35 @@ // attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes let txt2img_gallery, img2img_gallery, modal = undefined; -onUiUpdate(function(){ - if (!txt2img_gallery) { - txt2img_gallery = attachGalleryListeners("txt2img") - } - if (!img2img_gallery) { - img2img_gallery = attachGalleryListeners("img2img") - } - if (!modal) { - modal = gradioApp().getElementById('lightboxModal') - modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] }); - } +onUiUpdate(function() { + if (!txt2img_gallery) { + txt2img_gallery = attachGalleryListeners("txt2img"); + } + if (!img2img_gallery) { + img2img_gallery = attachGalleryListeners("img2img"); + } + if (!modal) { + modal = gradioApp().getElementById('lightboxModal'); + modalObserver.observe(modal, { attributes: true, attributeFilter: ['style'] }); + } }); let modalObserver = new MutationObserver(function(mutations) { - mutations.forEach(function(mutationRecord) { - let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText - if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img')) - gradioApp().getElementById(selectedTab+"_generation_info_button")?.click() - }); + mutations.forEach(function(mutationRecord) { + let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText; + if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img')) { + gradioApp().getElementById(selectedTab + "_generation_info_button")?.click(); + } + }); }); function attachGalleryListeners(tab_name) { - var gallery = gradioApp().querySelector('#'+tab_name+'_gallery') - gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click()); - gallery?.addEventListener('keydown', (e) => { - if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow - gradioApp().getElementById(tab_name+"_generation_info_button").click() - }); - return gallery; + var gallery = gradioApp().querySelector('#' + tab_name + '_gallery'); + gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name + "_generation_info_button").click()); + gallery?.addEventListener('keydown', (e) => { + if (e.keyCode == 37 || e.keyCode == 39) { // left or right arrow + gradioApp().getElementById(tab_name + "_generation_info_button").click(); + } + }); + return gallery; } diff --git a/javascript/hints.js b/javascript/hints.js index 3746df99..477b7d80 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -3,14 +3,14 @@ titles = { "Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results", "Sampling method": "Which algorithm to use to produce the image", - "GFPGAN": "Restore low quality faces using GFPGAN neural network", - "Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help", - "DDIM": "Denoising Diffusion Implicit Models - best at inpainting", - "UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models", - "DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution", - - "Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)", - "Batch size": "How many image to create in a single batch (increases generation performance at cost of higher VRAM usage)", + "GFPGAN": "Restore low quality faces using GFPGAN neural network", + "Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps higher than 30-40 does not help", + "DDIM": "Denoising Diffusion Implicit Models - best at inpainting", + "UniPC": "Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models", + "DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution", + + "Batch count": "How many batches of images to create (has no impact on generation performance or VRAM usage)", + "Batch size": "How many image to create in a single batch (increases generation performance at cost of higher VRAM usage)", "CFG Scale": "Classifier Free Guidance Scale - how strongly the image should conform to prompt - lower values produce more creative results", "Seed": "A value that determines the output of random number generator - if you create an image with same parameters and seed as another image, you'll get the same result", "\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time", @@ -40,7 +40,7 @@ titles = { "Inpaint at full resolution": "Upscale masked region to target resolution, do inpainting, downscale back and paste into original image", "Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", - + "Skip": "Stop processing current image and continue processing.", "Interrupt": "Stop processing images and return any results accumulated so far.", "Save": "Write image to a directory (default - log/images) and generation parameters into csv file.", @@ -96,7 +96,7 @@ titles = { "Add difference": "Result = A + (B - C) * M", "No interpolation": "Result = A", - "Initialization text": "If the number of tokens is more than the number of vectors, some may be skipped.\nLeave the textbox empty to start with zeroed out vectors", + "Initialization text": "If the number of tokens is more than the number of vectors, some may be skipped.\nLeave the textbox empty to start with zeroed out vectors", "Learning rate": "How fast should training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", "Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.", @@ -113,38 +113,38 @@ titles = { "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.", "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." -} +}; -onUiUpdate(function(){ - gradioApp().querySelectorAll('span, button, select, p').forEach(function(span){ - if (span.title) return; // already has a title +onUiUpdate(function() { + gradioApp().querySelectorAll('span, button, select, p').forEach(function(span) { + if (span.title) return; // already has a title - let tooltip = localization[titles[span.textContent]] || titles[span.textContent]; + let tooltip = localization[titles[span.textContent]] || titles[span.textContent]; - if(!tooltip){ - tooltip = localization[titles[span.value]] || titles[span.value]; - } + if (!tooltip) { + tooltip = localization[titles[span.value]] || titles[span.value]; + } - if(!tooltip){ - for (const c of span.classList) { - if (c in titles) { - tooltip = localization[titles[c]] || titles[c]; - break; - } - } - } + if (!tooltip) { + for (const c of span.classList) { + if (c in titles) { + tooltip = localization[titles[c]] || titles[c]; + break; + } + } + } - if(tooltip){ - span.title = tooltip; - } - }) + if (tooltip) { + span.title = tooltip; + } + }); - gradioApp().querySelectorAll('select').forEach(function(select){ - if (select.onchange != null) return; + gradioApp().querySelectorAll('select').forEach(function(select) { + if (select.onchange != null) return; - select.onchange = function(){ + select.onchange = function() { select.title = localization[titles[select.value]] || titles[select.value] || ""; - } - }) -}) + }; + }); +}); diff --git a/javascript/hires_fix.js b/javascript/hires_fix.js index 48196be4..0d04ab3b 100644 --- a/javascript/hires_fix.js +++ b/javascript/hires_fix.js @@ -1,18 +1,18 @@ - -function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){ - function setInactive(elem, inactive){ - elem.classList.toggle('inactive', !!inactive) - } - - var hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale') - var hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x') - var hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y') - - gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : "" - - setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0) - setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0) - setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0) - - return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y] -} + +function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y) { + function setInactive(elem, inactive) { + elem.classList.toggle('inactive', !!inactive); + } + + var hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale'); + var hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x'); + var hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y'); + + gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : ""; + + setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0); + setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0); + setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0); + + return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y]; +} diff --git a/javascript/imageMaskFix.js b/javascript/imageMaskFix.js index a612705d..91a6377b 100644 --- a/javascript/imageMaskFix.js +++ b/javascript/imageMaskFix.js @@ -4,17 +4,17 @@ */ function imageMaskResize() { const canvases = gradioApp().querySelectorAll('#img2maskimg .touch-none canvas'); - if ( ! canvases.length ) { - canvases_fixed = false; // TODO: this is unused..? - window.removeEventListener( 'resize', imageMaskResize ); - return; + if (!canvases.length) { + canvases_fixed = false; // TODO: this is unused..? + window.removeEventListener('resize', imageMaskResize); + return; } const wrapper = canvases[0].closest('.touch-none'); const previewImage = wrapper.previousElementSibling; - if ( ! previewImage.complete ) { - previewImage.addEventListener( 'load', imageMaskResize); + if (!previewImage.complete) { + previewImage.addEventListener('load', imageMaskResize); return; } @@ -24,15 +24,15 @@ function imageMaskResize() { const nh = previewImage.naturalHeight; const portrait = nh > nw; - const wW = Math.min(w, portrait ? h/nh*nw : w/nw*nw); - const wH = Math.min(h, portrait ? h/nh*nh : w/nw*nh); + const wW = Math.min(w, portrait ? h / nh * nw : w / nw * nw); + const wH = Math.min(h, portrait ? h / nh * nh : w / nw * nh); wrapper.style.width = `${wW}px`; wrapper.style.height = `${wH}px`; wrapper.style.left = `0px`; wrapper.style.top = `0px`; - canvases.forEach( c => { + canvases.forEach(c => { c.style.width = c.style.height = ''; c.style.maxWidth = '100%'; c.style.maxHeight = '100%'; @@ -41,4 +41,4 @@ function imageMaskResize() { } onUiUpdate(imageMaskResize); -window.addEventListener( 'resize', imageMaskResize); +window.addEventListener('resize', imageMaskResize); diff --git a/javascript/imageParams.js b/javascript/imageParams.js index 64aee93b..057e2d39 100644 --- a/javascript/imageParams.js +++ b/javascript/imageParams.js @@ -1,4 +1,4 @@ -window.onload = (function(){ +window.onload = (function() { window.addEventListener('drop', e => { const target = e.composedPath()[0]; if (target.placeholder.indexOf("Prompt") == -1) return; @@ -10,7 +10,7 @@ window.onload = (function(){ const imgParent = gradioApp().getElementById(prompt_target); const files = e.dataTransfer.files; const fileInput = imgParent.querySelector('input[type="file"]'); - if ( fileInput ) { + if (fileInput) { fileInput.files = files; fileInput.dispatchEvent(new Event('change')); } diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index 32066ab8..ecd12379 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -5,24 +5,24 @@ function closeModal() { function showModal(event) { const source = event.target || event.srcElement; - const modalImage = gradioApp().getElementById("modalImage") - const lb = gradioApp().getElementById("lightboxModal") - modalImage.src = source.src + const modalImage = gradioApp().getElementById("modalImage"); + const lb = gradioApp().getElementById("lightboxModal"); + modalImage.src = source.src; if (modalImage.style.display === 'none') { lb.style.setProperty('background-image', 'url(' + source.src + ')'); } lb.style.display = "flex"; - lb.focus() + lb.focus(); - const tabTxt2Img = gradioApp().getElementById("tab_txt2img") - const tabImg2Img = gradioApp().getElementById("tab_img2img") + const tabTxt2Img = gradioApp().getElementById("tab_txt2img"); + const tabImg2Img = gradioApp().getElementById("tab_img2img"); // show the save button in modal only on txt2img or img2img tabs if (tabTxt2Img.style.display != "none" || tabImg2Img.style.display != "none") { - gradioApp().getElementById("modal_save").style.display = "inline" + gradioApp().getElementById("modal_save").style.display = "inline"; } else { - gradioApp().getElementById("modal_save").style.display = "none" + gradioApp().getElementById("modal_save").style.display = "none"; } - event.stopPropagation() + event.stopPropagation(); } function negmod(n, m) { @@ -30,14 +30,14 @@ function negmod(n, m) { } function updateOnBackgroundChange() { - const modalImage = gradioApp().getElementById("modalImage") + const modalImage = gradioApp().getElementById("modalImage"); if (modalImage && modalImage.offsetParent) { let currentButton = selected_gallery_button(); if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) { modalImage.src = currentButton.children[0].src; if (modalImage.style.display === 'none') { - modal.style.setProperty('background-image', `url(${modalImage.src})`) + modal.style.setProperty('background-image', `url(${modalImage.src})`); } } } @@ -49,108 +49,109 @@ function modalImageSwitch(offset) { if (galleryButtons.length > 1) { var currentButton = selected_gallery_button(); - var result = -1 + var result = -1; galleryButtons.forEach(function(v, i) { if (v == currentButton) { - result = i + result = i; } - }) + }); if (result != -1) { - var nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)] - nextButton.click() + var nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]; + nextButton.click(); const modalImage = gradioApp().getElementById("modalImage"); const modal = gradioApp().getElementById("lightboxModal"); modalImage.src = nextButton.children[0].src; if (modalImage.style.display === 'none') { - modal.style.setProperty('background-image', `url(${modalImage.src})`) + modal.style.setProperty('background-image', `url(${modalImage.src})`); } setTimeout(function() { - modal.focus() - }, 10) + modal.focus(); + }, 10); } } } -function saveImage(){ - const tabTxt2Img = gradioApp().getElementById("tab_txt2img") - const tabImg2Img = gradioApp().getElementById("tab_img2img") - const saveTxt2Img = "save_txt2img" - const saveImg2Img = "save_img2img" +function saveImage() { + const tabTxt2Img = gradioApp().getElementById("tab_txt2img"); + const tabImg2Img = gradioApp().getElementById("tab_img2img"); + const saveTxt2Img = "save_txt2img"; + const saveImg2Img = "save_img2img"; if (tabTxt2Img.style.display != "none") { - gradioApp().getElementById(saveTxt2Img).click() + gradioApp().getElementById(saveTxt2Img).click(); } else if (tabImg2Img.style.display != "none") { - gradioApp().getElementById(saveImg2Img).click() + gradioApp().getElementById(saveImg2Img).click(); } else { - console.error("missing implementation for saving modal of this type") + console.error("missing implementation for saving modal of this type"); } } function modalSaveImage(event) { - saveImage() - event.stopPropagation() + saveImage(); + event.stopPropagation(); } function modalNextImage(event) { - modalImageSwitch(1) - event.stopPropagation() + modalImageSwitch(1); + event.stopPropagation(); } function modalPrevImage(event) { - modalImageSwitch(-1) - event.stopPropagation() + modalImageSwitch(-1); + event.stopPropagation(); } function modalKeyHandler(event) { switch (event.key) { - case "s": - saveImage() - break; - case "ArrowLeft": - modalPrevImage(event) - break; - case "ArrowRight": - modalNextImage(event) - break; - case "Escape": - closeModal(); - break; + case "s": + saveImage(); + break; + case "ArrowLeft": + modalPrevImage(event); + break; + case "ArrowRight": + modalNextImage(event); + break; + case "Escape": + closeModal(); + break; } } function setupImageForLightbox(e) { - if (e.dataset.modded) - return; + if (e.dataset.modded) { + return; + } - e.dataset.modded = true; - e.style.cursor='pointer' - e.style.userSelect='none' + e.dataset.modded = true; + e.style.cursor = 'pointer'; + e.style.userSelect = 'none'; - var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1 + var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1; - // For Firefox, listening on click first switched to next image then shows the lightbox. - // If you know how to fix this without switching to mousedown event, please. - // For other browsers the event is click to make it possiblr to drag picture. - var event = isFirefox ? 'mousedown' : 'click' + // For Firefox, listening on click first switched to next image then shows the lightbox. + // If you know how to fix this without switching to mousedown event, please. + // For other browsers the event is click to make it possiblr to drag picture. + var event = isFirefox ? 'mousedown' : 'click'; - e.addEventListener(event, function (evt) { - if(!opts.js_modal_lightbox || evt.button != 0) return; + e.addEventListener(event, function(evt) { + if (!opts.js_modal_lightbox || evt.button != 0) return; - modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) - evt.preventDefault() - showModal(evt) - }, true); + modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed); + evt.preventDefault(); + showModal(evt); + }, true); } function modalZoomSet(modalImage, enable) { - if(modalImage) modalImage.classList.toggle('modalImageFullscreen', !!enable); + if (modalImage) modalImage.classList.toggle('modalImageFullscreen', !!enable); } function modalZoomToggle(event) { var modalImage = gradioApp().getElementById("modalImage"); - modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen')) - event.stopPropagation() + modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen')); + event.stopPropagation(); } function modalTileImageToggle(event) { @@ -159,99 +160,99 @@ function modalTileImageToggle(event) { const isTiling = modalImage.style.display === 'none'; if (isTiling) { modalImage.style.display = 'block'; - modal.style.setProperty('background-image', 'none') + modal.style.setProperty('background-image', 'none'); } else { modalImage.style.display = 'none'; - modal.style.setProperty('background-image', `url(${modalImage.src})`) + modal.style.setProperty('background-image', `url(${modalImage.src})`); } - event.stopPropagation() + event.stopPropagation(); } function galleryImageHandler(e) { //if (e && e.parentElement.tagName == 'BUTTON') { - e.onclick = showGalleryImage; + e.onclick = showGalleryImage; //} } onUiUpdate(function() { - var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img') + var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img'); if (fullImg_preview != null) { fullImg_preview.forEach(setupImageForLightbox); } updateOnBackgroundChange(); -}) +}); document.addEventListener("DOMContentLoaded", function() { //const modalFragment = document.createDocumentFragment(); - const modal = document.createElement('div') + const modal = document.createElement('div'); modal.onclick = closeModal; modal.id = "lightboxModal"; - modal.tabIndex = 0 - modal.addEventListener('keydown', modalKeyHandler, true) + modal.tabIndex = 0; + modal.addEventListener('keydown', modalKeyHandler, true); - const modalControls = document.createElement('div') + const modalControls = document.createElement('div'); modalControls.className = 'modalControls gradio-container'; modal.append(modalControls); - const modalZoom = document.createElement('span') + const modalZoom = document.createElement('span'); modalZoom.className = 'modalZoom cursor'; - modalZoom.innerHTML = '⤡' - modalZoom.addEventListener('click', modalZoomToggle, true) + modalZoom.innerHTML = '⤡'; + modalZoom.addEventListener('click', modalZoomToggle, true); modalZoom.title = "Toggle zoomed view"; - modalControls.appendChild(modalZoom) + modalControls.appendChild(modalZoom); - const modalTileImage = document.createElement('span') + const modalTileImage = document.createElement('span'); modalTileImage.className = 'modalTileImage cursor'; - modalTileImage.innerHTML = '⊞' - modalTileImage.addEventListener('click', modalTileImageToggle, true) + modalTileImage.innerHTML = '⊞'; + modalTileImage.addEventListener('click', modalTileImageToggle, true); modalTileImage.title = "Preview tiling"; - modalControls.appendChild(modalTileImage) + modalControls.appendChild(modalTileImage); - const modalSave = document.createElement("span") - modalSave.className = "modalSave cursor" - modalSave.id = "modal_save" - modalSave.innerHTML = "🖫" - modalSave.addEventListener("click", modalSaveImage, true) - modalSave.title = "Save Image(s)" - modalControls.appendChild(modalSave) + const modalSave = document.createElement("span"); + modalSave.className = "modalSave cursor"; + modalSave.id = "modal_save"; + modalSave.innerHTML = "🖫"; + modalSave.addEventListener("click", modalSaveImage, true); + modalSave.title = "Save Image(s)"; + modalControls.appendChild(modalSave); - const modalClose = document.createElement('span') + const modalClose = document.createElement('span'); modalClose.className = 'modalClose cursor'; - modalClose.innerHTML = '×' + modalClose.innerHTML = '×'; modalClose.onclick = closeModal; modalClose.title = "Close image viewer"; - modalControls.appendChild(modalClose) + modalControls.appendChild(modalClose); - const modalImage = document.createElement('img') + const modalImage = document.createElement('img'); modalImage.id = 'modalImage'; modalImage.onclick = closeModal; - modalImage.tabIndex = 0 - modalImage.addEventListener('keydown', modalKeyHandler, true) - modal.appendChild(modalImage) + modalImage.tabIndex = 0; + modalImage.addEventListener('keydown', modalKeyHandler, true); + modal.appendChild(modalImage); - const modalPrev = document.createElement('a') + const modalPrev = document.createElement('a'); modalPrev.className = 'modalPrev'; - modalPrev.innerHTML = '❮' - modalPrev.tabIndex = 0 + modalPrev.innerHTML = '❮'; + modalPrev.tabIndex = 0; modalPrev.addEventListener('click', modalPrevImage, true); - modalPrev.addEventListener('keydown', modalKeyHandler, true) - modal.appendChild(modalPrev) + modalPrev.addEventListener('keydown', modalKeyHandler, true); + modal.appendChild(modalPrev); - const modalNext = document.createElement('a') + const modalNext = document.createElement('a'); modalNext.className = 'modalNext'; - modalNext.innerHTML = '❯' - modalNext.tabIndex = 0 + modalNext.innerHTML = '❯'; + modalNext.tabIndex = 0; modalNext.addEventListener('click', modalNextImage, true); - modalNext.addEventListener('keydown', modalKeyHandler, true) + modalNext.addEventListener('keydown', modalKeyHandler, true); - modal.appendChild(modalNext) + modal.appendChild(modalNext); try { - gradioApp().appendChild(modal); - } catch (e) { - gradioApp().body.appendChild(modal); - } + gradioApp().appendChild(modal); + } catch (e) { + gradioApp().body.appendChild(modal); + } document.body.appendChild(modal); diff --git a/javascript/imageviewerGamepad.js b/javascript/imageviewerGamepad.js index 6297a12b..31d226de 100644 --- a/javascript/imageviewerGamepad.js +++ b/javascript/imageviewerGamepad.js @@ -1,7 +1,7 @@ window.addEventListener('gamepadconnected', (e) => { const index = e.gamepad.index; let isWaiting = false; - setInterval(async () => { + setInterval(async() => { if (!opts.js_modal_lightbox_gamepad || isWaiting) return; const gamepad = navigator.getGamepads()[index]; const xValue = gamepad.axes[0]; @@ -14,7 +14,7 @@ window.addEventListener('gamepadconnected', (e) => { } if (isWaiting) { await sleepUntil(() => { - const xValue = navigator.getGamepads()[index].axes[0] + const xValue = navigator.getGamepads()[index].axes[0]; if (xValue < 0.3 && xValue > -0.3) { return true; } diff --git a/javascript/localization.js b/javascript/localization.js index 86e5ca67..3d043a9a 100644 --- a/javascript/localization.js +++ b/javascript/localization.js @@ -1,177 +1,177 @@ - -// localization = {} -- the dict with translations is created by the backend - -ignore_ids_for_localization={ - setting_sd_hypernetwork: 'OPTION', - setting_sd_model_checkpoint: 'OPTION', - setting_realesrgan_enabled_models: 'OPTION', - modelmerger_primary_model_name: 'OPTION', - modelmerger_secondary_model_name: 'OPTION', - modelmerger_tertiary_model_name: 'OPTION', - train_embedding: 'OPTION', - train_hypernetwork: 'OPTION', - txt2img_styles: 'OPTION', - img2img_styles: 'OPTION', - setting_random_artist_categories: 'SPAN', - setting_face_restoration_model: 'SPAN', - setting_realesrgan_enabled_models: 'SPAN', - extras_upscaler_1: 'SPAN', - extras_upscaler_2: 'SPAN', -} - -re_num = /^[\.\d]+$/ -re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u - -original_lines = {} -translated_lines = {} - -function hasLocalization() { - return window.localization && Object.keys(window.localization).length > 0; -} - -function textNodesUnder(el){ - var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false); - while(n=walk.nextNode()) a.push(n); - return a; -} - -function canBeTranslated(node, text){ - if(! text) return false; - if(! node.parentElement) return false; - - var parentType = node.parentElement.nodeName - if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false; - - if (parentType=='OPTION' || parentType=='SPAN'){ - var pnode = node - for(var level=0; level<4; level++){ - pnode = pnode.parentElement - if(! pnode) break; - - if(ignore_ids_for_localization[pnode.id] == parentType) return false; - } - } - - if(re_num.test(text)) return false; - if(re_emoji.test(text)) return false; - return true -} - -function getTranslation(text){ - if(! text) return undefined - - if(translated_lines[text] === undefined){ - original_lines[text] = 1 - } - - tl = localization[text] - if(tl !== undefined){ - translated_lines[tl] = 1 - } - - return tl -} - -function processTextNode(node){ - var text = node.textContent.trim() - - if(! canBeTranslated(node, text)) return - - tl = getTranslation(text) - if(tl !== undefined){ - node.textContent = tl - } -} - -function processNode(node){ - if(node.nodeType == 3){ - processTextNode(node) - return - } - - if(node.title){ - tl = getTranslation(node.title) - if(tl !== undefined){ - node.title = tl - } - } - - if(node.placeholder){ - tl = getTranslation(node.placeholder) - if(tl !== undefined){ - node.placeholder = tl - } - } - - textNodesUnder(node).forEach(function(node){ - processTextNode(node) - }) -} - -function dumpTranslations(){ - if(!hasLocalization()) { - // If we don't have any localization, - // we will not have traversed the app to find - // original_lines, so do that now. - processNode(gradioApp()); - } - var dumped = {} - if (localization.rtl) { - dumped.rtl = true; - } - - for (const text in original_lines) { - if(dumped[text] !== undefined) continue; - dumped[text] = localization[text] || text; - } - - return dumped; -} - -function download_localization() { - var text = JSON.stringify(dumpTranslations(), null, 4) - - var element = document.createElement('a'); - element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text)); - element.setAttribute('download', "localization.json"); - element.style.display = 'none'; - document.body.appendChild(element); - - element.click(); - - document.body.removeChild(element); -} - -document.addEventListener("DOMContentLoaded", function () { - if (!hasLocalization()) { - return; - } - - onUiUpdate(function (m) { - m.forEach(function (mutation) { - mutation.addedNodes.forEach(function (node) { - processNode(node) - }) - }); - }) - - processNode(gradioApp()) - - if (localization.rtl) { // if the language is from right to left, - (new MutationObserver((mutations, observer) => { // wait for the style to load - mutations.forEach(mutation => { - mutation.addedNodes.forEach(node => { - if (node.tagName === 'STYLE') { - observer.disconnect(); - - for (const x of node.sheet.rules) { // find all rtl media rules - if (Array.from(x.media || []).includes('rtl')) { - x.media.appendMedium('all'); // enable them - } - } - } - }) - }); - })).observe(gradioApp(), { childList: true }); - } -}) + +// localization = {} -- the dict with translations is created by the backend + +ignore_ids_for_localization = { + setting_sd_hypernetwork: 'OPTION', + setting_sd_model_checkpoint: 'OPTION', + setting_realesrgan_enabled_models: 'OPTION', + modelmerger_primary_model_name: 'OPTION', + modelmerger_secondary_model_name: 'OPTION', + modelmerger_tertiary_model_name: 'OPTION', + train_embedding: 'OPTION', + train_hypernetwork: 'OPTION', + txt2img_styles: 'OPTION', + img2img_styles: 'OPTION', + setting_random_artist_categories: 'SPAN', + setting_face_restoration_model: 'SPAN', + setting_realesrgan_enabled_models: 'SPAN', + extras_upscaler_1: 'SPAN', + extras_upscaler_2: 'SPAN', +}; + +re_num = /^[\.\d]+$/; +re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u; + +original_lines = {}; +translated_lines = {}; + +function hasLocalization() { + return window.localization && Object.keys(window.localization).length > 0; +} + +function textNodesUnder(el) { + var n, a = [], walk = document.createTreeWalker(el, NodeFilter.SHOW_TEXT, null, false); + while (n = walk.nextNode()) a.push(n); + return a; +} + +function canBeTranslated(node, text) { + if (!text) return false; + if (!node.parentElement) return false; + + var parentType = node.parentElement.nodeName; + if (parentType == 'SCRIPT' || parentType == 'STYLE' || parentType == 'TEXTAREA') return false; + + if (parentType == 'OPTION' || parentType == 'SPAN') { + var pnode = node; + for (var level = 0; level < 4; level++) { + pnode = pnode.parentElement; + if (!pnode) break; + + if (ignore_ids_for_localization[pnode.id] == parentType) return false; + } + } + + if (re_num.test(text)) return false; + if (re_emoji.test(text)) return false; + return true; +} + +function getTranslation(text) { + if (!text) return undefined; + + if (translated_lines[text] === undefined) { + original_lines[text] = 1; + } + + tl = localization[text]; + if (tl !== undefined) { + translated_lines[tl] = 1; + } + + return tl; +} + +function processTextNode(node) { + var text = node.textContent.trim(); + + if (!canBeTranslated(node, text)) return; + + tl = getTranslation(text); + if (tl !== undefined) { + node.textContent = tl; + } +} + +function processNode(node) { + if (node.nodeType == 3) { + processTextNode(node); + return; + } + + if (node.title) { + tl = getTranslation(node.title); + if (tl !== undefined) { + node.title = tl; + } + } + + if (node.placeholder) { + tl = getTranslation(node.placeholder); + if (tl !== undefined) { + node.placeholder = tl; + } + } + + textNodesUnder(node).forEach(function(node) { + processTextNode(node); + }); +} + +function dumpTranslations() { + if (!hasLocalization()) { + // If we don't have any localization, + // we will not have traversed the app to find + // original_lines, so do that now. + processNode(gradioApp()); + } + var dumped = {}; + if (localization.rtl) { + dumped.rtl = true; + } + + for (const text in original_lines) { + if (dumped[text] !== undefined) continue; + dumped[text] = localization[text] || text; + } + + return dumped; +} + +function download_localization() { + var text = JSON.stringify(dumpTranslations(), null, 4); + + var element = document.createElement('a'); + element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text)); + element.setAttribute('download', "localization.json"); + element.style.display = 'none'; + document.body.appendChild(element); + + element.click(); + + document.body.removeChild(element); +} + +document.addEventListener("DOMContentLoaded", function() { + if (!hasLocalization()) { + return; + } + + onUiUpdate(function(m) { + m.forEach(function(mutation) { + mutation.addedNodes.forEach(function(node) { + processNode(node); + }); + }); + }); + + processNode(gradioApp()); + + if (localization.rtl) { // if the language is from right to left, + (new MutationObserver((mutations, observer) => { // wait for the style to load + mutations.forEach(mutation => { + mutation.addedNodes.forEach(node => { + if (node.tagName === 'STYLE') { + observer.disconnect(); + + for (const x of node.sheet.rules) { // find all rtl media rules + if (Array.from(x.media || []).includes('rtl')) { + x.media.appendMedium('all'); // enable them + } + } + } + }); + }); + })).observe(gradioApp(), { childList: true }); + } +}); diff --git a/javascript/notification.js b/javascript/notification.js index 83fce1f8..a68a76f2 100644 --- a/javascript/notification.js +++ b/javascript/notification.js @@ -4,14 +4,14 @@ let lastHeadImg = null; let notificationButton = null; -onUiUpdate(function(){ - if(notificationButton == null){ - notificationButton = gradioApp().getElementById('request_notifications') +onUiUpdate(function() { + if (notificationButton == null) { + notificationButton = gradioApp().getElementById('request_notifications'); - if(notificationButton != null){ + if (notificationButton != null) { notificationButton.addEventListener('click', () => { void Notification.requestPermission(); - },true); + }, true); } } @@ -42,7 +42,7 @@ onUiUpdate(function(){ } ); - notification.onclick = function(_){ + notification.onclick = function(_) { parent.focus(); this.close(); }; diff --git a/javascript/progressbar.js b/javascript/progressbar.js index 8d2c3492..cd273e48 100644 --- a/javascript/progressbar.js +++ b/javascript/progressbar.js @@ -1,29 +1,29 @@ // code related to showing and updating progressbar shown as the image is being made -function rememberGallerySelection(){ +function rememberGallerySelection() { } -function getGallerySelectedIndex(){ +function getGallerySelectedIndex() { } -function request(url, data, handler, errorHandler){ +function request(url, data, handler, errorHandler) { var xhr = new XMLHttpRequest(); xhr.open("POST", url, true); xhr.setRequestHeader("Content-Type", "application/json"); - xhr.onreadystatechange = function () { + xhr.onreadystatechange = function() { if (xhr.readyState === 4) { if (xhr.status === 200) { try { var js = JSON.parse(xhr.responseText); - handler(js) + handler(js); } catch (error) { console.error(error); - errorHandler() + errorHandler(); } - } else{ - errorHandler() + } else { + errorHandler(); } } }; @@ -31,147 +31,147 @@ function request(url, data, handler, errorHandler){ xhr.send(js); } -function pad2(x){ - return x<10 ? '0'+x : x +function pad2(x) { + return x < 10 ? '0' + x : x; } -function formatTime(secs){ - if(secs > 3600){ - return pad2(Math.floor(secs/60/60)) + ":" + pad2(Math.floor(secs/60)%60) + ":" + pad2(Math.floor(secs)%60) - } else if(secs > 60){ - return pad2(Math.floor(secs/60)) + ":" + pad2(Math.floor(secs)%60) - } else{ - return Math.floor(secs) + "s" +function formatTime(secs) { + if (secs > 3600) { + return pad2(Math.floor(secs / 60 / 60)) + ":" + pad2(Math.floor(secs / 60) % 60) + ":" + pad2(Math.floor(secs) % 60); + } else if (secs > 60) { + return pad2(Math.floor(secs / 60)) + ":" + pad2(Math.floor(secs) % 60); + } else { + return Math.floor(secs) + "s"; } } -function setTitle(progress){ - var title = 'Stable Diffusion' +function setTitle(progress) { + var title = 'Stable Diffusion'; - if(opts.show_progress_in_title && progress){ + if (opts.show_progress_in_title && progress) { title = '[' + progress.trim() + '] ' + title; } - if(document.title != title){ + if (document.title != title) { document.title = title; } } -function randomId(){ - return "task(" + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7)+")" +function randomId() { + return "task(" + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + Math.random().toString(36).slice(2, 7) + ")"; } // starts sending progress requests to "/internal/progress" uri, creating progressbar above progressbarContainer element and // preview inside gallery element. Cleans up all created stuff when the task is over and calls atEnd. // calls onProgress every time there is a progress update -function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress, inactivityTimeout=40){ - var dateStart = new Date() - var wasEverActive = false - var parentProgressbar = progressbarContainer.parentNode - var parentGallery = gallery ? gallery.parentNode : null - - var divProgress = document.createElement('div') - divProgress.className='progressDiv' - divProgress.style.display = opts.show_progressbar ? "block" : "none" - var divInner = document.createElement('div') - divInner.className='progress' - - divProgress.appendChild(divInner) - parentProgressbar.insertBefore(divProgress, progressbarContainer) - - if(parentGallery){ - var livePreview = document.createElement('div') - livePreview.className='livePreview' - parentGallery.insertBefore(livePreview, gallery) +function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgress, inactivityTimeout = 40) { + var dateStart = new Date(); + var wasEverActive = false; + var parentProgressbar = progressbarContainer.parentNode; + var parentGallery = gallery ? gallery.parentNode : null; + + var divProgress = document.createElement('div'); + divProgress.className = 'progressDiv'; + divProgress.style.display = opts.show_progressbar ? "block" : "none"; + var divInner = document.createElement('div'); + divInner.className = 'progress'; + + divProgress.appendChild(divInner); + parentProgressbar.insertBefore(divProgress, progressbarContainer); + + if (parentGallery) { + var livePreview = document.createElement('div'); + livePreview.className = 'livePreview'; + parentGallery.insertBefore(livePreview, gallery); } - var removeProgressBar = function(){ - setTitle("") - parentProgressbar.removeChild(divProgress) - if(parentGallery) parentGallery.removeChild(livePreview) - atEnd() - } + var removeProgressBar = function() { + setTitle(""); + parentProgressbar.removeChild(divProgress); + if (parentGallery) parentGallery.removeChild(livePreview); + atEnd(); + }; - var fun = function(id_task, id_live_preview){ - request("./internal/progress", {"id_task": id_task, "id_live_preview": id_live_preview}, function(res){ - if(res.completed){ - removeProgressBar() - return + var fun = function(id_task, id_live_preview) { + request("./internal/progress", {id_task: id_task, id_live_preview: id_live_preview}, function(res) { + if (res.completed) { + removeProgressBar(); + return; } - var rect = progressbarContainer.getBoundingClientRect() + var rect = progressbarContainer.getBoundingClientRect(); - if(rect.width){ + if (rect.width) { divProgress.style.width = rect.width + "px"; } - let progressText = "" + let progressText = ""; - divInner.style.width = ((res.progress || 0) * 100.0) + '%' - divInner.style.background = res.progress ? "" : "transparent" + divInner.style.width = ((res.progress || 0) * 100.0) + '%'; + divInner.style.background = res.progress ? "" : "transparent"; - if(res.progress > 0){ - progressText = ((res.progress || 0) * 100.0).toFixed(0) + '%' + if (res.progress > 0) { + progressText = ((res.progress || 0) * 100.0).toFixed(0) + '%'; } - if(res.eta){ - progressText += " ETA: " + formatTime(res.eta) + if (res.eta) { + progressText += " ETA: " + formatTime(res.eta); } - setTitle(progressText) + setTitle(progressText); - if(res.textinfo && res.textinfo.indexOf("\n") == -1){ - progressText = res.textinfo + " " + progressText + if (res.textinfo && res.textinfo.indexOf("\n") == -1) { + progressText = res.textinfo + " " + progressText; } - divInner.textContent = progressText + divInner.textContent = progressText; - var elapsedFromStart = (new Date() - dateStart) / 1000 + var elapsedFromStart = (new Date() - dateStart) / 1000; - if(res.active) wasEverActive = true; + if (res.active) wasEverActive = true; - if(! res.active && wasEverActive){ - removeProgressBar() - return + if (!res.active && wasEverActive) { + removeProgressBar(); + return; } - if(elapsedFromStart > inactivityTimeout && !res.queued && !res.active){ - removeProgressBar() - return + if (elapsedFromStart > inactivityTimeout && !res.queued && !res.active) { + removeProgressBar(); + return; } - if(res.live_preview && gallery){ - var rect = gallery.getBoundingClientRect() - if(rect.width){ - livePreview.style.width = rect.width + "px" - livePreview.style.height = rect.height + "px" + if (res.live_preview && gallery) { + var rect = gallery.getBoundingClientRect(); + if (rect.width) { + livePreview.style.width = rect.width + "px"; + livePreview.style.height = rect.height + "px"; } var img = new Image(); img.onload = function() { - livePreview.appendChild(img) - if(livePreview.childElementCount > 2){ - livePreview.removeChild(livePreview.firstElementChild) + livePreview.appendChild(img); + if (livePreview.childElementCount > 2) { + livePreview.removeChild(livePreview.firstElementChild); } - } + }; img.src = res.live_preview; } - if(onProgress){ - onProgress(res) + if (onProgress) { + onProgress(res); } setTimeout(() => { fun(id_task, res.id_live_preview); - }, opts.live_preview_refresh_period || 500) - }, function(){ - removeProgressBar() - }) - } + }, opts.live_preview_refresh_period || 500); + }, function() { + removeProgressBar(); + }); + }; - fun(id_task, 0) + fun(id_task, 0); } diff --git a/javascript/textualInversion.js b/javascript/textualInversion.js index 0354b860..37e3d075 100644 --- a/javascript/textualInversion.js +++ b/javascript/textualInversion.js @@ -1,17 +1,17 @@ - - - -function start_training_textual_inversion(){ - gradioApp().querySelector('#ti_error').innerHTML='' - - var id = randomId() - requestProgress(id, gradioApp().getElementById('ti_output'), gradioApp().getElementById('ti_gallery'), function(){}, function(progress){ - gradioApp().getElementById('ti_progress').innerHTML = progress.textinfo - }) - - var res = args_to_array(arguments) - - res[0] = id - - return res -} + + + +function start_training_textual_inversion() { + gradioApp().querySelector('#ti_error').innerHTML = ''; + + var id = randomId(); + requestProgress(id, gradioApp().getElementById('ti_output'), gradioApp().getElementById('ti_gallery'), function() {}, function(progress) { + gradioApp().getElementById('ti_progress').innerHTML = progress.textinfo; + }); + + var res = args_to_array(arguments); + + res[0] = id; + + return res; +} diff --git a/javascript/ui.js b/javascript/ui.js index ed9673d6..f4727ca3 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -1,9 +1,9 @@ // various functions for interaction with ui.py not large enough to warrant putting them in separate files -function set_theme(theme){ - var gradioURL = window.location.href +function set_theme(theme) { + var gradioURL = window.location.href; if (!gradioURL.includes('?__theme=')) { - window.location.replace(gradioURL + '?__theme=' + theme); + window.location.replace(gradioURL + '?__theme=' + theme); } } @@ -14,7 +14,7 @@ function all_gallery_buttons() { if (elem.parentElement.offsetParent) { visibleGalleryButtons.push(elem); } - }) + }); return visibleGalleryButtons; } @@ -25,31 +25,35 @@ function selected_gallery_button() { if (elem.parentElement.offsetParent) { visibleCurrentButton = elem; } - }) + }); return visibleCurrentButton; } -function selected_gallery_index(){ +function selected_gallery_index() { var buttons = all_gallery_buttons(); var button = selected_gallery_button(); - var result = -1 - buttons.forEach(function(v, i){ if(v==button) { result = i } }) + var result = -1; + buttons.forEach(function(v, i) { + if (v == button) { + result = i; + } + }); - return result + return result; } -function extract_image_from_gallery(gallery){ - if (gallery.length == 0){ +function extract_image_from_gallery(gallery) { + if (gallery.length == 0) { return [null]; } - if (gallery.length == 1){ + if (gallery.length == 1) { return [gallery[0]]; } - var index = selected_gallery_index() + var index = selected_gallery_index(); - if (index < 0 || index >= gallery.length){ + if (index < 0 || index >= gallery.length) { // Use the first image in the gallery as the default index = 0; } @@ -57,248 +61,249 @@ function extract_image_from_gallery(gallery){ return [gallery[index]]; } -function args_to_array(args){ - var res = [] - for(var i=0;i label > textarea"); - if(counter.parentElement == prompt.parentElement){ - return + if (counter.parentElement == prompt.parentElement) { + return; } - prompt.parentElement.insertBefore(counter, prompt) - prompt.parentElement.style.position = "relative" + prompt.parentElement.insertBefore(counter, prompt); + prompt.parentElement.style.position = "relative"; - promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); } - textarea.addEventListener("input", promptTokecountUpdateFuncs[id]); + promptTokecountUpdateFuncs[id] = function() { + update_token_counter(id_button); + }; + textarea.addEventListener("input", promptTokecountUpdateFuncs[id]); } - registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button') - registerTextarea('txt2img_neg_prompt', 'txt2img_negative_token_counter', 'txt2img_negative_token_button') - registerTextarea('img2img_prompt', 'img2img_token_counter', 'img2img_token_button') - registerTextarea('img2img_neg_prompt', 'img2img_negative_token_counter', 'img2img_negative_token_button') - - var show_all_pages = gradioApp().getElementById('settings_show_all_pages') - var settings_tabs = gradioApp().querySelector('#settings div') - if(show_all_pages && settings_tabs){ - settings_tabs.appendChild(show_all_pages) - show_all_pages.onclick = function(){ - gradioApp().querySelectorAll('#settings > div').forEach(function(elem){ - if(elem.id == "settings_tab_licenses") + registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button'); + registerTextarea('txt2img_neg_prompt', 'txt2img_negative_token_counter', 'txt2img_negative_token_button'); + registerTextarea('img2img_prompt', 'img2img_token_counter', 'img2img_token_button'); + registerTextarea('img2img_neg_prompt', 'img2img_negative_token_counter', 'img2img_negative_token_button'); + + var show_all_pages = gradioApp().getElementById('settings_show_all_pages'); + var settings_tabs = gradioApp().querySelector('#settings div'); + if (show_all_pages && settings_tabs) { + settings_tabs.appendChild(show_all_pages); + show_all_pages.onclick = function() { + gradioApp().querySelectorAll('#settings > div').forEach(function(elem) { + if (elem.id == "settings_tab_licenses") { return; + } elem.style.display = "block"; - }) - } + }); + }; } -}) +}); -onOptionsChanged(function(){ - var elem = gradioApp().getElementById('sd_checkpoint_hash') - var sd_checkpoint_hash = opts.sd_checkpoint_hash || "" - var shorthash = sd_checkpoint_hash.substring(0,10) +onOptionsChanged(function() { + var elem = gradioApp().getElementById('sd_checkpoint_hash'); + var sd_checkpoint_hash = opts.sd_checkpoint_hash || ""; + var shorthash = sd_checkpoint_hash.substring(0, 10); - if(elem && elem.textContent != shorthash){ - elem.textContent = shorthash - elem.title = sd_checkpoint_hash - elem.href = "https://google.com/search?q=" + sd_checkpoint_hash - } -}) + if (elem && elem.textContent != shorthash) { + elem.textContent = shorthash; + elem.title = sd_checkpoint_hash; + elem.href = "https://google.com/search?q=" + sd_checkpoint_hash; + } +}); let txt2img_textarea, img2img_textarea = undefined; -let wait_time = 800 +let wait_time = 800; let token_timeouts = {}; function update_txt2img_tokens(...args) { - update_token_counter("txt2img_token_button") - if (args.length == 2) - return args[0] - return args; + update_token_counter("txt2img_token_button"); + if (args.length == 2) { + return args[0]; + } + return args; } function update_img2img_tokens(...args) { - update_token_counter("img2img_token_button") - if (args.length == 2) - return args[0] - return args; + update_token_counter("img2img_token_button"); + if (args.length == 2) { + return args[0]; + } + return args; } function update_token_counter(button_id) { - if (token_timeouts[button_id]) - clearTimeout(token_timeouts[button_id]); - token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); + if (token_timeouts[button_id]) { + clearTimeout(token_timeouts[button_id]); + } + token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); } -function restart_reload(){ - document.body.innerHTML='

Reloading...

'; +function restart_reload() { + document.body.innerHTML = '

Reloading...

'; - var requestPing = function(){ - requestGet("./internal/ping", {}, function(data){ + var requestPing = function() { + requestGet("./internal/ping", {}, function(data) { location.reload(); - }, function(){ + }, function() { setTimeout(requestPing, 500); - }) - } + }); + }; setTimeout(requestPing, 2000); - return [] + return []; } // Simulate an `input` DOM event for Gradio Textbox component. Needed after you edit its contents in javascript, otherwise your edits // will only visible on web page and not sent to python. -function updateInput(target){ - let e = new Event("input", { bubbles: true }) - Object.defineProperty(e, "target", {value: target}) - target.dispatchEvent(e); +function updateInput(target) { + let e = new Event("input", { bubbles: true }); + Object.defineProperty(e, "target", {value: target}); + target.dispatchEvent(e); } var desiredCheckpointName = null; -function selectCheckpoint(name){ +function selectCheckpoint(name) { desiredCheckpointName = name; - gradioApp().getElementById('change_checkpoint').click() + gradioApp().getElementById('change_checkpoint').click(); } -function currentImg2imgSourceResolution(_, _, scaleBy){ - var img = gradioApp().querySelector('#mode_img2img > div[style="display: block;"] img') - return img ? [img.naturalWidth, img.naturalHeight, scaleBy] : [0, 0, scaleBy] +function currentImg2imgSourceResolution(_, _, scaleBy) { + var img = gradioApp().querySelector('#mode_img2img > div[style="display: block;"] img'); + return img ? [img.naturalWidth, img.naturalHeight, scaleBy] : [0, 0, scaleBy]; } -function updateImg2imgResizeToTextAfterChangingImage(){ +function updateImg2imgResizeToTextAfterChangingImage() { // At the time this is called from gradio, the image has no yet been replaced. // There may be a better solution, but this is simple and straightforward so I'm going with it. setTimeout(function() { - gradioApp().getElementById('img2img_update_resize_to').click() + gradioApp().getElementById('img2img_update_resize_to').click(); }, 500); - return [] + return []; } diff --git a/javascript/ui_settings_hints.js b/javascript/ui_settings_hints.js index 6d1933dc..0db41b11 100644 --- a/javascript/ui_settings_hints.js +++ b/javascript/ui_settings_hints.js @@ -1,62 +1,62 @@ -// various hints and extra info for the settings tab - -settingsHintsSetup = false - -onOptionsChanged(function(){ - if(settingsHintsSetup) return - settingsHintsSetup = true - - gradioApp().querySelectorAll('#settings [id^=setting_]').forEach(function(div){ - var name = div.id.substr(8) - var commentBefore = opts._comments_before[name] - var commentAfter = opts._comments_after[name] - - if(! commentBefore && !commentAfter) return - - var span = null - if(div.classList.contains('gradio-checkbox')) span = div.querySelector('label span') - else if(div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span').firstChild - else if(div.classList.contains('gradio-radio')) span = div.querySelector('span').firstChild - else span = div.querySelector('label span').firstChild - - if(!span) return - - if(commentBefore){ - var comment = document.createElement('DIV') - comment.className = 'settings-comment' - comment.innerHTML = commentBefore - span.parentElement.insertBefore(document.createTextNode('\xa0'), span) - span.parentElement.insertBefore(comment, span) - span.parentElement.insertBefore(document.createTextNode('\xa0'), span) - } - if(commentAfter){ - var comment = document.createElement('DIV') - comment.className = 'settings-comment' - comment.innerHTML = commentAfter - span.parentElement.insertBefore(comment, span.nextSibling) - span.parentElement.insertBefore(document.createTextNode('\xa0'), span.nextSibling) - } - }) -}) - -function settingsHintsShowQuicksettings(){ - requestGet("./internal/quicksettings-hint", {}, function(data){ - var table = document.createElement('table') - table.className = 'settings-value-table' - - data.forEach(function(obj){ - var tr = document.createElement('tr') - var td = document.createElement('td') - td.textContent = obj.name - tr.appendChild(td) - - var td = document.createElement('td') - td.textContent = obj.label - tr.appendChild(td) - - table.appendChild(tr) - }) - - popup(table); - }) -} +// various hints and extra info for the settings tab + +settingsHintsSetup = false; + +onOptionsChanged(function() { + if (settingsHintsSetup) return; + settingsHintsSetup = true; + + gradioApp().querySelectorAll('#settings [id^=setting_]').forEach(function(div) { + var name = div.id.substr(8); + var commentBefore = opts._comments_before[name]; + var commentAfter = opts._comments_after[name]; + + if (!commentBefore && !commentAfter) return; + + var span = null; + if (div.classList.contains('gradio-checkbox')) span = div.querySelector('label span'); + else if (div.classList.contains('gradio-checkboxgroup')) span = div.querySelector('span').firstChild; + else if (div.classList.contains('gradio-radio')) span = div.querySelector('span').firstChild; + else span = div.querySelector('label span').firstChild; + + if (!span) return; + + if (commentBefore) { + var comment = document.createElement('DIV'); + comment.className = 'settings-comment'; + comment.innerHTML = commentBefore; + span.parentElement.insertBefore(document.createTextNode('\xa0'), span); + span.parentElement.insertBefore(comment, span); + span.parentElement.insertBefore(document.createTextNode('\xa0'), span); + } + if (commentAfter) { + var comment = document.createElement('DIV'); + comment.className = 'settings-comment'; + comment.innerHTML = commentAfter; + span.parentElement.insertBefore(comment, span.nextSibling); + span.parentElement.insertBefore(document.createTextNode('\xa0'), span.nextSibling); + } + }); +}); + +function settingsHintsShowQuicksettings() { + requestGet("./internal/quicksettings-hint", {}, function(data) { + var table = document.createElement('table'); + table.className = 'settings-value-table'; + + data.forEach(function(obj) { + var tr = document.createElement('tr'); + var td = document.createElement('td'); + td.textContent = obj.name; + tr.appendChild(td); + + var td = document.createElement('td'); + td.textContent = obj.label; + tr.appendChild(td); + + table.appendChild(tr); + }); + + popup(table); + }); +} diff --git a/script.js b/script.js index 03afe844..f6a3883a 100644 --- a/script.js +++ b/script.js @@ -1,66 +1,72 @@ function gradioApp() { - const elems = document.getElementsByTagName('gradio-app') - const elem = elems.length == 0 ? document : elems[0] + const elems = document.getElementsByTagName('gradio-app'); + const elem = elems.length == 0 ? document : elems[0]; - if (elem !== document) elem.getElementById = function(id){ return document.getElementById(id) } - return elem.shadowRoot ? elem.shadowRoot : elem + if (elem !== document) { + elem.getElementById = function(id) { + return document.getElementById(id); + }; + } + return elem.shadowRoot ? elem.shadowRoot : elem; } function get_uiCurrentTab() { - return gradioApp().querySelector('#tabs button.selected') + return gradioApp().querySelector('#tabs button.selected'); } function get_uiCurrentTabContent() { - return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])') + return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])'); } -uiUpdateCallbacks = [] -uiLoadedCallbacks = [] -uiTabChangeCallbacks = [] -optionsChangedCallbacks = [] -let uiCurrentTab = null +uiUpdateCallbacks = []; +uiLoadedCallbacks = []; +uiTabChangeCallbacks = []; +optionsChangedCallbacks = []; +let uiCurrentTab = null; -function onUiUpdate(callback){ - uiUpdateCallbacks.push(callback) +function onUiUpdate(callback) { + uiUpdateCallbacks.push(callback); } -function onUiLoaded(callback){ - uiLoadedCallbacks.push(callback) +function onUiLoaded(callback) { + uiLoadedCallbacks.push(callback); } -function onUiTabChange(callback){ - uiTabChangeCallbacks.push(callback) +function onUiTabChange(callback) { + uiTabChangeCallbacks.push(callback); } -function onOptionsChanged(callback){ - optionsChangedCallbacks.push(callback) +function onOptionsChanged(callback) { + optionsChangedCallbacks.push(callback); } -function runCallback(x, m){ +function runCallback(x, m) { try { - x(m) + x(m); } catch (e) { (console.error || console.log).call(console, e.message, e); } } function executeCallbacks(queue, m) { - queue.forEach(function(x){runCallback(x, m)}) + queue.forEach(function(x) { + runCallback(x, m); + }); } var executedOnLoaded = false; document.addEventListener("DOMContentLoaded", function() { - var mutationObserver = new MutationObserver(function(m){ - if(!executedOnLoaded && gradioApp().querySelector('#txt2img_prompt')){ + var mutationObserver = new MutationObserver(function(m) { + if (!executedOnLoaded && gradioApp().querySelector('#txt2img_prompt')) { executedOnLoaded = true; executeCallbacks(uiLoadedCallbacks); } executeCallbacks(uiUpdateCallbacks, m); const newTab = get_uiCurrentTab(); - if ( newTab && ( newTab !== uiCurrentTab ) ) { + if (newTab && (newTab !== uiCurrentTab)) { uiCurrentTab = newTab; executeCallbacks(uiTabChangeCallbacks); } }); - mutationObserver.observe( gradioApp(), { childList:true, subtree:true }) + mutationObserver.observe(gradioApp(), { childList: true, subtree: true }); }); /** @@ -69,9 +75,9 @@ document.addEventListener("DOMContentLoaded", function() { document.addEventListener('keydown', function(e) { var handled = false; if (e.key !== undefined) { - if((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; + if ((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; } else if (e.keyCode !== undefined) { - if((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; + if ((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; } if (handled) { button = get_uiCurrentTabContent().querySelector('button[id$=_generate]'); @@ -80,22 +86,22 @@ document.addEventListener('keydown', function(e) { } e.preventDefault(); } -}) +}); /** * checks that a UI element is not in another hidden element or tab content */ function uiElementIsVisible(el) { let isVisible = !el.closest('.\\!hidden'); - if ( ! isVisible ) { + if (!isVisible) { return false; } - while( isVisible = el.closest('.tabitem')?.style.display !== 'none' ) { - if ( ! isVisible ) { + while (isVisible = el.closest('.tabitem')?.style.display !== 'none') { + if (!isVisible) { return false; - } else if ( el.parentElement ) { - el = el.parentElement + } else if (el.parentElement) { + el = el.parentElement; } else { break; } -- cgit v1.2.3 From 57b75f4a037658c1122aa092d1775ac52036b2cf Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 18 May 2023 09:59:10 +0300 Subject: eslint related file edits --- .../javascript/prompt-bracket-checker.js | 2 +- javascript/aspectRatioOverlay.js | 14 +++++------ javascript/contextMenus.js | 10 ++++---- javascript/extraNetworks.js | 4 +-- javascript/generationParams.js | 2 +- javascript/hints.js | 4 +-- javascript/imageMaskFix.js | 1 - javascript/imageviewer.js | 7 +----- javascript/localization.js | 29 +++++++++++----------- javascript/progressbar.js | 4 +-- javascript/ui.js | 22 ++++++---------- javascript/ui_settings_hints.js | 6 ++--- script.js | 16 ++++++------ 13 files changed, 54 insertions(+), 67 deletions(-) (limited to 'extensions-builtin') diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js index ed9baf9d..114cf94c 100644 --- a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js @@ -5,7 +5,7 @@ function checkBrackets(textArea, counterElt) { var counts = {}; - (textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => { + (textArea.value.match(/[(){}[\]]/g) || []).forEach(bracket => { counts[bracket] = (counts[bracket] || 0) + 1; }); var errors = []; diff --git a/javascript/aspectRatioOverlay.js b/javascript/aspectRatioOverlay.js index 059338d6..1c08a1a9 100644 --- a/javascript/aspectRatioOverlay.js +++ b/javascript/aspectRatioOverlay.js @@ -50,21 +50,21 @@ function dimensionChange(e, is_width, is_height) { var scaledx = targetElement.naturalWidth * viewportscale; var scaledy = targetElement.naturalHeight * viewportscale; - var cleintRectTop = (viewportOffset.top + window.scrollY); - var cleintRectLeft = (viewportOffset.left + window.scrollX); - var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight / 2); + var cleintRectTop = (viewportOffset.top + window.scrollY); + var cleintRectLeft = (viewportOffset.left + window.scrollX); + var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight / 2); var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth / 2); var arscale = Math.min(scaledx / currentWidth, scaledy / currentHeight); var arscaledx = currentWidth * arscale; var arscaledy = currentHeight * arscale; - var arRectTop = cleintRectCentreY - (arscaledy / 2); - var arRectLeft = cleintRectCentreX - (arscaledx / 2); - var arRectWidth = arscaledx; + var arRectTop = cleintRectCentreY - (arscaledy / 2); + var arRectLeft = cleintRectCentreX - (arscaledx / 2); + var arRectWidth = arscaledx; var arRectHeight = arscaledy; - arPreviewRect.style.top = arRectTop + 'px'; + arPreviewRect.style.top = arRectTop + 'px'; arPreviewRect.style.left = arRectLeft + 'px'; arPreviewRect.style.width = arRectWidth + 'px'; arPreviewRect.style.height = arRectHeight + 'px'; diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js index f7a15cae..f14af1d4 100644 --- a/javascript/contextMenus.js +++ b/javascript/contextMenus.js @@ -1,5 +1,5 @@ -contextMenuInit = function() { +var contextMenuInit = function() { let eventListenerApplied = false; let menuSpecs = new Map(); @@ -126,10 +126,10 @@ contextMenuInit = function() { return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]; }; -initResponse = contextMenuInit(); -appendContextMenuOption = initResponse[0]; -removeContextMenuOption = initResponse[1]; -addContextMenuEventListener = initResponse[2]; +var initResponse = contextMenuInit(); +var appendContextMenuOption = initResponse[0]; +var removeContextMenuOption = initResponse[1]; +var addContextMenuEventListener = initResponse[2]; (function() { //Start example Context Menu Items diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js index 0c80fa74..aafe0a00 100644 --- a/javascript/extraNetworks.js +++ b/javascript/extraNetworks.js @@ -63,8 +63,8 @@ function setupExtraNetworks() { onUiLoaded(setupExtraNetworks); -var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/; -var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g; +var re_extranet = /<([^:]+:[^:]+):[\d.]+>/; +var re_extranet_g = /\s+<([^:]+:[^:]+):[\d.]+>/g; function tryToRemoveExtraNetworkFromPrompt(textarea, text) { var m = text.match(re_extranet); diff --git a/javascript/generationParams.js b/javascript/generationParams.js index f9e84e70..a877f8a5 100644 --- a/javascript/generationParams.js +++ b/javascript/generationParams.js @@ -10,7 +10,7 @@ onUiUpdate(function() { } if (!modal) { modal = gradioApp().getElementById('lightboxModal'); - modalObserver.observe(modal, { attributes: true, attributeFilter: ['style'] }); + modalObserver.observe(modal, {attributes: true, attributeFilter: ['style']}); } }); diff --git a/javascript/hints.js b/javascript/hints.js index 477b7d80..88e550ef 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -1,6 +1,6 @@ // mouseover tooltips for various UI elements -titles = { +var titles = { "Sampling steps": "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results", "Sampling method": "Which algorithm to use to produce the image", "GFPGAN": "Restore low quality faces using GFPGAN neural network", @@ -118,7 +118,7 @@ titles = { onUiUpdate(function() { gradioApp().querySelectorAll('span, button, select, p').forEach(function(span) { - if (span.title) return; // already has a title + if (span.title) return; // already has a title let tooltip = localization[titles[span.textContent]] || titles[span.textContent]; diff --git a/javascript/imageMaskFix.js b/javascript/imageMaskFix.js index 91a6377b..3c9b8a6f 100644 --- a/javascript/imageMaskFix.js +++ b/javascript/imageMaskFix.js @@ -5,7 +5,6 @@ function imageMaskResize() { const canvases = gradioApp().querySelectorAll('#img2maskimg .touch-none canvas'); if (!canvases.length) { - canvases_fixed = false; // TODO: this is unused..? window.removeEventListener('resize', imageMaskResize); return; } diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index ecd12379..78e24eb9 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -37,6 +37,7 @@ function updateOnBackgroundChange() { if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) { modalImage.src = currentButton.children[0].src; if (modalImage.style.display === 'none') { + const modal = gradioApp().getElementById("lightboxModal"); modal.style.setProperty('background-image', `url(${modalImage.src})`); } } @@ -169,12 +170,6 @@ function modalTileImageToggle(event) { event.stopPropagation(); } -function galleryImageHandler(e) { - //if (e && e.parentElement.tagName == 'BUTTON') { - e.onclick = showGalleryImage; - //} -} - onUiUpdate(function() { var fullImg_preview = gradioApp().querySelectorAll('.gradio-gallery > div > img'); if (fullImg_preview != null) { diff --git a/javascript/localization.js b/javascript/localization.js index 3d043a9a..eb22b8a7 100644 --- a/javascript/localization.js +++ b/javascript/localization.js @@ -1,10 +1,9 @@ // localization = {} -- the dict with translations is created by the backend -ignore_ids_for_localization = { +var ignore_ids_for_localization = { setting_sd_hypernetwork: 'OPTION', setting_sd_model_checkpoint: 'OPTION', - setting_realesrgan_enabled_models: 'OPTION', modelmerger_primary_model_name: 'OPTION', modelmerger_secondary_model_name: 'OPTION', modelmerger_tertiary_model_name: 'OPTION', @@ -19,11 +18,11 @@ ignore_ids_for_localization = { extras_upscaler_2: 'SPAN', }; -re_num = /^[\.\d]+$/; -re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u; +var re_num = /^[.\d]+$/; +var re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u; -original_lines = {}; -translated_lines = {}; +var original_lines = {}; +var translated_lines = {}; function hasLocalization() { return window.localization && Object.keys(window.localization).length > 0; @@ -31,7 +30,7 @@ function hasLocalization() { function textNodesUnder(el) { var n, a = [], walk = document.createTreeWalker(el, NodeFilter.SHOW_TEXT, null, false); - while (n = walk.nextNode()) a.push(n); + while ((n = walk.nextNode())) a.push(n); return a; } @@ -64,7 +63,7 @@ function getTranslation(text) { original_lines[text] = 1; } - tl = localization[text]; + var tl = localization[text]; if (tl !== undefined) { translated_lines[tl] = 1; } @@ -77,7 +76,7 @@ function processTextNode(node) { if (!canBeTranslated(node, text)) return; - tl = getTranslation(text); + var tl = getTranslation(text); if (tl !== undefined) { node.textContent = tl; } @@ -90,14 +89,14 @@ function processNode(node) { } if (node.title) { - tl = getTranslation(node.title); + let tl = getTranslation(node.title); if (tl !== undefined) { node.title = tl; } } if (node.placeholder) { - tl = getTranslation(node.placeholder); + let tl = getTranslation(node.placeholder); if (tl !== undefined) { node.placeholder = tl; } @@ -157,21 +156,21 @@ document.addEventListener("DOMContentLoaded", function() { processNode(gradioApp()); - if (localization.rtl) { // if the language is from right to left, + if (localization.rtl) { // if the language is from right to left, (new MutationObserver((mutations, observer) => { // wait for the style to load mutations.forEach(mutation => { mutation.addedNodes.forEach(node => { if (node.tagName === 'STYLE') { observer.disconnect(); - for (const x of node.sheet.rules) { // find all rtl media rules + for (const x of node.sheet.rules) { // find all rtl media rules if (Array.from(x.media || []).includes('rtl')) { - x.media.appendMedium('all'); // enable them + x.media.appendMedium('all'); // enable them } } } }); }); - })).observe(gradioApp(), { childList: true }); + })).observe(gradioApp(), {childList: true}); } }); diff --git a/javascript/progressbar.js b/javascript/progressbar.js index cd273e48..29299787 100644 --- a/javascript/progressbar.js +++ b/javascript/progressbar.js @@ -53,7 +53,7 @@ function setTitle(progress) { } if (document.title != title) { - document.title = title; + document.title = title; } } @@ -144,7 +144,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre if (res.live_preview && gallery) { - var rect = gallery.getBoundingClientRect(); + rect = gallery.getBoundingClientRect(); if (rect.width) { livePreview.style.width = rect.width + "px"; livePreview.style.height = rect.height + "px"; diff --git a/javascript/ui.js b/javascript/ui.js index f4727ca3..133d6ff3 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -99,13 +99,6 @@ function switch_to_inpaint_sketch() { return args_to_array(arguments); } -function switch_to_inpaint() { - gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click(); - gradioApp().getElementById('mode_img2img').querySelectorAll('button')[2].click(); - - return args_to_array(arguments); -} - function switch_to_extras() { gradioApp().querySelector('#tabs').querySelectorAll('button')[2].click(); @@ -172,7 +165,6 @@ function showRestoreProgressButton(tabname, show) { } function submit() { - rememberGallerySelection('txt2img_gallery'); showSubmitButtons('txt2img', false); var id = randomId(); @@ -192,7 +184,6 @@ function submit() { } function submit_img2img() { - rememberGallerySelection('img2img_gallery'); showSubmitButtons('img2img', false); var id = randomId(); @@ -273,7 +264,7 @@ function confirm_clear_prompt(prompt, negative_prompt) { } -promptTokecountUpdateFuncs = {}; +var promptTokecountUpdateFuncs = {}; function recalculatePromptTokens(name) { if (promptTokecountUpdateFuncs[name]) { @@ -304,7 +295,8 @@ onUiUpdate(function() { var textarea = json_elem.querySelector('textarea'); var jsdata = textarea.value; opts = JSON.parse(jsdata); - executeCallbacks(optionsChangedCallbacks); + + executeCallbacks(optionsChangedCallbacks); /*global optionsChangedCallbacks*/ Object.defineProperty(textarea, 'value', { set: function(newValue) { @@ -390,7 +382,9 @@ function update_txt2img_tokens(...args) { } function update_img2img_tokens(...args) { - update_token_counter("img2img_token_button"); + update_token_counter( + "img2img_token_button" + ); if (args.length == 2) { return args[0]; } @@ -423,7 +417,7 @@ function restart_reload() { // Simulate an `input` DOM event for Gradio Textbox component. Needed after you edit its contents in javascript, otherwise your edits // will only visible on web page and not sent to python. function updateInput(target) { - let e = new Event("input", { bubbles: true }); + let e = new Event("input", {bubbles: true}); Object.defineProperty(e, "target", {value: target}); target.dispatchEvent(e); } @@ -435,7 +429,7 @@ function selectCheckpoint(name) { gradioApp().getElementById('change_checkpoint').click(); } -function currentImg2imgSourceResolution(_, _, scaleBy) { +function currentImg2imgSourceResolution(w, h, scaleBy) { var img = gradioApp().querySelector('#mode_img2img > div[style="display: block;"] img'); return img ? [img.naturalWidth, img.naturalHeight, scaleBy] : [0, 0, scaleBy]; } diff --git a/javascript/ui_settings_hints.js b/javascript/ui_settings_hints.js index 0db41b11..e216852b 100644 --- a/javascript/ui_settings_hints.js +++ b/javascript/ui_settings_hints.js @@ -1,6 +1,6 @@ // various hints and extra info for the settings tab -settingsHintsSetup = false; +var settingsHintsSetup = false; onOptionsChanged(function() { if (settingsHintsSetup) return; @@ -30,7 +30,7 @@ onOptionsChanged(function() { span.parentElement.insertBefore(document.createTextNode('\xa0'), span); } if (commentAfter) { - var comment = document.createElement('DIV'); + comment = document.createElement('DIV'); comment.className = 'settings-comment'; comment.innerHTML = commentAfter; span.parentElement.insertBefore(comment, span.nextSibling); @@ -50,7 +50,7 @@ function settingsHintsShowQuicksettings() { td.textContent = obj.name; tr.appendChild(td); - var td = document.createElement('td'); + td = document.createElement('td'); td.textContent = obj.label; tr.appendChild(td); diff --git a/script.js b/script.js index f6a3883a..db4d9157 100644 --- a/script.js +++ b/script.js @@ -18,11 +18,11 @@ function get_uiCurrentTabContent() { return gradioApp().querySelector('.tabitem[id^=tab_]:not([style*="display: none"])'); } -uiUpdateCallbacks = []; -uiLoadedCallbacks = []; -uiTabChangeCallbacks = []; -optionsChangedCallbacks = []; -let uiCurrentTab = null; +var uiUpdateCallbacks = []; +var uiLoadedCallbacks = []; +var uiTabChangeCallbacks = []; +var optionsChangedCallbacks = []; +var uiCurrentTab = null; function onUiUpdate(callback) { uiUpdateCallbacks.push(callback); @@ -66,7 +66,7 @@ document.addEventListener("DOMContentLoaded", function() { executeCallbacks(uiTabChangeCallbacks); } }); - mutationObserver.observe(gradioApp(), { childList: true, subtree: true }); + mutationObserver.observe(gradioApp(), {childList: true, subtree: true}); }); /** @@ -80,7 +80,7 @@ document.addEventListener('keydown', function(e) { if ((e.keyCode == 13 && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; } if (handled) { - button = get_uiCurrentTabContent().querySelector('button[id$=_generate]'); + var button = get_uiCurrentTabContent().querySelector('button[id$=_generate]'); if (button) { button.click(); } @@ -97,7 +97,7 @@ function uiElementIsVisible(el) { return false; } - while (isVisible = el.closest('.tabitem')?.style.display !== 'none') { + while ((isVisible = el.closest('.tabitem')?.style.display) !== 'none') { if (!isVisible) { return false; } else if (el.parentElement) { -- cgit v1.2.3