From 762265eab58cdb8f2d6398769bab43d8b8db0075 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 10 May 2023 07:52:45 +0300
Subject: autofixes from ruff
---
modules/api/api.py | 14 +++++++-------
1 file changed, 7 insertions(+), 7 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 9bb95dfd..d47c39fc 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -60,7 +60,7 @@ def decode_base64_to_image(encoding):
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
- except Exception as err:
+ except Exception:
raise HTTPException(status_code=500, detail="Invalid encoded image")
def encode_pil_to_base64(image):
@@ -264,11 +264,11 @@ class Api:
if request.alwayson_scripts and (len(request.alwayson_scripts) > 0):
for alwayson_script_name in request.alwayson_scripts.keys():
alwayson_script = self.get_script(alwayson_script_name, script_runner)
- if alwayson_script == None:
+ if alwayson_script is None:
raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
# Selectable script in always on script param check
- if alwayson_script.alwayson == False:
- raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params")
+ if alwayson_script.alwayson is False:
+ raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params")
# always on script with no arg should always run so you don't really need to add them to the requests
if "args" in request.alwayson_scripts[alwayson_script_name]:
# min between arg length in scriptrunner and arg length in the request
@@ -310,7 +310,7 @@ class Api:
p.outpath_samples = opts.outdir_txt2img_samples
shared.state.begin()
- if selectable_scripts != None:
+ if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
else:
@@ -367,7 +367,7 @@ class Api:
p.outpath_samples = opts.outdir_img2img_samples
shared.state.begin()
- if selectable_scripts != None:
+ if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
else:
@@ -642,7 +642,7 @@ class Api:
sd_hijack.apply_optimizations()
shared.state.end()
return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
- except AssertionError as msg:
+ except AssertionError:
shared.state.end()
return TrainResponse(info=f"train embedding error: {error}")
--
cgit v1.2.3
From 96d6ca4199e7c5eee8d451618de5161cea317c40 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 10 May 2023 08:25:25 +0300
Subject: manual fixes for ruff
---
extensions-builtin/LDSR/ldsr_model_arch.py | 2 +-
extensions-builtin/LDSR/scripts/ldsr_model.py | 3 +-
extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +-
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 26 ++---
extensions-builtin/ScuNET/scunet_model_arch.py | 9 +-
extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +-
modules/api/api.py | 129 +++++++++++-----------
modules/api/models.py | 5 +-
modules/codeformer/codeformer_arch.py | 2 +-
modules/esrgan_model_arch.py | 2 +
modules/extra_networks_hypernet.py | 2 +-
modules/images.py | 4 +-
modules/img2img.py | 1 -
modules/interrogate.py | 1 -
modules/modelloader.py | 6 +-
modules/models/diffusion/ddpm_edit.py | 26 ++---
modules/models/diffusion/uni_pc/sampler.py | 3 +-
modules/processing.py | 2 +-
modules/prompt_parser.py | 11 +-
modules/textual_inversion/autocrop.py | 2 +-
modules/ui.py | 8 +-
modules/upscaler.py | 2 +-
22 files changed, 129 insertions(+), 129 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index 2339de7f..a5fb8907 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -243,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
- except:
+ except Exception:
pass
log["sample"] = x_sample
diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
index da19cff1..e8dc083c 100644
--- a/extensions-builtin/LDSR/scripts/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks
-import sd_hijack_autoencoder, sd_hijack_ddpm_v1
+import sd_hijack_autoencoder
+import sd_hijack_ddpm_v1
class UpscalerLDSR(Upscaler):
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index db2231dd..6303fed5 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -1,16 +1,21 @@
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
-
+import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
+
+from torch.optim.lr_scheduler import LambdaLR
+
+from ldm.modules.ema import LitEma
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config
import ldm.models.autoencoder
+from packaging import version
class VQModel(pl.LightningModule):
def __init__(self,
@@ -249,7 +254,8 @@ class VQModel(pl.LightningModule):
if plot_ema:
with self.ema_scope():
xrec_ema, _ = self(x)
- if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
+ if x.shape[1] > 3:
+ xrec_ema = self.to_rgb(xrec_ema)
log["reconstructions_ema"] = xrec_ema
return log
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index 5c0488e5..4d3f6c56 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -450,7 +450,7 @@ class LatentDiffusionV1(DDPMV1):
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
- except:
+ except Exception:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
@@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1):
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
- def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
- def rescale_bbox(bbox):
- x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
- y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
- w = min(bbox[2] / crop_coordinates[2], 1 - x0)
- h = min(bbox[3] / crop_coordinates[3], 1 - y0)
- return x0, y0, w, h
-
- return [rescale_bbox(b) for b in bboxes]
-
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
@@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
+ if callback:
+ callback(i)
+ if img_callback:
+ img_callback(img, i)
return img, intermediates
@torch.no_grad()
@@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
+ if callback:
+ callback(i)
+ if img_callback:
+ img_callback(img, i)
if return_intermediates:
return img, intermediates
@@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1):
if inpaint:
# make a simple center square
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ h, w = z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py
index 43ca8d36..8028918a 100644
--- a/extensions-builtin/ScuNET/scunet_model_arch.py
+++ b/extensions-builtin/ScuNET/scunet_model_arch.py
@@ -61,7 +61,9 @@ class WMSA(nn.Module):
Returns:
output: tensor shape [b h w c]
"""
- if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
+ if self.type != 'W':
+ x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
+
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
@@ -85,8 +87,9 @@ class WMSA(nn.Module):
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
- if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
- dims=(1, 2))
+ if self.type != 'W':
+ output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2))
+
return output
def relative_embedding(self):
diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py
index e8783bca..d77c3a92 100644
--- a/extensions-builtin/SwinIR/scripts/swinir_model.py
+++ b/extensions-builtin/SwinIR/scripts/swinir_model.py
@@ -45,7 +45,7 @@ class UpscalerSwinIR(Upscaler):
img = upscale(img, model)
try:
torch.cuda.empty_cache()
- except:
+ except Exception:
pass
return img
diff --git a/modules/api/api.py b/modules/api/api.py
index d47c39fc..f52d371b 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -15,7 +15,8 @@ from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
-from modules.api.models import *
+from modules.api import models
+from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
@@ -25,20 +26,21 @@ from modules.sd_models import checkpoints_list, unload_model_weights, reload_mod
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
-from typing import List
+from typing import Dict, List, Any
import piexif
import piexif.helper
+
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}")
+ except Exception:
+ raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}")
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
- except:
+ except Exception:
raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
def validate_sampler_name(name):
@@ -99,7 +101,7 @@ def api_middleware(app: FastAPI):
import starlette # importing just so it can be placed on silent list
from rich.console import Console
console = Console()
- except:
+ except Exception:
import traceback
rich_available = False
@@ -166,36 +168,36 @@ class Api:
self.app = app
self.queue_lock = queue_lock
api_middleware(self.app)
- self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
- self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
- self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
- self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
- self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
- self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
+ self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse)
+ self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse)
+ self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse)
+ self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse)
+ self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse)
+ self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse)
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
- self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
+ self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel)
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
- self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
- self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
- self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
- self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
- self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
- self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
- self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
- self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
- self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
+ self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
+ self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
+ self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
+ self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
+ self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
+ self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
+ self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
+ self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
+ self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
- self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
- self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
- self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
- self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
- self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
- self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse)
+ self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
+ self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
+ self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
+ self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
+ self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
+ self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
- self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList)
+ self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -224,7 +226,7 @@ class Api:
t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
- return ScriptsList(txt2img = t2ilist, img2img = i2ilist)
+ return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist)
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
@@ -276,7 +278,7 @@ class Api:
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
return script_args
- def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
+ def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
script_runner = scripts.scripts_txt2img
if not script_runner.scripts:
script_runner.initialize_scripts(False)
@@ -320,9 +322,9 @@ class Api:
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
- return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
+ return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
- def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
+ def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
@@ -381,9 +383,9 @@ class Api:
img2imgreq.init_images = None
img2imgreq.mask = None
- return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
+ return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
- def extras_single_image_api(self, req: ExtrasSingleImageRequest):
+ def extras_single_image_api(self, req: models.ExtrasSingleImageRequest):
reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
@@ -391,9 +393,9 @@ class Api:
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
- return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
+ return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
- def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
+ def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
image_list = reqDict.pop('imageList', [])
@@ -402,15 +404,15 @@ class Api:
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
- return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
+ return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
- def pnginfoapi(self, req: PNGInfoRequest):
+ def pnginfoapi(self, req: models.PNGInfoRequest):
if(not req.image.strip()):
- return PNGInfoResponse(info="")
+ return models.PNGInfoResponse(info="")
image = decode_base64_to_image(req.image.strip())
if image is None:
- return PNGInfoResponse(info="")
+ return models.PNGInfoResponse(info="")
geninfo, items = images.read_info_from_image(image)
if geninfo is None:
@@ -418,13 +420,13 @@ class Api:
items = {**{'parameters': geninfo}, **items}
- return PNGInfoResponse(info=geninfo, items=items)
+ return models.PNGInfoResponse(info=geninfo, items=items)
- def progressapi(self, req: ProgressRequest = Depends()):
+ def progressapi(self, req: models.ProgressRequest = Depends()):
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
- return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
+ return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)
# avoid dividing zero
progress = 0.01
@@ -446,9 +448,9 @@ class Api:
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
- return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
+ return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
- def interrogateapi(self, interrogatereq: InterrogateRequest):
+ def interrogateapi(self, interrogatereq: models.InterrogateRequest):
image_b64 = interrogatereq.image
if image_b64 is None:
raise HTTPException(status_code=404, detail="Image not found")
@@ -465,7 +467,7 @@ class Api:
else:
raise HTTPException(status_code=404, detail="Model not found")
- return InterrogateResponse(caption=processed)
+ return models.InterrogateResponse(caption=processed)
def interruptapi(self):
shared.state.interrupt()
@@ -570,36 +572,36 @@ class Api:
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
- return CreateResponse(info=f"create embedding filename: {filename}")
+ return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e:
shared.state.end()
- return TrainResponse(info=f"create embedding error: {e}")
+ return models.TrainResponse(info=f"create embedding error: {e}")
def create_hypernetwork(self, args: dict):
try:
shared.state.begin()
filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
- return CreateResponse(info=f"create hypernetwork filename: {filename}")
+ return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e:
shared.state.end()
- return TrainResponse(info=f"create hypernetwork error: {e}")
+ return models.TrainResponse(info=f"create hypernetwork error: {e}")
def preprocess(self, args: dict):
try:
shared.state.begin()
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
- return PreprocessResponse(info = 'preprocess complete')
+ return models.PreprocessResponse(info = 'preprocess complete')
except KeyError as e:
shared.state.end()
- return PreprocessResponse(info=f"preprocess error: invalid token: {e}")
+ return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
except AssertionError as e:
shared.state.end()
- return PreprocessResponse(info=f"preprocess error: {e}")
+ return models.PreprocessResponse(info=f"preprocess error: {e}")
except FileNotFoundError as e:
shared.state.end()
- return PreprocessResponse(info=f'preprocess error: {e}')
+ return models.PreprocessResponse(info=f'preprocess error: {e}')
def train_embedding(self, args: dict):
try:
@@ -617,10 +619,10 @@ class Api:
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
- return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
+ return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError as msg:
shared.state.end()
- return TrainResponse(info=f"train embedding error: {msg}")
+ return models.TrainResponse(info=f"train embedding error: {msg}")
def train_hypernetwork(self, args: dict):
try:
@@ -641,14 +643,15 @@ class Api:
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
- return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
+ return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
except AssertionError:
shared.state.end()
- return TrainResponse(info=f"train embedding error: {error}")
+ return models.TrainResponse(info=f"train embedding error: {error}")
def get_memory(self):
try:
- import os, psutil
+ import os
+ import psutil
process = psutil.Process(os.getpid())
res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
@@ -675,10 +678,10 @@ class Api:
'events': warnings,
}
else:
- cuda = { 'error': 'unavailable' }
+ cuda = {'error': 'unavailable'}
except Exception as err:
- cuda = { 'error': f'{err}' }
- return MemoryResponse(ram = ram, cuda = cuda)
+ cuda = {'error': f'{err}'}
+ return models.MemoryResponse(ram=ram, cuda=cuda)
def launch(self, server_name, port):
self.app.include_router(self.router)
diff --git a/modules/api/models.py b/modules/api/models.py
index 4a70f440..4d291076 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -223,8 +223,9 @@ for key in _options:
if(_options[key].dest != 'help'):
flag = _options[key]
_type = str
- if _options[key].default is not None: _type = type(_options[key].default)
- flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
+ if _options[key].default is not None:
+ _type = type(_options[key].default)
+ flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))})
FlagsModel = create_model("Flags", **flags)
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py
index 11dcc3ee..f1a7cf09 100644
--- a/modules/codeformer/codeformer_arch.py
+++ b/modules/codeformer/codeformer_arch.py
@@ -7,7 +7,7 @@ from torch import nn, Tensor
import torch.nn.functional as F
from typing import Optional, List
-from modules.codeformer.vqgan_arch import *
+from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock
from basicsr.utils import get_root_logger
from basicsr.utils.registry import ARCH_REGISTRY
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py
index 6071fea7..7f8bc7c0 100644
--- a/modules/esrgan_model_arch.py
+++ b/modules/esrgan_model_arch.py
@@ -438,9 +438,11 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=
padding = padding if pad_type == 'zero' else 0
if convtype=='PartialConv2D':
+ from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='DeformConv2D':
+ from torchvision.ops import DeformConv2d # not tested
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='Conv3D':
diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py
index 04f27c9f..aa2a14ef 100644
--- a/modules/extra_networks_hypernet.py
+++ b/modules/extra_networks_hypernet.py
@@ -1,4 +1,4 @@
-from modules import extra_networks, shared, extra_networks
+from modules import extra_networks, shared
from modules.hypernetworks import hypernetwork
diff --git a/modules/images.py b/modules/images.py
index 3d5d76cc..5eb6d855 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -472,9 +472,9 @@ def get_next_sequence_number(path, basename):
prefix_length = len(basename)
for p in os.listdir(path):
if p.startswith(basename):
- l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
+ parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
try:
- result = max(int(l[0]), result)
+ result = max(int(parts[0]), result)
except ValueError:
pass
diff --git a/modules/img2img.py b/modules/img2img.py
index cdae301a..32b1ecd6 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -13,7 +13,6 @@ from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
-import modules.images as images
import modules.scripts
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 9f7d657f..22df9216 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -11,7 +11,6 @@ import torch.hub
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
-import modules.shared as shared
from modules import devices, paths, shared, lowvram, modelloader, errors
blip_image_eval_size = 384
diff --git a/modules/modelloader.py b/modules/modelloader.py
index cb85ac4f..cf685000 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -108,12 +108,12 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
print(f"Moving {file} from {src_path} to {dest_path}.")
try:
shutil.move(fullpath, dest_path)
- except:
+ except Exception:
pass
if len(os.listdir(src_path)) == 0:
print(f"Removing empty folder: {src_path}")
shutil.rmtree(src_path, True)
- except:
+ except Exception:
pass
@@ -141,7 +141,7 @@ def load_upscalers():
full_model = f"modules.{model_name}_model"
try:
importlib.import_module(full_model)
- except:
+ except Exception:
pass
datas = []
diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py
index f880bc3c..611c2b69 100644
--- a/modules/models/diffusion/ddpm_edit.py
+++ b/modules/models/diffusion/ddpm_edit.py
@@ -479,7 +479,7 @@ class LatentDiffusion(DDPM):
self.cond_stage_key = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
- except:
+ except Exception:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
@@ -891,16 +891,6 @@ class LatentDiffusion(DDPM):
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
return self.p_losses(x, c, t, *args, **kwargs)
- def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
- def rescale_bbox(bbox):
- x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
- y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
- w = min(bbox[2] / crop_coordinates[2], 1 - x0)
- h = min(bbox[3] / crop_coordinates[3], 1 - y0)
- return x0, y0, w, h
-
- return [rescale_bbox(b) for b in bboxes]
-
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
@@ -1171,8 +1161,10 @@ class LatentDiffusion(DDPM):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
+ if callback:
+ callback(i)
+ if img_callback:
+ img_callback(img, i)
return img, intermediates
@torch.no_grad()
@@ -1219,8 +1211,10 @@ class LatentDiffusion(DDPM):
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
- if callback: callback(i)
- if img_callback: img_callback(img, i)
+ if callback:
+ callback(i)
+ if img_callback:
+ img_callback(img, i)
if return_intermediates:
return img, intermediates
@@ -1337,7 +1331,7 @@ class LatentDiffusion(DDPM):
if inpaint:
# make a simple center square
- b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ h, w = z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py
index a241c8a7..0a9defa1 100644
--- a/modules/models/diffusion/uni_pc/sampler.py
+++ b/modules/models/diffusion/uni_pc/sampler.py
@@ -54,7 +54,8 @@ class UniPCSampler(object):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
- while isinstance(ctmp, list): ctmp = ctmp[0]
+ while isinstance(ctmp, list):
+ ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
diff --git a/modules/processing.py b/modules/processing.py
index 1a76e552..6f5233c1 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -664,7 +664,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if not shared.opts.dont_fix_second_order_samplers_schedule:
try:
step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1
- except:
+ except Exception:
pass
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py
index e084e948..3a720721 100644
--- a/modules/prompt_parser.py
+++ b/modules/prompt_parser.py
@@ -54,18 +54,21 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
"""
def collect_steps(steps, tree):
- l = [steps]
+ res = [steps]
+
class CollectSteps(lark.Visitor):
def scheduled(self, tree):
tree.children[-1] = float(tree.children[-1])
if tree.children[-1] < 1:
tree.children[-1] *= steps
tree.children[-1] = min(steps, int(tree.children[-1]))
- l.append(tree.children[-1])
+ res.append(tree.children[-1])
+
def alternate(self, tree):
- l.extend(range(1, steps+1))
+ res.extend(range(1, steps+1))
+
CollectSteps().visit(tree)
- return sorted(set(l))
+ return sorted(set(res))
def at_step(step, tree):
class AtStep(lark.Transformer):
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
index ba1bdcd4..d7d8d2e3 100644
--- a/modules/textual_inversion/autocrop.py
+++ b/modules/textual_inversion/autocrop.py
@@ -185,7 +185,7 @@ def image_face_points(im, settings):
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
- except:
+ except Exception:
continue
if len(faces) > 0:
diff --git a/modules/ui.py b/modules/ui.py
index 2171f3aa..6beda76f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1,15 +1,9 @@
-import html
import json
-import math
import mimetypes
import os
-import platform
-import random
import sys
-import tempfile
-import time
import traceback
-from functools import partial, reduce
+from functools import reduce
import warnings
import gradio as gr
diff --git a/modules/upscaler.py b/modules/upscaler.py
index e2eaa730..0ad4fe99 100644
--- a/modules/upscaler.py
+++ b/modules/upscaler.py
@@ -45,7 +45,7 @@ class Upscaler:
try:
import cv2
self.can_tile = True
- except:
+ except Exception:
pass
@abstractmethod
--
cgit v1.2.3
From 550256db1ce18778a9d56ff343d844c61b9f9b83 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 10 May 2023 11:19:16 +0300
Subject: ruff manual fixes
---
extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +++++-----
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 14 +++++++-------
extensions-builtin/SwinIR/swinir_model_arch.py | 6 +++++-
extensions-builtin/SwinIR/swinir_model_arch_v2.py | 11 +++++++++--
modules/api/api.py | 18 ++++++++++++------
modules/codeformer/codeformer_arch.py | 7 +++++--
modules/codeformer/vqgan_arch.py | 4 ++--
modules/generation_parameters_copypaste.py | 4 ++--
modules/models/diffusion/ddpm_edit.py | 14 ++++++++------
modules/models/diffusion/uni_pc/uni_pc.py | 7 +++++--
modules/safe.py | 2 +-
modules/sd_samplers_compvis.py | 2 +-
modules/textual_inversion/image_embedding.py | 2 +-
modules/textual_inversion/learn_schedule.py | 4 ++--
pyproject.toml | 5 ++++-
15 files changed, 69 insertions(+), 41 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index f457ca93..8cc82d54 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -24,7 +24,7 @@ class VQModel(pl.LightningModule):
n_embed,
embed_dim,
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
image_key="image",
colorize_nlabels=None,
monitor=None,
@@ -62,7 +62,7 @@ class VQModel(pl.LightningModule):
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [])
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
@@ -81,11 +81,11 @@ class VQModel(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list()):
+ def init_from_ckpt(self, path, ignore_keys=None):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
- for ik in ignore_keys:
+ for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
@@ -270,7 +270,7 @@ class VQModel(pl.LightningModule):
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
- super().__init__(embed_dim=embed_dim, *args, **kwargs)
+ super().__init__(*args, embed_dim=embed_dim, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index d8fc30e3..f16d6504 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule):
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
load_only_unet=False,
monitor="val/loss",
use_ema=True,
@@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule):
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
@@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
- for ik in ignore_keys:
+ for ik in ignore_keys or []:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
@@ -444,7 +444,7 @@ class LatentDiffusionV1(DDPMV1):
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ super().__init__(*args, conditioning_key=conditioning_key, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
@@ -1418,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+ super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+ logs = super().log_images(*args, batch=batch, N=N, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py
index 863f42db..75f7bedc 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch.py
@@ -644,13 +644,17 @@ class SwinIR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
+ embed_dim=96, depths=None, num_heads=None,
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
**kwargs):
super(SwinIR, self).__init__()
+
+ depths = depths or [6, 6, 6, 6]
+ num_heads = num_heads or [6, 6, 6, 6]
+
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
index 0e28ae6e..d4c0b0da 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
@@ -74,9 +74,12 @@ class WindowAttention(nn.Module):
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
- pretrained_window_size=[0, 0]):
+ pretrained_window_size=None):
super().__init__()
+
+ pretrained_window_size = pretrained_window_size or [0, 0]
+
self.dim = dim
self.window_size = window_size # Wh, Ww
self.pretrained_window_size = pretrained_window_size
@@ -698,13 +701,17 @@ class Swin2SR(nn.Module):
"""
def __init__(self, img_size=64, patch_size=1, in_chans=3,
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
+ embed_dim=96, depths=None, num_heads=None,
window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
**kwargs):
super(Swin2SR, self).__init__()
+
+ depths = depths or [6, 6, 6, 6]
+ num_heads = num_heads or [6, 6, 6, 6]
+
num_in_ch = in_chans
num_out_ch = in_chans
num_feat = 64
diff --git a/modules/api/api.py b/modules/api/api.py
index f52d371b..9efb558e 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -34,14 +34,16 @@ import piexif.helper
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except Exception:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}")
+ except Exception as e:
+ raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
+
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
- except Exception:
- raise HTTPException(status_code=422, detail=f"Script '{name}' not found")
+ except Exception as e:
+ raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e
+
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
@@ -50,20 +52,23 @@ def validate_sampler_name(name):
return name
+
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
return reqDict
+
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
- except Exception:
- raise HTTPException(status_code=500, detail="Invalid encoded image")
+ except Exception as e:
+ raise HTTPException(status_code=500, detail="Invalid encoded image") from e
+
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
@@ -94,6 +99,7 @@ def encode_pil_to_base64(image):
return base64.b64encode(bytes_data)
+
def api_middleware(app: FastAPI):
rich_available = True
try:
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py
index 00c407de..ff1c0b4b 100644
--- a/modules/codeformer/codeformer_arch.py
+++ b/modules/codeformer/codeformer_arch.py
@@ -161,10 +161,13 @@ class Fuse_sft_block(nn.Module):
class CodeFormer(VQAutoEncoder):
def __init__(self, dim_embd=512, n_head=8, n_layers=9,
codebook_size=1024, latent_size=256,
- connect_list=['32', '64', '128', '256'],
- fix_modules=['quantize','generator']):
+ connect_list=None,
+ fix_modules=None):
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size)
+ connect_list = connect_list or ['32', '64', '128', '256']
+ fix_modules = fix_modules or ['quantize', 'generator']
+
if fix_modules is not None:
for module in fix_modules:
for param in getattr(self, module).parameters():
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
index 820e6b12..b24a0394 100644
--- a/modules/codeformer/vqgan_arch.py
+++ b/modules/codeformer/vqgan_arch.py
@@ -326,7 +326,7 @@ class Generator(nn.Module):
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
- def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256,
+ def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256,
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
super().__init__()
logger = get_root_logger()
@@ -337,7 +337,7 @@ class VQAutoEncoder(nn.Module):
self.embed_dim = emb_dim
self.ch_mult = ch_mult
self.resolution = img_size
- self.attn_resolutions = attn_resolutions
+ self.attn_resolutions = attn_resolutions or [16]
self.quantizer_type = quantizer
self.encoder = Encoder(
self.in_channels,
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index f1c59c46..7fbbe707 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -19,14 +19,14 @@ registered_param_bindings = []
class ParamBinding:
- def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]):
+ def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
- self.paste_field_names = paste_field_names
+ self.paste_field_names = paste_field_names or []
def reset():
diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py
index 09432117..af4dea15 100644
--- a/modules/models/diffusion/ddpm_edit.py
+++ b/modules/models/diffusion/ddpm_edit.py
@@ -52,7 +52,7 @@ class DDPM(pl.LightningModule):
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
- ignore_keys=[],
+ ignore_keys=None,
load_only_unet=False,
monitor="val/loss",
use_ema=True,
@@ -107,7 +107,7 @@ class DDPM(pl.LightningModule):
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
- self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
# If initialing from EMA-only checkpoint, create EMA model after loading.
if self.use_ema and not load_ema:
@@ -194,7 +194,9 @@ class DDPM(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
- def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
+ ignore_keys = ignore_keys or []
+
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
@@ -473,7 +475,7 @@ class LatentDiffusion(DDPM):
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
- super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs)
+ super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
@@ -1433,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
- super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+ super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
- logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+ logs = super().log_images(*args, batch=batch, N=N, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
index a4c4ef4e..6f8ad631 100644
--- a/modules/models/diffusion/uni_pc/uni_pc.py
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -178,13 +178,13 @@ def model_wrapper(
model,
noise_schedule,
model_type="noise",
- model_kwargs={},
+ model_kwargs=None,
guidance_type="uncond",
#condition=None,
#unconditional_condition=None,
guidance_scale=1.,
classifier_fn=None,
- classifier_kwargs={},
+ classifier_kwargs=None,
):
"""Create a wrapper function for the noise prediction model.
@@ -275,6 +275,9 @@ def model_wrapper(
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
+ model_kwargs = model_kwargs or []
+ classifier_kwargs = classifier_kwargs or []
+
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
diff --git a/modules/safe.py b/modules/safe.py
index e6c2f2c0..2d5b972f 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -104,7 +104,7 @@ def check_pt(filename, extra_handler):
def load(filename, *args, **kwargs):
- return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
+ return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py
index 7427648f..b1ee3be7 100644
--- a/modules/sd_samplers_compvis.py
+++ b/modules/sd_samplers_compvis.py
@@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler:
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
- res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
+ res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs)
x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index ee0e850a..d85a4888 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -17,7 +17,7 @@ class EmbeddingEncoder(json.JSONEncoder):
class EmbeddingDecoder(json.JSONDecoder):
def __init__(self, *args, **kwargs):
- json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs)
+ json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
def object_hook(self, d):
if 'TORCHTENSOR' in d:
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
index f63fc72f..fda58898 100644
--- a/modules/textual_inversion/learn_schedule.py
+++ b/modules/textual_inversion/learn_schedule.py
@@ -32,8 +32,8 @@ class LearnScheduleIterator:
self.maxit += 1
return
assert self.rates
- except (ValueError, AssertionError):
- raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.')
+ except (ValueError, AssertionError) as e:
+ raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e
def __iter__(self):
diff --git a/pyproject.toml b/pyproject.toml
index 2f65fd6c..346a0cde 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -24,6 +24,9 @@ ignore = [
]
-
[tool.ruff.per-file-ignores]
"webui.py" = ["E402"] # Module level import not at top of file
+
+[tool.ruff.flake8-bugbear]
+# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`.
+extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"]
\ No newline at end of file
--
cgit v1.2.3
From d25219b7e889cf34bccae9cb88497708796efda2 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 10 May 2023 11:55:09 +0300
Subject: manual fixes for some C408
---
extensions-builtin/LDSR/ldsr_model_arch.py | 4 ++--
extensions-builtin/LDSR/sd_hijack_autoencoder.py | 2 +-
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 8 ++++----
modules/api/api.py | 2 +-
modules/models/diffusion/ddpm_edit.py | 8 ++++----
modules/models/diffusion/uni_pc/uni_pc.py | 4 ++--
modules/sd_hijack_inpainting.py | 2 +-
7 files changed, 15 insertions(+), 15 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index 27e38549..2173de79 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -157,7 +157,7 @@ class LDSR:
def get_cond(selected_path):
- example = dict()
+ example = {}
up_f = 4
c = selected_path.convert('RGB')
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
@@ -195,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s
@torch.no_grad()
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
- log = dict()
+ log = {}
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index 8cc82d54..81c5101b 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -237,7 +237,7 @@ class VQModel(pl.LightningModule):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
- log = dict()
+ log = {}
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index f16d6504..57c02d12 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule):
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
- log = dict()
+ log = {}
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
@@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule):
log["inputs"] = x
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
x_start = x[:n_row]
for t in range(self.num_timesteps):
@@ -1247,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1):
use_ddim = ddim_steps is not None
- log = dict()
+ log = {}
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
@@ -1274,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1):
if plot_diffusion_rows:
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
diff --git a/modules/api/api.py b/modules/api/api.py
index 9efb558e..594fa655 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -165,7 +165,7 @@ def api_middleware(app: FastAPI):
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
if shared.cmd_opts.api_auth:
- self.credentials = dict()
+ self.credentials = {}
for auth in shared.cmd_opts.api_auth.split(","):
user, password = auth.split(":")
self.credentials[user] = password
diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py
index af4dea15..3fb76b65 100644
--- a/modules/models/diffusion/ddpm_edit.py
+++ b/modules/models/diffusion/ddpm_edit.py
@@ -405,7 +405,7 @@ class DDPM(pl.LightningModule):
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
- log = dict()
+ log = {}
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
@@ -413,7 +413,7 @@ class DDPM(pl.LightningModule):
log["inputs"] = x
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
x_start = x[:n_row]
for t in range(self.num_timesteps):
@@ -1263,7 +1263,7 @@ class LatentDiffusion(DDPM):
use_ddim = False
- log = dict()
+ log = {}
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
@@ -1291,7 +1291,7 @@ class LatentDiffusion(DDPM):
if plot_diffusion_rows:
# get diffusion row
- diffusion_row = list()
+ diffusion_row = []
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
index 6f8ad631..f6c49f87 100644
--- a/modules/models/diffusion/uni_pc/uni_pc.py
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -344,7 +344,7 @@ def model_wrapper(
t_in = torch.cat([t_continuous] * 2)
if isinstance(condition, dict):
assert isinstance(unconditional_condition, dict)
- c_in = dict()
+ c_in = {}
for k in condition:
if isinstance(condition[k], list):
c_in[k] = [torch.cat([
@@ -355,7 +355,7 @@ def model_wrapper(
unconditional_condition[k],
condition[k]])
elif isinstance(condition, list):
- c_in = list()
+ c_in = []
assert isinstance(unconditional_condition, list)
for i in range(len(condition)):
c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index 058575b7..c1977b19 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -23,7 +23,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
- c_in = dict()
+ c_in = {}
for k in c:
if isinstance(c[k], list):
c_in[k] = [
--
cgit v1.2.3
From 49a55b410b66b7dd9be9335d8a2e3a71e4f8b15c Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Thu, 11 May 2023 18:28:15 +0300
Subject: Autofix Ruff W (not W605) (mostly whitespace)
---
extensions-builtin/LDSR/ldsr_model_arch.py | 4 +-
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 6 +--
extensions-builtin/ScuNET/scunet_model_arch.py | 2 +-
extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +-
extensions-builtin/SwinIR/swinir_model_arch.py | 2 +-
extensions-builtin/SwinIR/swinir_model_arch_v2.py | 52 +++++++++++------------
launch.py | 2 +-
modules/api/api.py | 4 +-
modules/api/models.py | 2 +-
modules/cmd_args.py | 2 +-
modules/codeformer/codeformer_arch.py | 14 +++---
modules/codeformer/vqgan_arch.py | 38 ++++++++---------
modules/esrgan_model_arch.py | 4 +-
modules/extras.py | 2 +-
modules/hypernetworks/hypernetwork.py | 12 +++---
modules/images.py | 2 +-
modules/mac_specific.py | 4 +-
modules/masking.py | 2 +-
modules/ngrok.py | 4 +-
modules/processing.py | 2 +-
modules/script_callbacks.py | 14 +++---
modules/sd_hijack.py | 12 +++---
modules/sd_hijack_optimizations.py | 32 +++++++-------
modules/sd_models.py | 4 +-
modules/sd_samplers_kdiffusion.py | 18 ++++----
modules/sub_quadratic_attention.py | 2 +-
modules/textual_inversion/dataset.py | 4 +-
modules/textual_inversion/preprocess.py | 2 +-
modules/textual_inversion/textual_inversion.py | 16 +++----
modules/ui.py | 18 ++++----
modules/ui_extensions.py | 6 +--
modules/xlmr.py | 6 +--
pyproject.toml | 5 ++-
scripts/img2imgalt.py | 14 +++---
scripts/loopback.py | 8 ++--
scripts/poor_mans_outpainting.py | 2 +-
scripts/prompt_matrix.py | 2 +-
scripts/prompts_from_file.py | 4 +-
scripts/sd_upscale.py | 2 +-
39 files changed, 167 insertions(+), 166 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index 2173de79..7f450086 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -130,11 +130,11 @@ class LDSR:
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else:
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
-
+
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
-
+
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
sample = logs["sample"]
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index 57c02d12..631a08ef 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -460,7 +460,7 @@ class LatentDiffusionV1(DDPMV1):
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
- self.bbox_tokenizer = None
+ self.bbox_tokenizer = None
self.restarted_from_ckpt = False
if ckpt_path is not None:
@@ -792,7 +792,7 @@ class LatentDiffusionV1(DDPMV1):
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
# 2. apply model loop over last dim
- if isinstance(self.first_stage_model, VQModelInterface):
+ if isinstance(self.first_stage_model, VQModelInterface):
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
force_not_quantize=predict_cids or force_not_quantize)
for i in range(z.shape[-1])]
@@ -890,7 +890,7 @@ class LatentDiffusionV1(DDPMV1):
if hasattr(self, "split_input_params"):
assert len(cond) == 1 # todo can only deal with one conditioning atm
- assert not return_ids
+ assert not return_ids
ks = self.split_input_params["ks"] # eg. (128, 128)
stride = self.split_input_params["stride"] # eg. (64, 64)
diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py
index 8028918a..b51a8806 100644
--- a/extensions-builtin/ScuNET/scunet_model_arch.py
+++ b/extensions-builtin/ScuNET/scunet_model_arch.py
@@ -265,4 +265,4 @@ class SCUNet(nn.Module):
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
- nn.init.constant_(m.weight, 1.0)
\ No newline at end of file
+ nn.init.constant_(m.weight, 1.0)
diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py
index 55dd94ab..0ba50487 100644
--- a/extensions-builtin/SwinIR/scripts/swinir_model.py
+++ b/extensions-builtin/SwinIR/scripts/swinir_model.py
@@ -150,7 +150,7 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
for w_idx in w_idx_list:
if state.interrupted or state.skipped:
break
-
+
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py
index 73e37cfa..93b93274 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch.py
@@ -805,7 +805,7 @@ class SwinIR(nn.Module):
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
-
+
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
index 3ca9be78..dad22cca 100644
--- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py
+++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py
@@ -241,7 +241,7 @@ class SwinTransformerBlock(nn.Module):
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
-
+
def calculate_mask(self, x_size):
# calculate attention mask for SW-MSA
H, W = x_size
@@ -263,7 +263,7 @@ class SwinTransformerBlock(nn.Module):
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
+ return attn_mask
def forward(self, x, x_size):
H, W = x_size
@@ -288,7 +288,7 @@ class SwinTransformerBlock(nn.Module):
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
else:
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
-
+
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
@@ -369,7 +369,7 @@ class PatchMerging(nn.Module):
H, W = self.input_resolution
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
flops += H * W * self.dim // 2
- return flops
+ return flops
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
@@ -447,7 +447,7 @@ class BasicLayer(nn.Module):
nn.init.constant_(blk.norm1.weight, 0)
nn.init.constant_(blk.norm2.bias, 0)
nn.init.constant_(blk.norm2.weight, 0)
-
+
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
@@ -492,7 +492,7 @@ class PatchEmbed(nn.Module):
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
- return flops
+ return flops
class RSTB(nn.Module):
"""Residual Swin Transformer Block (RSTB).
@@ -531,7 +531,7 @@ class RSTB(nn.Module):
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
+ qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path,
norm_layer=norm_layer,
@@ -622,7 +622,7 @@ class Upsample(nn.Sequential):
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
-
+
class Upsample_hf(nn.Sequential):
"""Upsample module.
@@ -642,7 +642,7 @@ class Upsample_hf(nn.Sequential):
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
- super(Upsample_hf, self).__init__(*m)
+ super(Upsample_hf, self).__init__(*m)
class UpsampleOneStep(nn.Sequential):
@@ -667,8 +667,8 @@ class UpsampleOneStep(nn.Sequential):
H, W = self.input_resolution
flops = H * W * self.num_feat * 3 * 9
return flops
-
-
+
+
class Swin2SR(nn.Module):
r""" Swin2SR
@@ -699,7 +699,7 @@ class Swin2SR(nn.Module):
def __init__(self, img_size=64, patch_size=1, in_chans=3,
embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
- window_size=7, mlp_ratio=4., qkv_bias=True,
+ window_size=7, mlp_ratio=4., qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
@@ -764,7 +764,7 @@ class Swin2SR(nn.Module):
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias,
+ qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
@@ -776,7 +776,7 @@ class Swin2SR(nn.Module):
)
self.layers.append(layer)
-
+
if self.upsampler == 'pixelshuffle_hf':
self.layers_hf = nn.ModuleList()
for i_layer in range(self.num_layers):
@@ -787,7 +787,7 @@ class Swin2SR(nn.Module):
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
- qkv_bias=qkv_bias,
+ qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
norm_layer=norm_layer,
@@ -799,7 +799,7 @@ class Swin2SR(nn.Module):
)
self.layers_hf.append(layer)
-
+
self.norm = norm_layer(self.num_features)
# build the last conv layer in deep feature extraction
@@ -829,10 +829,10 @@ class Swin2SR(nn.Module):
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.conv_after_aux = nn.Sequential(
nn.Conv2d(3, num_feat, 3, 1, 1),
- nn.LeakyReLU(inplace=True))
+ nn.LeakyReLU(inplace=True))
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
-
+
elif self.upsampler == 'pixelshuffle_hf':
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
@@ -846,7 +846,7 @@ class Swin2SR(nn.Module):
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
nn.LeakyReLU(inplace=True))
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
-
+
elif self.upsampler == 'pixelshuffledirect':
# for lightweight SR (to save parameters)
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
@@ -905,7 +905,7 @@ class Swin2SR(nn.Module):
x = self.patch_unembed(x, x_size)
return x
-
+
def forward_features_hf(self, x):
x_size = (x.shape[2], x.shape[3])
x = self.patch_embed(x)
@@ -919,7 +919,7 @@ class Swin2SR(nn.Module):
x = self.norm(x) # B L C
x = self.patch_unembed(x, x_size)
- return x
+ return x
def forward(self, x):
H, W = x.shape[2:]
@@ -951,7 +951,7 @@ class Swin2SR(nn.Module):
x = self.conv_after_body(self.forward_features(x)) + x
x_before = self.conv_before_upsample(x)
x_out = self.conv_last(self.upsample(x_before))
-
+
x_hf = self.conv_first_hf(x_before)
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
x_hf = self.conv_before_upsample_hf(x_hf)
@@ -977,15 +977,15 @@ class Swin2SR(nn.Module):
x_first = self.conv_first(x)
res = self.conv_after_body(self.forward_features(x_first)) + x_first
x = x + self.conv_last(res)
-
+
x = x / self.img_range + self.mean
if self.upsampler == "pixelshuffle_aux":
return x[:, :, :H*self.upscale, :W*self.upscale], aux
-
+
elif self.upsampler == "pixelshuffle_hf":
x_out = x_out / self.img_range + self.mean
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
-
+
else:
return x[:, :, :H*self.upscale, :W*self.upscale]
@@ -1014,4 +1014,4 @@ if __name__ == '__main__':
x = torch.randn((1, 3, height, width))
x = model(x)
- print(x.shape)
\ No newline at end of file
+ print(x.shape)
diff --git a/launch.py b/launch.py
index 670af87c..62b33f14 100644
--- a/launch.py
+++ b/launch.py
@@ -327,7 +327,7 @@ def prepare_environment():
if args.update_all_extensions:
git_pull_recursive(extensions_dir)
-
+
if "--exit" in sys.argv:
print("Exiting because of --exit argument")
exit(0)
diff --git a/modules/api/api.py b/modules/api/api.py
index 594fa655..165985c3 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -227,7 +227,7 @@ class Api:
script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
script = script_runner.selectable_scripts[script_idx]
return script, script_idx
-
+
def get_scripts_list(self):
t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
@@ -237,7 +237,7 @@ class Api:
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
return None, None
-
+
script_idx = script_name_to_index(script_name, script_runner.scripts)
return script_runner.scripts[script_idx]
diff --git a/modules/api/models.py b/modules/api/models.py
index 4d291076..006ccdb7 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -289,4 +289,4 @@ class MemoryResponse(BaseModel):
class ScriptsList(BaseModel):
txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
- img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")
\ No newline at end of file
+ img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index e01ca655..f4a4ab36 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -102,4 +102,4 @@ parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gra
parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
-parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
\ No newline at end of file
+parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py
index 45c70f84..12db6814 100644
--- a/modules/codeformer/codeformer_arch.py
+++ b/modules/codeformer/codeformer_arch.py
@@ -119,7 +119,7 @@ class TransformerSALayer(nn.Module):
tgt_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None):
-
+
# self attention
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
@@ -159,7 +159,7 @@ class Fuse_sft_block(nn.Module):
@ARCH_REGISTRY.register()
class CodeFormer(VQAutoEncoder):
- def __init__(self, dim_embd=512, n_head=8, n_layers=9,
+ def __init__(self, dim_embd=512, n_head=8, n_layers=9,
codebook_size=1024, latent_size=256,
connect_list=('32', '64', '128', '256'),
fix_modules=('quantize', 'generator')):
@@ -179,14 +179,14 @@ class CodeFormer(VQAutoEncoder):
self.feat_emb = nn.Linear(256, self.dim_embd)
# transformer
- self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
+ self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0)
for _ in range(self.n_layers)])
# logits_predict head
self.idx_pred_layer = nn.Sequential(
nn.LayerNorm(dim_embd),
nn.Linear(dim_embd, codebook_size, bias=False))
-
+
self.channels = {
'16': 512,
'32': 256,
@@ -221,7 +221,7 @@ class CodeFormer(VQAutoEncoder):
enc_feat_dict = {}
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.encoder.blocks):
- x = block(x)
+ x = block(x)
if i in out_list:
enc_feat_dict[str(x.shape[-1])] = x.clone()
@@ -266,11 +266,11 @@ class CodeFormer(VQAutoEncoder):
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list]
for i, block in enumerate(self.generator.blocks):
- x = block(x)
+ x = block(x)
if i in fuse_list: # fuse after i-th block
f_size = str(x.shape[-1])
if w>0:
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w)
out = x
# logits doesn't need softmax before cross_entropy loss
- return out, logits, lq_feat
\ No newline at end of file
+ return out, logits, lq_feat
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
index b24a0394..09ee6660 100644
--- a/modules/codeformer/vqgan_arch.py
+++ b/modules/codeformer/vqgan_arch.py
@@ -13,7 +13,7 @@ from basicsr.utils.registry import ARCH_REGISTRY
def normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
-
+
@torch.jit.script
def swish(x):
@@ -210,15 +210,15 @@ class AttnBlock(nn.Module):
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h*w)
- q = q.permute(0, 2, 1)
+ q = q.permute(0, 2, 1)
k = k.reshape(b, c, h*w)
- w_ = torch.bmm(q, k)
+ w_ = torch.bmm(q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h*w)
- w_ = w_.permute(0, 2, 1)
+ w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
@@ -270,18 +270,18 @@ class Encoder(nn.Module):
def forward(self, x):
for block in self.blocks:
x = block(x)
-
+
return x
class Generator(nn.Module):
def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions):
super().__init__()
- self.nf = nf
- self.ch_mult = ch_mult
+ self.nf = nf
+ self.ch_mult = ch_mult
self.num_resolutions = len(self.ch_mult)
self.num_res_blocks = res_blocks
- self.resolution = img_size
+ self.resolution = img_size
self.attn_resolutions = attn_resolutions
self.in_channels = emb_dim
self.out_channels = 3
@@ -315,24 +315,24 @@ class Generator(nn.Module):
blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1))
self.blocks = nn.ModuleList(blocks)
-
+
def forward(self, x):
for block in self.blocks:
x = block(x)
-
+
return x
-
+
@ARCH_REGISTRY.register()
class VQAutoEncoder(nn.Module):
def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256,
beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None):
super().__init__()
logger = get_root_logger()
- self.in_channels = 3
- self.nf = nf
- self.n_blocks = res_blocks
+ self.in_channels = 3
+ self.nf = nf
+ self.n_blocks = res_blocks
self.codebook_size = codebook_size
self.embed_dim = emb_dim
self.ch_mult = ch_mult
@@ -363,11 +363,11 @@ class VQAutoEncoder(nn.Module):
self.kl_weight
)
self.generator = Generator(
- self.nf,
+ self.nf,
self.embed_dim,
- self.ch_mult,
- self.n_blocks,
- self.resolution,
+ self.ch_mult,
+ self.n_blocks,
+ self.resolution,
self.attn_resolutions
)
@@ -432,4 +432,4 @@ class VQGANDiscriminator(nn.Module):
raise ValueError('Wrong params!')
def forward(self, x):
- return self.main(x)
\ No newline at end of file
+ return self.main(x)
diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py
index 4de9dd8d..2b9888ba 100644
--- a/modules/esrgan_model_arch.py
+++ b/modules/esrgan_model_arch.py
@@ -105,7 +105,7 @@ class ResidualDenseBlock_5C(nn.Module):
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
+ - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
@@ -170,7 +170,7 @@ class GaussianNoise(nn.Module):
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
x = x + sampled_noise
- return x
+ return x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
diff --git a/modules/extras.py b/modules/extras.py
index eb4f0b42..bdf9b3b7 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -199,7 +199,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
-
+
theta_0[key] = to_half(theta_0[key], save_as_half)
shared.state.sampling_step += 1
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 38ef074f..570b5603 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -540,7 +540,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
-
+
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
if clip_grad:
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
@@ -593,7 +593,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
print(e)
scaler = torch.cuda.amp.GradScaler()
-
+
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
@@ -636,7 +636,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
if clip_grad:
clip_grad_sched.step(hypernetwork.step)
-
+
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
@@ -657,14 +657,14 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
_loss_step += loss.item()
scaler.scale(loss).backward()
-
+
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
loss_logging.append(_loss_step)
if clip_grad:
clip_grad(weights, clip_grad_sched.learn_rate)
-
+
scaler.step(optimizer)
scaler.update()
hypernetwork.step += 1
@@ -674,7 +674,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi
_loss_step = 0
steps_done = hypernetwork.step + 1
-
+
epoch_num = hypernetwork.step // steps_per_epoch
epoch_step = hypernetwork.step % steps_per_epoch
diff --git a/modules/images.py b/modules/images.py
index 3b8b62d9..b2de3662 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -367,7 +367,7 @@ class FilenameGenerator:
self.seed = seed
self.prompt = prompt
self.image = image
-
+
def hasprompt(self, *args):
lower = self.prompt.lower()
if self.p is None or self.prompt is None:
diff --git a/modules/mac_specific.py b/modules/mac_specific.py
index 5c2f92a1..d74c6b95 100644
--- a/modules/mac_specific.py
+++ b/modules/mac_specific.py
@@ -42,7 +42,7 @@ if has_mps:
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
- # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
+ # MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
@@ -60,4 +60,4 @@ if has_mps:
# MPS workaround for https://github.com/pytorch/pytorch/issues/92311
if platform.processor() == 'i386':
for funcName in ['torch.argmax', 'torch.Tensor.argmax']:
- CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps')
\ No newline at end of file
+ CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps')
diff --git a/modules/masking.py b/modules/masking.py
index a5c4d2da..be9f84c7 100644
--- a/modules/masking.py
+++ b/modules/masking.py
@@ -4,7 +4,7 @@ from PIL import Image, ImageFilter, ImageOps
def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
-
+
h, w = mask.shape
crop_left = 0
diff --git a/modules/ngrok.py b/modules/ngrok.py
index 7a7b4b26..67a74e85 100644
--- a/modules/ngrok.py
+++ b/modules/ngrok.py
@@ -13,7 +13,7 @@ def connect(token, port, region):
config = conf.PyngrokConfig(
auth_token=token, region=region
)
-
+
# Guard for existing tunnels
existing = ngrok.get_tunnels(pyngrok_config=config)
if existing:
@@ -24,7 +24,7 @@ def connect(token, port, region):
print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')
return
-
+
try:
if account is None:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
diff --git a/modules/processing.py b/modules/processing.py
index c3932d6b..f902b9df 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -164,7 +164,7 @@ class StableDiffusionProcessing:
self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
-
+
@property
def sd_model(self):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index 17109732..7d9dd736 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -32,22 +32,22 @@ class CFGDenoiserParams:
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond):
self.x = x
"""Latent image representation in the process of being denoised"""
-
+
self.image_cond = image_cond
"""Conditioning image"""
-
+
self.sigma = sigma
"""Current sigma noise step value"""
-
+
self.sampling_step = sampling_step
"""Current Sampling step number"""
-
+
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
-
+
self.text_cond = text_cond
""" Encoder hidden states of text conditioning from prompt"""
-
+
self.text_uncond = text_uncond
""" Encoder hidden states of text conditioning from negative prompt"""
@@ -240,7 +240,7 @@ def add_callback(callbacks, fun):
callbacks.append(ScriptCallback(filename, fun))
-
+
def remove_current_script_callbacks():
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index e374aeb8..7e50f1ab 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -34,7 +34,7 @@ def apply_optimizations():
ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
-
+
optimization_method = None
can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp
@@ -92,12 +92,12 @@ def fix_checkpoint():
def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
-
+
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
-
+
#Return the loss, as mean if specified
return loss.mean() if mean else loss
@@ -105,7 +105,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs):
try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
-
+
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
@@ -120,7 +120,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs):
del sd_model._custom_loss_weight
except AttributeError:
pass
-
+
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
@@ -184,7 +184,7 @@ class StableDiffusionModelHijack:
def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
- m.cond_stage_model = m.cond_stage_model.wrapped
+ m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index a174bbe1..f00fe55c 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -62,10 +62,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
-
+
s2 = s1.softmax(dim=-1)
del s1
-
+
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
del q, k, v
@@ -95,43 +95,43 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k_in = k_in * self.scale
-
+
del context, x
-
+
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
del q_in, k_in, v_in
-
+
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
-
+
mem_free_total = get_available_vram()
-
+
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
-
+
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
-
+
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
-
+
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
-
+
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
-
+
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
-
+
del q, k, v
r1 = r1.to(dtype)
@@ -228,7 +228,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k = k * self.scale
-
+
q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
r = einsum_op(q, k, v)
r = r.to(dtype)
@@ -369,7 +369,7 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None):
q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
-
+
del q_in, k_in, v_in
dtype = q.dtype
@@ -451,7 +451,7 @@ def cross_attention_attnblock_forward(self, x):
h3 += x
return h3
-
+
def xformers_attnblock_forward(self, x):
try:
h_ = x
diff --git a/modules/sd_models.py b/modules/sd_models.py
index d1e946a5..3316d021 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -165,7 +165,7 @@ def model_hash(filename):
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
-
+
checkpoint_info = checkpoint_alisases.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
@@ -372,7 +372,7 @@ def enable_midas_autodownload():
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
-
+
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index 2f733cf5..e9e41818 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -93,10 +93,10 @@ class CFGDenoiser(torch.nn.Module):
if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond)
- make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
+ make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
else:
image_uncond = image_cond
- make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
+ make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
@@ -316,7 +316,7 @@ class KDiffusionSampler:
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
-
+
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
@@ -339,9 +339,9 @@ class KDiffusionSampler:
self.model_wrap_cfg.init_latent = x
self.last_latent = x
extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
@@ -374,9 +374,9 @@ class KDiffusionSampler:
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py
index cc38debd..497568eb 100644
--- a/modules/sub_quadratic_attention.py
+++ b/modules/sub_quadratic_attention.py
@@ -179,7 +179,7 @@ def efficient_dot_product_attention(
chunk_idx,
min(query_chunk_size, q_tokens)
)
-
+
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 41610e03..b9621fc9 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -118,7 +118,7 @@ class PersonalizedBase(Dataset):
weight = torch.ones(latent_sample.shape)
else:
weight = None
-
+
if latent_sampling_method == "random":
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
else:
@@ -243,4 +243,4 @@ class BatchLoaderRandom(BatchLoader):
return self
def collate_wrapper_random(batch):
- return BatchLoaderRandom(batch)
\ No newline at end of file
+ return BatchLoaderRandom(batch)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index d0cad09e..a009d8e8 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -125,7 +125,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr
default=None
)
return wh and center_crop(image, *wh)
-
+
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 9e1b2b9a..d489ed1e 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -323,16 +323,16 @@ def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epo
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step)
def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
- tensorboard_writer.add_scalar(tag=tag,
+ tensorboard_writer.add_scalar(tag=tag,
scalar_value=value, global_step=step)
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
# Convert a pil image to a torch tensor
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
- img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
+ img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0],
len(pil_image.getbands()))
img_tensor = img_tensor.permute((2, 0, 1))
-
+
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"):
@@ -402,7 +402,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
if initial_step >= steps:
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
-
+
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
@@ -412,7 +412,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
-
+
if shared.opts.training_enable_tensorboard:
tensorboard_writer = tensorboard_setup(log_directory)
@@ -439,7 +439,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu')
if embedding.checksum() == optimizer_saved_dict.get('hash', None):
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
-
+
if optimizer_state_dict is not None:
optimizer.load_state_dict(optimizer_state_dict)
print("Loaded existing optimizer from checkpoint")
@@ -485,7 +485,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
if clip_grad:
clip_grad_sched.step(embedding.step)
-
+
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if use_weight:
@@ -513,7 +513,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
-
+
if clip_grad:
clip_grad(embedding.vec, clip_grad_sched.learn_rate)
diff --git a/modules/ui.py b/modules/ui.py
index 1efb656a..ff82fff6 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1171,7 +1171,7 @@ def create_ui():
process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
-
+
with gr.Column(visible=False) as process_multicrop_col:
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
with gr.Row():
@@ -1183,7 +1183,7 @@ def create_ui():
with gr.Row():
process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective")
process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold")
-
+
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
@@ -1226,7 +1226,7 @@ def create_ui():
with FormRow():
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate")
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate")
-
+
with FormRow():
clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"])
clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False)
@@ -1565,7 +1565,7 @@ def create_ui():
gr.HTML(shared.html("licenses.html"), elem_id="licenses")
gr.Button(value="Show all pages", elem_id="settings_show_all_pages")
-
+
def unload_sd_weights():
modules.sd_models.unload_model_weights()
@@ -1841,15 +1841,15 @@ def versions_html():
return f"""
version: {tag}
- • 
+ •
python: {python_version}
- • 
+ •
torch: {getattr(torch, '__long_version__',torch.__version__)}
- • 
+ •
xformers: {xformers_version}
- • 
+ •
gradio: {gr.__version__}
- • 
+ •
checkpoint: N/A
"""
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index ed70abe5..af497733 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -467,7 +467,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
{html.escape(description)} Added: {html.escape(added)} |
{install_code} |
-
+
"""
for tag in [x for x in extension_tags if x not in tags]:
@@ -535,9 +535,9 @@ def create_ui():
hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index")
- with gr.Row():
+ with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False)
-
+
install_result = gr.HTML()
available_extensions_table = gr.HTML()
diff --git a/modules/xlmr.py b/modules/xlmr.py
index e056c3f6..a407a3ca 100644
--- a/modules/xlmr.py
+++ b/modules/xlmr.py
@@ -28,7 +28,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
config_class = BertSeriesConfig
def __init__(self, config=None, **kargs):
- # modify initialization for autoloading
+ # modify initialization for autoloading
if config is None:
config = XLMRobertaConfig()
config.attention_probs_dropout_prob= 0.1
@@ -74,7 +74,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
text["attention_mask"] = torch.tensor(
text['attention_mask']).to(device)
features = self(**text)
- return features['projection_state']
+ return features['projection_state']
def forward(
self,
@@ -134,4 +134,4 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel):
class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
base_model_prefix = 'roberta'
- config_class= RobertaSeriesConfig
\ No newline at end of file
+ config_class= RobertaSeriesConfig
diff --git a/pyproject.toml b/pyproject.toml
index c88907be..d4a1bbf4 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -6,6 +6,7 @@ extend-select = [
"B",
"C",
"I",
+ "W",
]
exclude = [
@@ -20,7 +21,7 @@ ignore = [
"I001", # Import block is un-sorted or un-formatted
"C901", # Function is too complex
"C408", # Rewrite as a literal
-
+ "W605", # invalid escape sequence, messes with some docstrings
]
[tool.ruff.per-file-ignores]
@@ -28,4 +29,4 @@ ignore = [
[tool.ruff.flake8-bugbear]
# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`.
-extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"]
\ No newline at end of file
+extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"]
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index bb00fb3f..1e833fa8 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -149,9 +149,9 @@ class Script(scripts.Script):
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))
return [
- info,
+ info,
override_sampler,
- override_prompt, original_prompt, original_negative_prompt,
+ override_prompt, original_prompt, original_negative_prompt,
override_steps, st,
override_strength,
cfg, randomness, sigma_adjustment,
@@ -191,17 +191,17 @@ class Script(scripts.Script):
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
-
+
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
-
+
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
-
+
noise_dt = combined_noise - (p.init_latent / sigmas[0])
-
+
p.seed = p.seed + 1
-
+
return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
p.sample = sample_extra
diff --git a/scripts/loopback.py b/scripts/loopback.py
index ad6609be..2d5feaf9 100644
--- a/scripts/loopback.py
+++ b/scripts/loopback.py
@@ -14,7 +14,7 @@ class Script(scripts.Script):
def show(self, is_img2img):
return is_img2img
- def ui(self, is_img2img):
+ def ui(self, is_img2img):
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
@@ -104,7 +104,7 @@ class Script(scripts.Script):
p.seed = processed.seed + 1
p.denoising_strength = calculate_denoising_strength(i + 1)
-
+
if state.skipped:
break
@@ -121,7 +121,7 @@ class Script(scripts.Script):
all_images.append(last_image)
p.inpainting_fill = original_inpainting_fill
-
+
if state.interrupted:
break
@@ -132,7 +132,7 @@ class Script(scripts.Script):
if opts.return_grid:
grids.append(grid)
-
+
all_images = grids + all_images
processed = Processed(p, all_images, initial_seed, initial_info)
diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py
index c0bbecc1..ea0632b6 100644
--- a/scripts/poor_mans_outpainting.py
+++ b/scripts/poor_mans_outpainting.py
@@ -19,7 +19,7 @@ class Script(scripts.Script):
def ui(self, is_img2img):
if not is_img2img:
return None
-
+
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py
index fb06beab..88324fe6 100644
--- a/scripts/prompt_matrix.py
+++ b/scripts/prompt_matrix.py
@@ -96,7 +96,7 @@ class Script(scripts.Script):
p.prompt_for_display = positive_prompt
processed = process_images(p)
- grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
+ grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size)
processed.images.insert(0, grid)
processed.index_of_first_image = 1
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index 9607077a..2378816f 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -109,7 +109,7 @@ class Script(scripts.Script):
def title(self):
return "Prompts from file or textbox"
- def ui(self, is_img2img):
+ def ui(self, is_img2img):
checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate"))
checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch"))
@@ -166,7 +166,7 @@ class Script(scripts.Script):
proc = process_images(copy_p)
images += proc.images
-
+
if checkbox_iterate:
p.seed = p.seed + (p.batch_size * p.n_iter)
all_prompts += proc.all_prompts
diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py
index 0b1d3096..e614c23b 100644
--- a/scripts/sd_upscale.py
+++ b/scripts/sd_upscale.py
@@ -16,7 +16,7 @@ class Script(scripts.Script):
def show(self, is_img2img):
return is_img2img
- def ui(self, is_img2img):
+ def ui(self, is_img2img):
info = gr.HTML("Will upscale the image by the selected scale factor; use width and height sliders to set tile size
")
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap"))
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor"))
--
cgit v1.2.3
From f6fc7916c4615c4f5cac97cab5add9b0536f6efa Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 17 May 2023 22:43:24 +0300
Subject: add /sdapi/v1/script-info api
---
modules/api/api.py | 13 +++++++++++--
modules/api/models.py | 21 +++++++++++++++++++--
modules/scripts.py | 29 ++++++++++++++++++++++++++++-
3 files changed, 58 insertions(+), 5 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 165985c3..eee99bbb 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -204,6 +204,7 @@ class Api:
self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
+ self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -229,11 +230,19 @@ class Api:
return script, script_idx
def get_scripts_list(self):
- t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles]
- i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles]
+ t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None]
+ i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None]
return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist)
+ def get_script_info(self):
+ res = []
+
+ for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]:
+ res += [script.api_info for script in script_list if script.api_info is not None]
+
+ return res
+
def get_script(self, script_name, script_runner):
if script_name is None or script_name == "":
return None, None
diff --git a/modules/api/models.py b/modules/api/models.py
index 006ccdb7..1ff2fb33 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -287,6 +287,23 @@ class MemoryResponse(BaseModel):
ram: dict = Field(title="RAM", description="System memory stats")
cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
+
class ScriptsList(BaseModel):
- txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)")
- img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)")
+ txt2img: list = Field(default=None, title="Txt2img", description="Titles of scripts (txt2img)")
+ img2img: list = Field(default=None, title="Img2img", description="Titles of scripts (img2img)")
+
+
+class ScriptArg(BaseModel):
+ label: str = Field(default=None, title="Label", description="Name of the argument in UI")
+ value: Optional[Any] = Field(default=None, title="Value", description="Default value of the argument")
+ minimum: Optional[Any] = Field(default=None, title="Minimum", description="Minimum allowed value for the argumentin UI")
+ maximum: Optional[Any] = Field(default=None, title="Minimum", description="Maximum allowed value for the argumentin UI")
+ step: Optional[Any] = Field(default=None, title="Minimum", description="Step for changing value of the argumentin UI")
+ choices: Optional[List[str]] = Field(default=None, title="Choices", description="Possible values for the argument")
+
+
+class ScriptInfo(BaseModel):
+ name: str = Field(default=None, title="Name", description="Script name")
+ is_alwayson: bool = Field(default=None, title="IsAlwayson", description="Flag specifying whether this script is an alwayson script")
+ is_img2img: bool = Field(default=None, title="IsImg2img", description="Flag specifying whether this script is an img2img script")
+ args: List[ScriptArg] = Field(title="Arguments", description="List of script's arguments")
diff --git a/modules/scripts.py b/modules/scripts.py
index 0c12ebd5..e33d8c81 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -17,6 +17,9 @@ class PostprocessImageArgs:
class Script:
+ name = None
+ """script's internal name derived from title"""
+
filename = None
args_from = None
args_to = None
@@ -25,8 +28,8 @@ class Script:
is_txt2img = False
is_img2img = False
- """A gr.Group component that has all script's UI inside it"""
group = None
+ """A gr.Group component that has all script's UI inside it"""
infotext_fields = None
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
@@ -38,6 +41,9 @@ class Script:
various "Send to " buttons when clicked
"""
+ api_info = None
+ """Generated value of type modules.api.models.ScriptInfo with information about the script for API"""
+
def title(self):
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
@@ -313,6 +319,8 @@ class ScriptRunner:
self.selectable_scripts.append(script)
def setup_ui(self):
+ import modules.api.models as api_models
+
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
inputs = [None]
@@ -327,9 +335,28 @@ class ScriptRunner:
if controls is None:
return
+ script.name = wrap_call(script.title, script.filename, "title", default=script.filename).lower()
+ api_args = []
+
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
+ arg_info = api_models.ScriptArg(label=control.label or "")
+
+ for field in ("value", "minimum", "maximum", "step", "choices"):
+ v = getattr(control, field, None)
+ if v is not None:
+ setattr(arg_info, field, v)
+
+ api_args.append(arg_info)
+
+ script.api_info = api_models.ScriptInfo(
+ name=script.name,
+ is_img2img=script.is_img2img,
+ is_alwayson=script.alwayson,
+ args=api_args,
+ )
+
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
--
cgit v1.2.3
From efc98530595443d31c773526c6b760b722019d62 Mon Sep 17 00:00:00 2001
From: Monty Anderson
Date: Mon, 22 May 2023 15:52:44 +0100
Subject: `modules/api/api.py`: disable `timeout_keep_alive`
---
modules/api/api.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 9bb95dfd..bfeec385 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -682,4 +682,4 @@ class Api:
def launch(self, server_name, port):
self.app.include_router(self.router)
- uvicorn.run(self.app, host=server_name, port=port)
+ uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)
--
cgit v1.2.3
From 00dfe27f59727407c5b408a80ff2a262934df495 Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Mon, 29 May 2023 08:54:13 +0300
Subject: Add & use modules.errors.print_error where currently printing
exception info by hand
---
extensions-builtin/LDSR/scripts/ldsr_model.py | 7 ++---
extensions-builtin/ScuNET/scripts/scunet_model.py | 6 ++--
modules/api/api.py | 7 +++--
modules/call_queue.py | 22 ++++++--------
modules/codeformer_model.py | 10 +++----
modules/config_states.py | 12 +++-----
modules/errors.py | 16 +++++++++++
modules/extensions.py | 10 +++----
modules/gfpgan_model.py | 6 ++--
modules/hypernetworks/hypernetwork.py | 14 ++++-----
modules/images.py | 9 ++----
modules/interrogate.py | 5 ++--
modules/launch_utils.py | 7 +++--
modules/localization.py | 6 ++--
modules/processing.py | 2 +-
modules/realesrgan_model.py | 14 ++++-----
modules/safe.py | 26 +++++++++--------
modules/script_callbacks.py | 9 +++---
modules/script_loading.py | 7 ++---
modules/scripts.py | 35 ++++++++---------------
modules/sd_hijack_optimizations.py | 6 ++--
modules/textual_inversion/textual_inversion.py | 9 ++----
modules/ui.py | 10 +++----
modules/ui_extensions.py | 9 ++----
scripts/prompts_from_file.py | 6 ++--
25 files changed, 117 insertions(+), 153 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
index c4da79f3..95f1669d 100644
--- a/extensions-builtin/LDSR/scripts/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -1,9 +1,8 @@
import os
-import sys
-import traceback
from basicsr.utils.download_util import load_file_from_url
+from modules.errors import print_error
from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks
@@ -51,10 +50,8 @@ class UpscalerLDSR(Upscaler):
try:
return LDSR(model, yaml)
-
except Exception:
- print("Error importing LDSR:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error importing LDSR", exc_info=True)
return None
def do_upscale(self, img, path):
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py
index 45d9297b..dd1b822e 100644
--- a/extensions-builtin/ScuNET/scripts/scunet_model.py
+++ b/extensions-builtin/ScuNET/scripts/scunet_model.py
@@ -1,6 +1,5 @@
import os.path
import sys
-import traceback
import PIL.Image
import numpy as np
@@ -12,6 +11,8 @@ from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader, script_callbacks
from scunet_model_arch import SCUNet as net
+
+from modules.errors import print_error
from modules.shared import opts
@@ -38,8 +39,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data)
except Exception:
- print(f"Error loading ScuNET model: {file}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error loading ScuNET model: {file}", exc_info=True)
if add_model2:
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
scalers.append(scaler_data2)
diff --git a/modules/api/api.py b/modules/api/api.py
index 6a456861..79ce9228 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -16,6 +16,7 @@ from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
from modules.api import models
+from modules.errors import print_error
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
@@ -108,7 +109,6 @@ def api_middleware(app: FastAPI):
from rich.console import Console
console = Console()
except Exception:
- import traceback
rich_available = False
@app.middleware("http")
@@ -139,11 +139,12 @@ def api_middleware(app: FastAPI):
"errors": str(e),
}
if not isinstance(e, HTTPException): # do not print backtrace on known httpexceptions
- print(f"API error: {request.method}: {request.url} {err}")
+ message = f"API error: {request.method}: {request.url} {err}"
if rich_available:
+ print(message)
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else:
- traceback.print_exc()
+ print_error(message, exc_info=True)
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
@app.middleware("http")
diff --git a/modules/call_queue.py b/modules/call_queue.py
index 447bb764..dba2a9b4 100644
--- a/modules/call_queue.py
+++ b/modules/call_queue.py
@@ -1,10 +1,9 @@
import html
-import sys
import threading
-import traceback
import time
from modules import shared, progress
+from modules.errors import print_error
queue_lock = threading.Lock()
@@ -56,16 +55,14 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
try:
res = list(func(*args, **kwargs))
except Exception as e:
- # When printing out our debug argument list, do not print out more than a MB of text
- max_debug_str_len = 131072 # (1024*1024)/8
-
- print("Error completing request", file=sys.stderr)
- argStr = f"Arguments: {args} {kwargs}"
- print(argStr[:max_debug_str_len], file=sys.stderr)
- if len(argStr) > max_debug_str_len:
- print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
-
- print(traceback.format_exc(), file=sys.stderr)
+ # When printing out our debug argument list,
+ # do not print out more than a 100 KB of text
+ max_debug_str_len = 131072
+ message = "Error completing request"
+ arg_str = f"Arguments: {args} {kwargs}"[:max_debug_str_len]
+ if len(arg_str) > max_debug_str_len:
+ arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)"
+ print_error(f"{message}\n{arg_str}", exc_info=True)
shared.state.job = ""
shared.state.job_count = 0
@@ -108,4 +105,3 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
return tuple(res)
return f
-
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py
index ececdbae..76143e9f 100644
--- a/modules/codeformer_model.py
+++ b/modules/codeformer_model.py
@@ -1,6 +1,4 @@
import os
-import sys
-import traceback
import cv2
import torch
@@ -8,6 +6,7 @@ import torch
import modules.face_restoration
import modules.shared
from modules import shared, devices, modelloader
+from modules.errors import print_error
from modules.paths import models_path
# codeformer people made a choice to include modified basicsr library to their project which makes
@@ -105,8 +104,8 @@ def setup_model(dirname):
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
- except Exception as error:
- print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr)
+ except Exception:
+ print_error('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
@@ -135,7 +134,6 @@ def setup_model(dirname):
shared.face_restorers.append(codeformer)
except Exception:
- print("Error setting up CodeFormer:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error setting up CodeFormer", exc_info=True)
# sys.path = stored_sys_path
diff --git a/modules/config_states.py b/modules/config_states.py
index db65bcdb..faeaf28b 100644
--- a/modules/config_states.py
+++ b/modules/config_states.py
@@ -3,8 +3,6 @@ Supports saving and restoring webui and extensions from a known working set of c
"""
import os
-import sys
-import traceback
import json
import time
import tqdm
@@ -14,6 +12,7 @@ from collections import OrderedDict
import git
from modules import shared, extensions
+from modules.errors import print_error
from modules.paths_internal import script_path, config_states_dir
@@ -53,8 +52,7 @@ def get_webui_config():
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
- print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error reading webui git info from {script_path}", exc_info=True)
webui_remote = None
webui_commit_hash = None
@@ -134,8 +132,7 @@ def restore_webui_config(config):
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
- print(f"Error reading webui git info from {script_path}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error reading webui git info from {script_path}", exc_info=True)
return
try:
@@ -143,8 +140,7 @@ def restore_webui_config(config):
webui_repo.git.reset(webui_commit_hash, hard=True)
print(f"* Restored webui to commit {webui_commit_hash}.")
except Exception:
- print(f"Error restoring webui to commit {webui_commit_hash}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error restoring webui to commit{webui_commit_hash}")
def restore_extension_config(config):
diff --git a/modules/errors.py b/modules/errors.py
index da4694f8..41d8dc93 100644
--- a/modules/errors.py
+++ b/modules/errors.py
@@ -1,7 +1,23 @@
import sys
+import textwrap
import traceback
+def print_error(
+ message: str,
+ *,
+ exc_info: bool = False,
+) -> None:
+ """
+ Print an error message to stderr, with optional traceback.
+ """
+ for line in message.splitlines():
+ print("***", line, file=sys.stderr)
+ if exc_info:
+ print(textwrap.indent(traceback.format_exc(), " "), file=sys.stderr)
+ print("---")
+
+
def print_error_explanation(message):
lines = message.strip().split("\n")
max_len = max([len(x) for x in lines])
diff --git a/modules/extensions.py b/modules/extensions.py
index 624832a0..369d2584 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -1,11 +1,10 @@
import os
-import sys
import threading
-import traceback
import git
from modules import shared
+from modules.errors import print_error
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
extensions = []
@@ -56,8 +55,7 @@ class Extension:
if os.path.exists(os.path.join(self.path, ".git")):
repo = git.Repo(self.path)
except Exception:
- print(f"Error reading github repository info from {self.path}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error reading github repository info from {self.path}", exc_info=True)
if repo is None or repo.bare:
self.remote = None
@@ -72,8 +70,8 @@ class Extension:
self.commit_hash = commit.hexsha
self.version = self.commit_hash[:8]
- except Exception as ex:
- print(f"Failed reading extension data from Git repository ({self.name}): {ex}", file=sys.stderr)
+ except Exception:
+ print_error(f"Failed reading extension data from Git repository ({self.name})", exc_info=True)
self.remote = None
self.have_info_from_repo = True
diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py
index 0131dea4..d2f647fe 100644
--- a/modules/gfpgan_model.py
+++ b/modules/gfpgan_model.py
@@ -1,12 +1,11 @@
import os
-import sys
-import traceback
import facexlib
import gfpgan
import modules.face_restoration
from modules import paths, shared, devices, modelloader
+from modules.errors import print_error
model_dir = "GFPGAN"
user_path = None
@@ -112,5 +111,4 @@ def setup_model(dirname):
shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception:
- print("Error setting up GFPGAN:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error setting up GFPGAN", exc_info=True)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 570b5603..fcc1ef20 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -2,8 +2,6 @@ import datetime
import glob
import html
import os
-import sys
-import traceback
import inspect
import modules.textual_inversion.dataset
@@ -12,6 +10,7 @@ import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint
+from modules.errors import print_error
from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -325,17 +324,14 @@ def load_hypernetwork(name):
if path is None:
return None
- hypernetwork = Hypernetwork()
-
try:
+ hypernetwork = Hypernetwork()
hypernetwork.load(path)
+ return hypernetwork
except Exception:
- print(f"Error loading hypernetwork {path}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error loading hypernetwork {path}", exc_info=True)
return None
- return hypernetwork
-
def load_hypernetworks(names, multipliers=None):
already_loaded = {}
@@ -770,7 +766,7 @@ Last saved image: {html.escape(last_saved_image)}
"""
except Exception:
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Exception in training hypernetwork", exc_info=True)
finally:
pbar.leave = False
pbar.close()
diff --git a/modules/images.py b/modules/images.py
index e21e554c..69151bec 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -1,6 +1,4 @@
import datetime
-import sys
-import traceback
import pytz
import io
@@ -18,6 +16,7 @@ import json
import hashlib
from modules import sd_samplers, shared, script_callbacks, errors
+from modules.errors import print_error
from modules.paths_internal import roboto_ttf_file
from modules.shared import opts
@@ -464,8 +463,7 @@ class FilenameGenerator:
replacement = fun(self, *pattern_args)
except Exception:
replacement = None
- print(f"Error adding [{pattern}] to filename", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error adding [{pattern}] to filename", exc_info=True)
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
continue
@@ -697,8 +695,7 @@ def read_info_from_image(image):
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
- print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error parsing NovelAI image generation parameters", exc_info=True)
return geninfo, items
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 111b1322..d36e1a5a 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -1,6 +1,5 @@
import os
import sys
-import traceback
from collections import namedtuple
from pathlib import Path
import re
@@ -12,6 +11,7 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from modules import devices, paths, shared, lowvram, modelloader, errors
+from modules.errors import print_error
blip_image_eval_size = 384
clip_model_name = 'ViT-L/14'
@@ -216,8 +216,7 @@ class InterrogateModels:
res += f", {match}"
except Exception:
- print("Error interrogating", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error interrogating", exc_info=True)
res += ""
self.unload()
diff --git a/modules/launch_utils.py b/modules/launch_utils.py
index 35a52310..22edc106 100644
--- a/modules/launch_utils.py
+++ b/modules/launch_utils.py
@@ -8,6 +8,7 @@ import json
from functools import lru_cache
from modules import cmd_args
+from modules.errors import print_error
from modules.paths_internal import script_path, extensions_dir
args, _ = cmd_args.parser.parse_known_args()
@@ -188,7 +189,7 @@ def run_extension_installer(extension_dir):
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
except Exception as e:
- print(e, file=sys.stderr)
+ print_error(str(e))
def list_extensions(settings_file):
@@ -198,8 +199,8 @@ def list_extensions(settings_file):
if os.path.isfile(settings_file):
with open(settings_file, "r", encoding="utf8") as file:
settings = json.load(file)
- except Exception as e:
- print(e, file=sys.stderr)
+ except Exception:
+ print_error("Could not load settings", exc_info=True)
disabled_extensions = set(settings.get('disabled_extensions', []))
disable_all_extensions = settings.get('disable_all_extensions', 'none')
diff --git a/modules/localization.py b/modules/localization.py
index ee9c65e7..9a1df343 100644
--- a/modules/localization.py
+++ b/modules/localization.py
@@ -1,8 +1,7 @@
import json
import os
-import sys
-import traceback
+from modules.errors import print_error
localizations = {}
@@ -31,7 +30,6 @@ def localization_js(current_localization_name: str) -> str:
with open(fn, "r", encoding="utf8") as file:
data = json.load(file)
except Exception:
- print(f"Error loading localization from {fn}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error loading localization from {fn}", exc_info=True)
return f"window.localization = {json.dumps(data)}"
diff --git a/modules/processing.py b/modules/processing.py
index b75f2515..5c9bcce8 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -1,4 +1,5 @@
import json
+import logging
import math
import os
import sys
@@ -23,7 +24,6 @@ import modules.images as images
import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
-import logging
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py
index 99983678..c8d0c64f 100644
--- a/modules/realesrgan_model.py
+++ b/modules/realesrgan_model.py
@@ -1,12 +1,11 @@
import os
-import sys
-import traceback
import numpy as np
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
+from modules.errors import print_error
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts
from modules import modelloader
@@ -36,8 +35,7 @@ class UpscalerRealESRGAN(Upscaler):
self.scalers.append(scaler)
except Exception:
- print("Error importing Real-ESRGAN:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error importing Real-ESRGAN", exc_info=True)
self.enable = False
self.scalers = []
@@ -76,9 +74,8 @@ class UpscalerRealESRGAN(Upscaler):
info.local_data_path = load_file_from_url(url=info.data_path, model_dir=self.model_download_path, progress=True)
return info
- except Exception as e:
- print(f"Error making Real-ESRGAN models list: {e}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ except Exception:
+ print_error("Error making Real-ESRGAN models list", exc_info=True)
return None
def load_models(self, _):
@@ -135,5 +132,4 @@ def get_realesrgan_models(scaler):
]
return models
except Exception:
- print("Error making Real-ESRGAN models list:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error making Real-ESRGAN models list", exc_info=True)
diff --git a/modules/safe.py b/modules/safe.py
index e8f50774..b596f565 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -2,8 +2,6 @@
import pickle
import collections
-import sys
-import traceback
import torch
import numpy
@@ -11,6 +9,8 @@ import _codecs
import zipfile
import re
+from modules.errors import print_error
+
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
@@ -136,17 +136,20 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
check_pt(filename, extra_handler)
except pickle.UnpicklingError:
- print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
- print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
+ print_error(
+ f"Error verifying pickled file from {filename}\n"
+ "-----> !!!! The file is most likely corrupted !!!! <-----\n"
+ "You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n",
+ exc_info=True,
+ )
return None
-
except Exception:
- print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
- print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
+ print_error(
+ f"Error verifying pickled file from {filename}\n"
+ f"The file may be malicious, so the program is not going to read it.\n"
+ f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n",
+ exc_info=True,
+ )
return None
return unsafe_torch_load(filename, *args, **kwargs)
@@ -190,4 +193,3 @@ with safe.Extra(handler):
unsafe_torch_load = torch.load
torch.load = load
global_extra_handler = None
-
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index d2728e12..6aa9c3b6 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -1,16 +1,15 @@
-import sys
-import traceback
-from collections import namedtuple
import inspect
+from collections import namedtuple
from typing import Optional, Dict, Any
from fastapi import FastAPI
from gradio import Blocks
+from modules.errors import print_error
+
def report_exception(c, job):
- print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error executing callback {job} for {c.script}", exc_info=True)
class ImageSaveParams:
diff --git a/modules/script_loading.py b/modules/script_loading.py
index 57b15862..26efffcb 100644
--- a/modules/script_loading.py
+++ b/modules/script_loading.py
@@ -1,8 +1,8 @@
import os
-import sys
-import traceback
import importlib.util
+from modules.errors import print_error
+
def load_module(path):
module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path)
@@ -27,5 +27,4 @@ def preload_extensions(extensions_dir, parser):
module.preload(parser)
except Exception:
- print(f"Error running preload() for {preload_script}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running preload() for {preload_script}", exc_info=True)
diff --git a/modules/scripts.py b/modules/scripts.py
index c902804b..a7168fd1 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -1,12 +1,12 @@
import os
import re
import sys
-import traceback
from collections import namedtuple
import gradio as gr
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
+from modules.errors import print_error
AlwaysVisible = object()
@@ -264,8 +264,7 @@ def load_scripts():
register_scripts_from_module(script_module)
except Exception:
- print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error loading script: {scriptfile.filename}", exc_info=True)
finally:
sys.path = syspath
@@ -280,11 +279,9 @@ def load_scripts():
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
- res = func(*args, **kwargs)
- return res
+ return func(*args, **kwargs)
except Exception:
- print(f"Error calling: {filename}/{funcname}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error calling: {filename}/{funcname}", exc_info=True)
return default
@@ -450,8 +447,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.process(p, *script_args)
except Exception:
- print(f"Error running process: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running process: {script.filename}", exc_info=True)
def before_process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
@@ -459,8 +455,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.before_process_batch(p, *script_args, **kwargs)
except Exception:
- print(f"Error running before_process_batch: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running before_process_batch: {script.filename}", exc_info=True)
def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
@@ -468,8 +463,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.process_batch(p, *script_args, **kwargs)
except Exception:
- print(f"Error running process_batch: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running process_batch: {script.filename}", exc_info=True)
def postprocess(self, p, processed):
for script in self.alwayson_scripts:
@@ -477,8 +471,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess(p, processed, *script_args)
except Exception:
- print(f"Error running postprocess: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running postprocess: {script.filename}", exc_info=True)
def postprocess_batch(self, p, images, **kwargs):
for script in self.alwayson_scripts:
@@ -486,8 +479,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_batch(p, *script_args, images=images, **kwargs)
except Exception:
- print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running postprocess_batch: {script.filename}", exc_info=True)
def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts:
@@ -495,24 +487,21 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_image(p, pp, *script_args)
except Exception:
- print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running postprocess_image: {script.filename}", exc_info=True)
def before_component(self, component, **kwargs):
for script in self.scripts:
try:
script.before_component(component, **kwargs)
except Exception:
- print(f"Error running before_component: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running before_component: {script.filename}", exc_info=True)
def after_component(self, component, **kwargs):
for script in self.scripts:
try:
script.after_component(component, **kwargs)
except Exception:
- print(f"Error running after_component: {script.filename}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error running after_component: {script.filename}", exc_info=True)
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 2ec0b049..fd186fa2 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -1,7 +1,5 @@
from __future__ import annotations
import math
-import sys
-import traceback
import psutil
import torch
@@ -11,6 +9,7 @@ from ldm.util import default
from einops import rearrange
from modules import shared, errors, devices, sub_quadratic_attention
+from modules.errors import print_error
from modules.hypernetworks import hypernetwork
import ldm.modules.attention
@@ -140,8 +139,7 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
import xformers.ops
shared.xformers_available = True
except Exception:
- print("Cannot import xformers", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Cannot import xformers", exc_info=True)
def get_available_vram():
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index d489ed1e..a040a988 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -1,6 +1,4 @@
import os
-import sys
-import traceback
from collections import namedtuple
import torch
@@ -16,6 +14,7 @@ from torch.utils.tensorboard import SummaryWriter
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint
import modules.textual_inversion.dataset
+from modules.errors import print_error
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
@@ -207,8 +206,7 @@ class EmbeddingDatabase:
self.load_from_file(fullfn, fn)
except Exception:
- print(f"Error loading embedding {fn}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error loading embedding {fn}", exc_info=True)
continue
def load_textual_inversion_embeddings(self, force_reload=False):
@@ -632,8 +630,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
- print(traceback.format_exc(), file=sys.stderr)
- pass
+ print_error("Error training embedding", exc_info=True)
finally:
pbar.leave = False
pbar.close()
diff --git a/modules/ui.py b/modules/ui.py
index 001b9792..1ad94f02 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -2,7 +2,6 @@ import json
import mimetypes
import os
import sys
-import traceback
from functools import reduce
import warnings
@@ -14,6 +13,7 @@ from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave
+from modules.errors import print_error
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path
@@ -231,9 +231,8 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
res = all_seeds[index if 0 <= index < len(all_seeds) else 0]
except json.decoder.JSONDecodeError:
- if gen_info_string != '':
- print("Error parsing JSON generation info:", file=sys.stderr)
- print(gen_info_string, file=sys.stderr)
+ if gen_info_string:
+ print_error(f"Error parsing JSON generation info: {gen_info_string}")
return [res, gr_show(False)]
@@ -1753,8 +1752,7 @@ def create_ui():
try:
results = modules.extras.run_modelmerger(*args)
except Exception as e:
- print("Error loading/saving model file:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error("Error loading/saving model file", exc_info=True)
modules.sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index 515ec262..cadf56be 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -1,10 +1,8 @@
import json
import os.path
-import sys
import threading
import time
from datetime import datetime
-import traceback
import git
@@ -14,6 +12,7 @@ import shutil
import errno
from modules import extensions, shared, paths, config_states
+from modules.errors import print_error
from modules.paths_internal import config_states_dir
from modules.call_queue import wrap_gradio_gpu_call
@@ -46,8 +45,7 @@ def apply_and_restart(disable_list, update_list, disable_all):
try:
ext.fetch_and_reset_hard()
except Exception:
- print(f"Error getting updates for {ext.name}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error getting updates for {ext.name}", exc_info=True)
shared.opts.disabled_extensions = disabled
shared.opts.disable_all_extensions = disable_all
@@ -113,8 +111,7 @@ def check_updates(id_task, disable_list):
if 'FETCH_HEAD' not in str(e):
raise
except Exception:
- print(f"Error checking updates for {ext.name}:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error checking updates for {ext.name}", exc_info=True)
shared.state.nextjob()
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index b918a764..4dc24615 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -1,13 +1,12 @@
import copy
import random
-import sys
-import traceback
import shlex
import modules.scripts as scripts
import gradio as gr
from modules import sd_samplers
+from modules.errors import print_error
from modules.processing import Processed, process_images
from modules.shared import state
@@ -136,8 +135,7 @@ class Script(scripts.Script):
try:
args = cmdargs(line)
except Exception:
- print(f"Error parsing line {line} as commandline:", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ print_error(f"Error parsing line {line} as commandline", exc_info=True)
args = {"prompt": line}
else:
args = {"prompt": line}
--
cgit v1.2.3
From 42e020c1c1c31b29ee7fc2e493a60613459642a1 Mon Sep 17 00:00:00 2001
From: James
Date: Mon, 29 May 2023 22:25:43 +0100
Subject: Added VAE listing to web API.
---
modules/api/api.py | 5 +++++
modules/api/models.py | 4 ++++
2 files changed, 9 insertions(+)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index eee99bbb..31b9d90c 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -23,6 +23,7 @@ from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights
+from modules.sd_vae import vae_dict
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
@@ -189,6 +190,7 @@ class Api:
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
+ self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
@@ -541,6 +543,9 @@ class Api:
def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
+ def get_sd_vaes(self):
+ return [{"model_name": x, "filename": vae_dict[x]} for x in vae_dict.keys()]
+
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
diff --git a/modules/api/models.py b/modules/api/models.py
index 1ff2fb33..47fdede2 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -249,6 +249,10 @@ class SDModelItem(BaseModel):
filename: str = Field(title="Filename")
config: Optional[str] = Field(title="Config file")
+class SDVaeItem(BaseModel):
+ model_name: str = Field(title="Model Name")
+ filename: str = Field(title="Filename")
+
class HypernetworkItem(BaseModel):
name: str = Field(title="Name")
path: Optional[str] = Field(title="Path")
--
cgit v1.2.3
From 05933840f0676dd1a90a7e2ad3f2a0672624b2cd Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 31 May 2023 19:56:37 +0300
Subject: rename print_error to report, use it with together with package name
---
extensions-builtin/LDSR/scripts/ldsr_model.py | 5 ++---
extensions-builtin/ScuNET/scripts/scunet_model.py | 5 ++---
modules/api/api.py | 5 ++---
modules/call_queue.py | 5 ++---
modules/codeformer_model.py | 7 +++----
modules/config_states.py | 9 ++++-----
modules/errors.py | 8 ++------
modules/extensions.py | 7 +++----
modules/gfpgan_model.py | 5 ++---
modules/hypernetworks/hypernetwork.py | 7 +++----
modules/images.py | 5 ++---
modules/interrogate.py | 3 +--
modules/launch_utils.py | 7 +++----
modules/localization.py | 4 ++--
modules/realesrgan_model.py | 10 +++++-----
modules/safe.py | 7 ++++---
modules/script_callbacks.py | 4 ++--
modules/script_loading.py | 4 ++--
modules/scripts.py | 23 +++++++++++------------
modules/sd_hijack_optimizations.py | 3 +--
modules/textual_inversion/textual_inversion.py | 7 +++----
modules/ui.py | 7 +++----
modules/ui_extensions.py | 7 +++----
scripts/prompts_from_file.py | 5 ++---
24 files changed, 69 insertions(+), 90 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py
index 95f1669d..dbd6d331 100644
--- a/extensions-builtin/LDSR/scripts/ldsr_model.py
+++ b/extensions-builtin/LDSR/scripts/ldsr_model.py
@@ -2,10 +2,9 @@ import os
from basicsr.utils.download_util import load_file_from_url
-from modules.errors import print_error
from modules.upscaler import Upscaler, UpscalerData
from ldsr_model_arch import LDSR
-from modules import shared, script_callbacks
+from modules import shared, script_callbacks, errors
import sd_hijack_autoencoder # noqa: F401
import sd_hijack_ddpm_v1 # noqa: F401
@@ -51,7 +50,7 @@ class UpscalerLDSR(Upscaler):
try:
return LDSR(model, yaml)
except Exception:
- print_error("Error importing LDSR", exc_info=True)
+ errors.report("Error importing LDSR", exc_info=True)
return None
def do_upscale(self, img, path):
diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py
index dd1b822e..85b4505f 100644
--- a/extensions-builtin/ScuNET/scripts/scunet_model.py
+++ b/extensions-builtin/ScuNET/scripts/scunet_model.py
@@ -9,10 +9,9 @@ from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
-from modules import devices, modelloader, script_callbacks
+from modules import devices, modelloader, script_callbacks, errors
from scunet_model_arch import SCUNet as net
-from modules.errors import print_error
from modules.shared import opts
@@ -39,7 +38,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data)
except Exception:
- print_error(f"Error loading ScuNET model: {file}", exc_info=True)
+ errors.report(f"Error loading ScuNET model: {file}", exc_info=True)
if add_model2:
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
scalers.append(scaler_data2)
diff --git a/modules/api/api.py b/modules/api/api.py
index fbd616a3..d34ab422 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -14,9 +14,8 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
-from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
+from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors
from modules.api import models
-from modules.errors import print_error
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
@@ -145,7 +144,7 @@ def api_middleware(app: FastAPI):
print(message)
console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
else:
- print_error(message, exc_info=True)
+ errors.report(message, exc_info=True)
return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))
@app.middleware("http")
diff --git a/modules/call_queue.py b/modules/call_queue.py
index dba2a9b4..53af6d70 100644
--- a/modules/call_queue.py
+++ b/modules/call_queue.py
@@ -2,8 +2,7 @@ import html
import threading
import time
-from modules import shared, progress
-from modules.errors import print_error
+from modules import shared, progress, errors
queue_lock = threading.Lock()
@@ -62,7 +61,7 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
arg_str = f"Arguments: {args} {kwargs}"[:max_debug_str_len]
if len(arg_str) > max_debug_str_len:
arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)"
- print_error(f"{message}\n{arg_str}", exc_info=True)
+ errors.report(f"{message}\n{arg_str}", exc_info=True)
shared.state.job = ""
shared.state.job_count = 0
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py
index 76143e9f..4260b016 100644
--- a/modules/codeformer_model.py
+++ b/modules/codeformer_model.py
@@ -5,8 +5,7 @@ import torch
import modules.face_restoration
import modules.shared
-from modules import shared, devices, modelloader
-from modules.errors import print_error
+from modules import shared, devices, modelloader, errors
from modules.paths import models_path
# codeformer people made a choice to include modified basicsr library to their project which makes
@@ -105,7 +104,7 @@ def setup_model(dirname):
del output
torch.cuda.empty_cache()
except Exception:
- print_error('Failed inference for CodeFormer', exc_info=True)
+ errors.report('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
@@ -134,6 +133,6 @@ def setup_model(dirname):
shared.face_restorers.append(codeformer)
except Exception:
- print_error("Error setting up CodeFormer", exc_info=True)
+ errors.report("Error setting up CodeFormer", exc_info=True)
# sys.path = stored_sys_path
diff --git a/modules/config_states.py b/modules/config_states.py
index faeaf28b..6f1ab53f 100644
--- a/modules/config_states.py
+++ b/modules/config_states.py
@@ -11,8 +11,7 @@ from datetime import datetime
from collections import OrderedDict
import git
-from modules import shared, extensions
-from modules.errors import print_error
+from modules import shared, extensions, errors
from modules.paths_internal import script_path, config_states_dir
@@ -52,7 +51,7 @@ def get_webui_config():
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
- print_error(f"Error reading webui git info from {script_path}", exc_info=True)
+ errors.report(f"Error reading webui git info from {script_path}", exc_info=True)
webui_remote = None
webui_commit_hash = None
@@ -132,7 +131,7 @@ def restore_webui_config(config):
if os.path.exists(os.path.join(script_path, ".git")):
webui_repo = git.Repo(script_path)
except Exception:
- print_error(f"Error reading webui git info from {script_path}", exc_info=True)
+ errors.report(f"Error reading webui git info from {script_path}", exc_info=True)
return
try:
@@ -140,7 +139,7 @@ def restore_webui_config(config):
webui_repo.git.reset(webui_commit_hash, hard=True)
print(f"* Restored webui to commit {webui_commit_hash}.")
except Exception:
- print_error(f"Error restoring webui to commit{webui_commit_hash}")
+ errors.report(f"Error restoring webui to commit{webui_commit_hash}")
def restore_extension_config(config):
diff --git a/modules/errors.py b/modules/errors.py
index 41d8dc93..e408f500 100644
--- a/modules/errors.py
+++ b/modules/errors.py
@@ -3,11 +3,7 @@ import textwrap
import traceback
-def print_error(
- message: str,
- *,
- exc_info: bool = False,
-) -> None:
+def report(message: str, *, exc_info: bool = False) -> None:
"""
Print an error message to stderr, with optional traceback.
"""
@@ -15,7 +11,7 @@ def print_error(
print("***", line, file=sys.stderr)
if exc_info:
print(textwrap.indent(traceback.format_exc(), " "), file=sys.stderr)
- print("---")
+ print("---", file=sys.stderr)
def print_error_explanation(message):
diff --git a/modules/extensions.py b/modules/extensions.py
index 92f93ad9..8608584b 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -1,8 +1,7 @@
import os
import threading
-from modules import shared
-from modules.errors import print_error
+from modules import shared, errors
from modules.gitpython_hack import Repo
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
@@ -54,7 +53,7 @@ class Extension:
if os.path.exists(os.path.join(self.path, ".git")):
repo = Repo(self.path)
except Exception:
- print_error(f"Error reading github repository info from {self.path}", exc_info=True)
+ errors.report(f"Error reading github repository info from {self.path}", exc_info=True)
if repo is None or repo.bare:
self.remote = None
@@ -70,7 +69,7 @@ class Extension:
self.version = self.commit_hash[:8]
except Exception:
- print_error(f"Failed reading extension data from Git repository ({self.name})", exc_info=True)
+ errors.report(f"Failed reading extension data from Git repository ({self.name})", exc_info=True)
self.remote = None
self.have_info_from_repo = True
diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py
index d2f647fe..e239a09d 100644
--- a/modules/gfpgan_model.py
+++ b/modules/gfpgan_model.py
@@ -4,8 +4,7 @@ import facexlib
import gfpgan
import modules.face_restoration
-from modules import paths, shared, devices, modelloader
-from modules.errors import print_error
+from modules import paths, shared, devices, modelloader, errors
model_dir = "GFPGAN"
user_path = None
@@ -111,4 +110,4 @@ def setup_model(dirname):
shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception:
- print_error("Error setting up GFPGAN", exc_info=True)
+ errors.report("Error setting up GFPGAN", exc_info=True)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index fcc1ef20..5d12b449 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -9,8 +9,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
-from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint
-from modules.errors import print_error
+from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -329,7 +328,7 @@ def load_hypernetwork(name):
hypernetwork.load(path)
return hypernetwork
except Exception:
- print_error(f"Error loading hypernetwork {path}", exc_info=True)
+ errors.report(f"Error loading hypernetwork {path}", exc_info=True)
return None
@@ -766,7 +765,7 @@ Last saved image: {html.escape(last_saved_image)}
"""
except Exception:
- print_error("Exception in training hypernetwork", exc_info=True)
+ errors.report("Exception in training hypernetwork", exc_info=True)
finally:
pbar.leave = False
pbar.close()
diff --git a/modules/images.py b/modules/images.py
index 09f728df..30e9ffc5 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -16,7 +16,6 @@ import json
import hashlib
from modules import sd_samplers, shared, script_callbacks, errors
-from modules.errors import print_error
from modules.paths_internal import roboto_ttf_file
from modules.shared import opts
@@ -463,7 +462,7 @@ class FilenameGenerator:
replacement = fun(self, *pattern_args)
except Exception:
replacement = None
- print_error(f"Error adding [{pattern}] to filename", exc_info=True)
+ errors.report(f"Error adding [{pattern}] to filename", exc_info=True)
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
continue
@@ -698,7 +697,7 @@ def read_info_from_image(image):
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
- print_error("Error parsing NovelAI image generation parameters", exc_info=True)
+ errors.report("Error parsing NovelAI image generation parameters", exc_info=True)
return geninfo, items
diff --git a/modules/interrogate.py b/modules/interrogate.py
index d36e1a5a..9b2c5b60 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -11,7 +11,6 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from modules import devices, paths, shared, lowvram, modelloader, errors
-from modules.errors import print_error
blip_image_eval_size = 384
clip_model_name = 'ViT-L/14'
@@ -216,7 +215,7 @@ class InterrogateModels:
res += f", {match}"
except Exception:
- print_error("Error interrogating", exc_info=True)
+ errors.report("Error interrogating", exc_info=True)
res += ""
self.unload()
diff --git a/modules/launch_utils.py b/modules/launch_utils.py
index 0bf4cb7e..6e9bb770 100644
--- a/modules/launch_utils.py
+++ b/modules/launch_utils.py
@@ -7,8 +7,7 @@ import platform
import json
from functools import lru_cache
-from modules import cmd_args
-from modules.errors import print_error
+from modules import cmd_args, errors
from modules.paths_internal import script_path, extensions_dir
args, _ = cmd_args.parser.parse_known_args()
@@ -189,7 +188,7 @@ def run_extension_installer(extension_dir):
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
except Exception as e:
- print_error(str(e))
+ errors.report(str(e))
def list_extensions(settings_file):
@@ -200,7 +199,7 @@ def list_extensions(settings_file):
with open(settings_file, "r", encoding="utf8") as file:
settings = json.load(file)
except Exception:
- print_error("Could not load settings", exc_info=True)
+ errors.report("Could not load settings", exc_info=True)
disabled_extensions = set(settings.get('disabled_extensions', []))
disable_all_extensions = settings.get('disable_all_extensions', 'none')
diff --git a/modules/localization.py b/modules/localization.py
index 9a1df343..e8f585da 100644
--- a/modules/localization.py
+++ b/modules/localization.py
@@ -1,7 +1,7 @@
import json
import os
-from modules.errors import print_error
+from modules import errors
localizations = {}
@@ -30,6 +30,6 @@ def localization_js(current_localization_name: str) -> str:
with open(fn, "r", encoding="utf8") as file:
data = json.load(file)
except Exception:
- print_error(f"Error loading localization from {fn}", exc_info=True)
+ errors.report(f"Error loading localization from {fn}", exc_info=True)
return f"window.localization = {json.dumps(data)}"
diff --git a/modules/realesrgan_model.py b/modules/realesrgan_model.py
index c8d0c64f..2d27b321 100644
--- a/modules/realesrgan_model.py
+++ b/modules/realesrgan_model.py
@@ -5,10 +5,10 @@ from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
-from modules.errors import print_error
from modules.upscaler import Upscaler, UpscalerData
from modules.shared import cmd_opts, opts
-from modules import modelloader
+from modules import modelloader, errors
+
class UpscalerRealESRGAN(Upscaler):
def __init__(self, path):
@@ -35,7 +35,7 @@ class UpscalerRealESRGAN(Upscaler):
self.scalers.append(scaler)
except Exception:
- print_error("Error importing Real-ESRGAN", exc_info=True)
+ errors.report("Error importing Real-ESRGAN", exc_info=True)
self.enable = False
self.scalers = []
@@ -75,7 +75,7 @@ class UpscalerRealESRGAN(Upscaler):
return info
except Exception:
- print_error("Error making Real-ESRGAN models list", exc_info=True)
+ errors.report("Error making Real-ESRGAN models list", exc_info=True)
return None
def load_models(self, _):
@@ -132,4 +132,4 @@ def get_realesrgan_models(scaler):
]
return models
except Exception:
- print_error("Error making Real-ESRGAN models list", exc_info=True)
+ errors.report("Error making Real-ESRGAN models list", exc_info=True)
diff --git a/modules/safe.py b/modules/safe.py
index b596f565..b1d08a79 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -9,9 +9,10 @@ import _codecs
import zipfile
import re
-from modules.errors import print_error
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
+from modules import errors
+
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args):
@@ -136,7 +137,7 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
check_pt(filename, extra_handler)
except pickle.UnpicklingError:
- print_error(
+ errors.report(
f"Error verifying pickled file from {filename}\n"
"-----> !!!! The file is most likely corrupted !!!! <-----\n"
"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n",
@@ -144,7 +145,7 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
)
return None
except Exception:
- print_error(
+ errors.report(
f"Error verifying pickled file from {filename}\n"
f"The file may be malicious, so the program is not going to read it.\n"
f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n",
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index 6aa9c3b6..ec1469d0 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -5,11 +5,11 @@ from typing import Optional, Dict, Any
from fastapi import FastAPI
from gradio import Blocks
-from modules.errors import print_error
+from modules import errors
def report_exception(c, job):
- print_error(f"Error executing callback {job} for {c.script}", exc_info=True)
+ errors.report(f"Error executing callback {job} for {c.script}", exc_info=True)
class ImageSaveParams:
diff --git a/modules/script_loading.py b/modules/script_loading.py
index 26efffcb..306a1f35 100644
--- a/modules/script_loading.py
+++ b/modules/script_loading.py
@@ -1,7 +1,7 @@
import os
import importlib.util
-from modules.errors import print_error
+from modules import errors
def load_module(path):
@@ -27,4 +27,4 @@ def preload_extensions(extensions_dir, parser):
module.preload(parser)
except Exception:
- print_error(f"Error running preload() for {preload_script}", exc_info=True)
+ errors.report(f"Error running preload() for {preload_script}", exc_info=True)
diff --git a/modules/scripts.py b/modules/scripts.py
index a7168fd1..0970f38e 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -5,8 +5,7 @@ from collections import namedtuple
import gradio as gr
-from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
-from modules.errors import print_error
+from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing, errors
AlwaysVisible = object()
@@ -264,7 +263,7 @@ def load_scripts():
register_scripts_from_module(script_module)
except Exception:
- print_error(f"Error loading script: {scriptfile.filename}", exc_info=True)
+ errors.report(f"Error loading script: {scriptfile.filename}", exc_info=True)
finally:
sys.path = syspath
@@ -281,7 +280,7 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
return func(*args, **kwargs)
except Exception:
- print_error(f"Error calling: {filename}/{funcname}", exc_info=True)
+ errors.report(f"Error calling: {filename}/{funcname}", exc_info=True)
return default
@@ -447,7 +446,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.process(p, *script_args)
except Exception:
- print_error(f"Error running process: {script.filename}", exc_info=True)
+ errors.report(f"Error running process: {script.filename}", exc_info=True)
def before_process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
@@ -455,7 +454,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.before_process_batch(p, *script_args, **kwargs)
except Exception:
- print_error(f"Error running before_process_batch: {script.filename}", exc_info=True)
+ errors.report(f"Error running before_process_batch: {script.filename}", exc_info=True)
def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
@@ -463,7 +462,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.process_batch(p, *script_args, **kwargs)
except Exception:
- print_error(f"Error running process_batch: {script.filename}", exc_info=True)
+ errors.report(f"Error running process_batch: {script.filename}", exc_info=True)
def postprocess(self, p, processed):
for script in self.alwayson_scripts:
@@ -471,7 +470,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess(p, processed, *script_args)
except Exception:
- print_error(f"Error running postprocess: {script.filename}", exc_info=True)
+ errors.report(f"Error running postprocess: {script.filename}", exc_info=True)
def postprocess_batch(self, p, images, **kwargs):
for script in self.alwayson_scripts:
@@ -479,7 +478,7 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_batch(p, *script_args, images=images, **kwargs)
except Exception:
- print_error(f"Error running postprocess_batch: {script.filename}", exc_info=True)
+ errors.report(f"Error running postprocess_batch: {script.filename}", exc_info=True)
def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts:
@@ -487,21 +486,21 @@ class ScriptRunner:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_image(p, pp, *script_args)
except Exception:
- print_error(f"Error running postprocess_image: {script.filename}", exc_info=True)
+ errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
def before_component(self, component, **kwargs):
for script in self.scripts:
try:
script.before_component(component, **kwargs)
except Exception:
- print_error(f"Error running before_component: {script.filename}", exc_info=True)
+ errors.report(f"Error running before_component: {script.filename}", exc_info=True)
def after_component(self, component, **kwargs):
for script in self.scripts:
try:
script.after_component(component, **kwargs)
except Exception:
- print_error(f"Error running after_component: {script.filename}", exc_info=True)
+ errors.report(f"Error running after_component: {script.filename}", exc_info=True)
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index fd186fa2..5f0ff513 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -9,7 +9,6 @@ from ldm.util import default
from einops import rearrange
from modules import shared, errors, devices, sub_quadratic_attention
-from modules.errors import print_error
from modules.hypernetworks import hypernetwork
import ldm.modules.attention
@@ -139,7 +138,7 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
import xformers.ops
shared.xformers_available = True
except Exception:
- print_error("Cannot import xformers", exc_info=True)
+ errors.report("Cannot import xformers", exc_info=True)
def get_available_vram():
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index b3dcb140..8da050ca 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -12,9 +12,8 @@ import numpy as np
from PIL import Image, PngImagePlugin
from torch.utils.tensorboard import SummaryWriter
-from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint
+from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors
import modules.textual_inversion.dataset
-from modules.errors import print_error
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
@@ -219,7 +218,7 @@ class EmbeddingDatabase:
self.load_from_file(fullfn, fn)
except Exception:
- print_error(f"Error loading embedding {fn}", exc_info=True)
+ errors.report(f"Error loading embedding {fn}", exc_info=True)
continue
def load_textual_inversion_embeddings(self, force_reload=False):
@@ -643,7 +642,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
- print_error("Error training embedding", exc_info=True)
+ errors.report("Error training embedding", exc_info=True)
finally:
pbar.leave = False
pbar.close()
diff --git a/modules/ui.py b/modules/ui.py
index fb6b2498..f361264c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -12,8 +12,7 @@ import numpy as np
from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
-from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave
-from modules.errors import print_error
+from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path, data_path
@@ -232,7 +231,7 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
except json.decoder.JSONDecodeError:
if gen_info_string:
- print_error(f"Error parsing JSON generation info: {gen_info_string}")
+ errors.report(f"Error parsing JSON generation info: {gen_info_string}")
return [res, gr_show(False)]
@@ -1752,7 +1751,7 @@ def create_ui():
try:
results = modules.extras.run_modelmerger(*args)
except Exception as e:
- print_error("Error loading/saving model file", exc_info=True)
+ errors.report("Error loading/saving model file", exc_info=True)
modules.sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index e2ee9d72..3140ed64 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -11,8 +11,7 @@ import html
import shutil
import errno
-from modules import extensions, shared, paths, config_states
-from modules.errors import print_error
+from modules import extensions, shared, paths, config_states, errors
from modules.paths_internal import config_states_dir
from modules.call_queue import wrap_gradio_gpu_call
@@ -45,7 +44,7 @@ def apply_and_restart(disable_list, update_list, disable_all):
try:
ext.fetch_and_reset_hard()
except Exception:
- print_error(f"Error getting updates for {ext.name}", exc_info=True)
+ errors.report(f"Error getting updates for {ext.name}", exc_info=True)
shared.opts.disabled_extensions = disabled
shared.opts.disable_all_extensions = disable_all
@@ -111,7 +110,7 @@ def check_updates(id_task, disable_list):
if 'FETCH_HEAD' not in str(e):
raise
except Exception:
- print_error(f"Error checking updates for {ext.name}", exc_info=True)
+ errors.report(f"Error checking updates for {ext.name}", exc_info=True)
shared.state.nextjob()
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index 4dc24615..83a2f220 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -5,8 +5,7 @@ import shlex
import modules.scripts as scripts
import gradio as gr
-from modules import sd_samplers
-from modules.errors import print_error
+from modules import sd_samplers, errors
from modules.processing import Processed, process_images
from modules.shared import state
@@ -135,7 +134,7 @@ class Script(scripts.Script):
try:
args = cmdargs(line)
except Exception:
- print_error(f"Error parsing line {line} as commandline", exc_info=True)
+ errors.report(f"Error parsing line {line} as commandline", exc_info=True)
args = {"prompt": line}
else:
args = {"prompt": line}
--
cgit v1.2.3
From 51864790fd72386fbbbb015d24a43ce501ecaa4b Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Fri, 2 Jun 2023 14:58:10 +0300
Subject: Simplify a bunch of `len(x) > 0`/`len(x) == 0` style expressions
---
extensions-builtin/LDSR/sd_hijack_autoencoder.py | 3 ++-
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 4 ++--
extensions-builtin/Lora/extra_networks_lora.py | 4 ++--
extensions-builtin/Lora/lora.py | 4 ++--
.../extra-options-section/scripts/extra_options_section.py | 2 +-
modules/api/api.py | 2 +-
modules/call_queue.py | 2 +-
modules/extra_networks_hypernet.py | 4 ++--
modules/generation_parameters_copypaste.py | 6 ++----
modules/images.py | 6 +++---
modules/img2img.py | 3 +--
modules/models/diffusion/ddpm_edit.py | 4 ++--
modules/processing.py | 3 ++-
modules/prompt_parser.py | 6 +++---
modules/script_callbacks.py | 4 ++--
modules/sd_hijack_clip.py | 2 +-
modules/sd_hijack_clip_old.py | 2 +-
modules/textual_inversion/autocrop.py | 14 +++++++-------
modules/textual_inversion/dataset.py | 2 +-
modules/textual_inversion/preprocess.py | 4 ++--
modules/textual_inversion/textual_inversion.py | 2 +-
modules/ui.py | 2 +-
modules/ui_extensions.py | 5 +++--
modules/ui_settings.py | 2 +-
scripts/prompts_from_file.py | 3 +--
25 files changed, 47 insertions(+), 48 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
index 27a86e13..c29d274d 100644
--- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py
+++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py
@@ -91,8 +91,9 @@ class VQModel(pl.LightningModule):
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
+ if missing:
print(f"Missing Keys: {missing}")
+ if unexpected:
print(f"Unexpected Keys: {unexpected}")
def on_train_batch_end(self, *args, **kwargs):
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index 631a08ef..04adc5eb 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -195,9 +195,9 @@ class DDPMV1(pl.LightningModule):
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
+ if missing:
print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
+ if unexpected:
print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t):
diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py
index b5fea4d2..66ee9c85 100644
--- a/extensions-builtin/Lora/extra_networks_lora.py
+++ b/extensions-builtin/Lora/extra_networks_lora.py
@@ -9,14 +9,14 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
- if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = []
multipliers = []
for params in params_list:
- assert len(params.items) > 0
+ assert params.items
names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py
index eec14712..af93991c 100644
--- a/extensions-builtin/Lora/lora.py
+++ b/extensions-builtin/Lora/lora.py
@@ -219,7 +219,7 @@ def load_lora(name, lora_on_disk):
else:
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")
- if len(keys_failed_to_match) > 0:
+ if keys_failed_to_match:
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
return lora
@@ -267,7 +267,7 @@ def load_loras(names, multipliers=None):
lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora)
- if len(failed_to_load_loras) > 0:
+ if failed_to_load_loras:
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
diff --git a/extensions-builtin/extra-options-section/scripts/extra_options_section.py b/extensions-builtin/extra-options-section/scripts/extra_options_section.py
index 17f84184..a05e10d8 100644
--- a/extensions-builtin/extra-options-section/scripts/extra_options_section.py
+++ b/extensions-builtin/extra-options-section/scripts/extra_options_section.py
@@ -21,7 +21,7 @@ class ExtraOptionsSection(scripts.Script):
self.setting_names = []
with gr.Blocks() as interface:
- with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and len(shared.opts.extra_options) > 0 else gr.Group(), gr.Row():
+ with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group(), gr.Row():
for setting_name in shared.opts.extra_options:
with FormColumn():
comp = ui_settings.create_setting_component(setting_name)
diff --git a/modules/api/api.py b/modules/api/api.py
index d34ab422..555eefdb 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -280,7 +280,7 @@ class Api:
script_args[0] = selectable_idx + 1
# Now check for always on scripts
- if request.alwayson_scripts and (len(request.alwayson_scripts) > 0):
+ if request.alwayson_scripts:
for alwayson_script_name in request.alwayson_scripts.keys():
alwayson_script = self.get_script(alwayson_script_name, script_runner)
if alwayson_script is None:
diff --git a/modules/call_queue.py b/modules/call_queue.py
index 53af6d70..1b5e5273 100644
--- a/modules/call_queue.py
+++ b/modules/call_queue.py
@@ -21,7 +21,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
def f(*args, **kwargs):
# if the first argument is a string that says "task(...)", it is treated as a job id
- if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")":
+ if args and type(args[0]) == str and args[0].startswith("task(") and args[0].endswith(")"):
id_task = args[0]
progress.add_task_to_queue(id_task)
else:
diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py
index aa2a14ef..b6a6dc0e 100644
--- a/modules/extra_networks_hypernet.py
+++ b/modules/extra_networks_hypernet.py
@@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
- if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
+ if additional != "None" and additional in shared.hypernetworks and not any(x for x in params_list if x.items[0] == additional):
hypernet_prompt_text = f""
p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
@@ -17,7 +17,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
names = []
multipliers = []
for params in params_list:
- assert len(params.items) > 0
+ assert params.items
names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 071bd9ea..237401a1 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -55,7 +55,7 @@ def image_from_url_text(filedata):
if filedata is None:
return None
- if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
+ if type(filedata) == list and filedata and type(filedata[0]) == dict and filedata[0].get("is_file", False):
filedata = filedata[0]
if type(filedata) == dict and filedata.get("is_file", False):
@@ -437,7 +437,7 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
vals_pairs = [f"{k}: {v}" for k, v in vals.items()]
- return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0)
+ return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=bool(vals_pairs))
paste_fields = paste_fields + [(override_settings_component, paste_settings)]
@@ -454,5 +454,3 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
outputs=[],
show_progress=False,
)
-
-
diff --git a/modules/images.py b/modules/images.py
index a12d252b..7bbfc3e0 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -406,7 +406,7 @@ class FilenameGenerator:
prompt_no_style = self.prompt
for style in shared.prompt_styles.get_style_prompts(self.p.styles):
- if len(style) > 0:
+ if style:
for part in style.split("{prompt}"):
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
@@ -415,7 +415,7 @@ class FilenameGenerator:
return sanitize_filename_part(prompt_no_style, replace_spaces=False)
def prompt_words(self):
- words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
+ words = [x for x in re_nonletters.split(self.prompt or "") if x]
if len(words) == 0:
words = ["empty"]
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
@@ -423,7 +423,7 @@ class FilenameGenerator:
def datetime(self, *args):
time_datetime = datetime.datetime.now()
- time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
+ time_format = args[0] if (args and args[0] != "") else self.default_time_format
try:
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
except pytz.exceptions.UnknownTimeZoneError:
diff --git a/modules/img2img.py b/modules/img2img.py
index 4c12c2c5..35c4facc 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -21,8 +21,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir)
- is_inpaint_batch = len(inpaint_masks) > 0
- if is_inpaint_batch:
+ is_inpaint_batch = bool(inpaint_masks)
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py
index 3fb76b65..b892d5fc 100644
--- a/modules/models/diffusion/ddpm_edit.py
+++ b/modules/models/diffusion/ddpm_edit.py
@@ -230,9 +230,9 @@ class DDPM(pl.LightningModule):
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
- if len(missing) > 0:
+ if missing:
print(f"Missing Keys: {missing}")
- if len(unexpected) > 0:
+ if unexpected:
print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t):
diff --git a/modules/processing.py b/modules/processing.py
index 362ab4c2..9ebdb549 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -975,7 +975,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
if self.enable_hr and latent_scale_mode is None:
- assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
+ if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
+ raise Exception(f"could not find upscaler named {self.hr_upscaler}")
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py
index b4aff704..0069d8b0 100644
--- a/modules/prompt_parser.py
+++ b/modules/prompt_parser.py
@@ -336,11 +336,11 @@ def parse_prompt_attention(text):
round_brackets.append(len(res))
elif text == '[':
square_brackets.append(len(res))
- elif weight is not None and len(round_brackets) > 0:
+ elif weight is not None and round_brackets:
multiply_range(round_brackets.pop(), float(weight))
- elif text == ')' and len(round_brackets) > 0:
+ elif text == ')' and round_brackets:
multiply_range(round_brackets.pop(), round_bracket_multiplier)
- elif text == ']' and len(square_brackets) > 0:
+ elif text == ']' and square_brackets:
multiply_range(square_brackets.pop(), square_bracket_multiplier)
else:
parts = re.split(re_break, text)
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
index f755283c..77ee55ee 100644
--- a/modules/script_callbacks.py
+++ b/modules/script_callbacks.py
@@ -287,14 +287,14 @@ def list_unets_callback():
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
- filename = stack[0].filename if len(stack) > 0 else 'unknown file'
+ filename = stack[0].filename if stack else 'unknown file'
callbacks.append(ScriptCallback(filename, fun))
def remove_current_script_callbacks():
stack = [x for x in inspect.stack() if x.filename != __file__]
- filename = stack[0].filename if len(stack) > 0 else 'unknown file'
+ filename = stack[0].filename if stack else 'unknown file'
if filename == 'unknown file':
return
for callback_list in callback_map.values():
diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py
index cc6e8c21..3b5a7666 100644
--- a/modules/sd_hijack_clip.py
+++ b/modules/sd_hijack_clip.py
@@ -167,7 +167,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
chunk.multipliers += [weight] * emb_len
position += embedding_length_in_tokens
- if len(chunk.tokens) > 0 or len(chunks) == 0:
+ if chunk.tokens or not chunks:
next_chunk(is_last=True)
return chunks, token_count
diff --git a/modules/sd_hijack_clip_old.py b/modules/sd_hijack_clip_old.py
index a3476e95..c5c6270b 100644
--- a/modules/sd_hijack_clip_old.py
+++ b/modules/sd_hijack_clip_old.py
@@ -74,7 +74,7 @@ def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, text
self.hijack.comments += hijack_comments
- if len(used_custom_terms) > 0:
+ if used_custom_terms:
embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms)
self.hijack.comments.append(f"Used embeddings: {embedding_names}")
diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py
index 8e667a4d..75705459 100644
--- a/modules/textual_inversion/autocrop.py
+++ b/modules/textual_inversion/autocrop.py
@@ -77,27 +77,27 @@ def focal_point(im, settings):
pois = []
weight_pref_total = 0
- if len(corner_points) > 0:
+ if corner_points:
weight_pref_total += settings.corner_points_weight
- if len(entropy_points) > 0:
+ if entropy_points:
weight_pref_total += settings.entropy_points_weight
- if len(face_points) > 0:
+ if face_points:
weight_pref_total += settings.face_points_weight
corner_centroid = None
- if len(corner_points) > 0:
+ if corner_points:
corner_centroid = centroid(corner_points)
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid)
entropy_centroid = None
- if len(entropy_points) > 0:
+ if entropy_points:
entropy_centroid = centroid(entropy_points)
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
pois.append(entropy_centroid)
face_centroid = None
- if len(face_points) > 0:
+ if face_points:
face_centroid = centroid(face_points)
face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid)
@@ -187,7 +187,7 @@ def image_face_points(im, settings):
except Exception:
continue
- if len(faces) > 0:
+ if faces:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return []
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index b9621fc9..7ee05061 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -32,7 +32,7 @@ class DatasetEntry:
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
- re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
+ re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None
self.placeholder_token = placeholder_token
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index a009d8e8..0d4c3f84 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -47,7 +47,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
caption += shared.interrogator.generate_caption(image)
if params.process_caption_deepbooru:
- if len(caption) > 0:
+ if caption:
caption += ", "
caption += deepbooru.model.tag_multi(image)
@@ -67,7 +67,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
caption = caption.strip()
- if len(caption) > 0:
+ if caption:
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 8da050ca..bb6f211c 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -251,7 +251,7 @@ class EmbeddingDatabase:
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
- if len(self.skipped_embeddings) > 0:
+ if self.skipped_embeddings:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
def find_embedding_at_position(self, tokens, offset):
diff --git a/modules/ui.py b/modules/ui.py
index b7459f08..9a025cca 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -398,7 +398,7 @@ def create_override_settings_dropdown(tabname, row):
dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True)
dropdown.change(
- fn=lambda x: gr.Dropdown.update(visible=len(x) > 0),
+ fn=lambda x: gr.Dropdown.update(visible=bool(x)),
inputs=[dropdown],
outputs=[dropdown],
)
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index 3140ed64..65173e06 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -333,7 +333,8 @@ def install_extension_from_url(dirname, url, branch_name=None):
assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}'
normalized_url = normalize_git_url(url)
- assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed'
+ if any(x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url):
+ raise Exception(f'Extension with this URL is already installed: {url}')
tmpdir = os.path.join(paths.data_path, "tmp", dirname)
@@ -449,7 +450,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
existing = installed_extension_urls.get(normalize_git_url(url), None)
extension_tags = extension_tags + ["installed"] if existing else extension_tags
- if len([x for x in extension_tags if x in tags_to_hide]) > 0:
+ if any(x for x in extension_tags if x in tags_to_hide):
hidden += 1
continue
diff --git a/modules/ui_settings.py b/modules/ui_settings.py
index 7874298e..2688d8c2 100644
--- a/modules/ui_settings.py
+++ b/modules/ui_settings.py
@@ -81,7 +81,7 @@ class UiSettings:
opts.save(shared.config_filename)
except RuntimeError:
return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.'
- return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.'
+ return opts.dumpjson(), f'{len(changed)} settings changed{": " if changed else ""}{", ".join(changed)}.'
def run_settings_single(self, value, key):
if not opts.same_type(value, opts.data_labels[key].default):
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index 83a2f220..50320d55 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -121,8 +121,7 @@ class Script(scripts.Script):
return [checkbox_iterate, checkbox_iterate_batch, prompt_txt]
def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_txt: str):
- lines = [x.strip() for x in prompt_txt.splitlines()]
- lines = [x for x in lines if len(x) > 0]
+ lines = [x for x in (x.strip() for x in prompt_txt.splitlines()) if x]
p.do_not_save_grid = True
--
cgit v1.2.3
From 4faaf3e723ddaec022af85d6e66c3b1bac449584 Mon Sep 17 00:00:00 2001
From: ramyma
Date: Sun, 4 Jun 2023 16:59:23 +0300
Subject: Add endpoint to get latent_upscale_modes for hires fix
---
modules/api/api.py | 9 +++++++++
modules/api/models.py | 3 +++
2 files changed, 12 insertions(+)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index d34ab422..61a47005 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -189,6 +189,7 @@ class Api:
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
+ self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
@@ -540,6 +541,14 @@ class Api:
for upscaler in shared.sd_upscalers
]
+ def get_latent_upscale_modes(self):
+ return [
+ {
+ "name": upscale_mode,
+ }
+ for upscale_mode in [*(shared.latent_upscale_modes or {})]
+ ]
+
def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
diff --git a/modules/api/models.py b/modules/api/models.py
index 47fdede2..b3a745f0 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -241,6 +241,9 @@ class UpscalerItem(BaseModel):
model_url: Optional[str] = Field(title="URL")
scale: Optional[float] = Field(title="Scale")
+class LatentUpscalerModeItem(BaseModel):
+ name: str = Field(title="Name")
+
class SDModelItem(BaseModel):
title: str = Field(title="Title")
model_name: str = Field(title="Model Name")
--
cgit v1.2.3
From ba70a220e3176153ba2a559acb9e5aa692dce7ca Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Mon, 5 Jun 2023 22:20:29 +0300
Subject: Remove a bunch of unused/vestigial code
As found by Vulture and some eyes
---
modules/api/api.py | 7 -------
modules/api/models.py | 4 ----
modules/codeformer_model.py | 4 ----
modules/devices.py | 7 -------
modules/generation_parameters_copypaste.py | 29 -----------------------------
modules/hypernetworks/hypernetwork.py | 24 ------------------------
modules/paths.py | 14 --------------
7 files changed, 89 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 2e49526e..41cd7eca 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -32,13 +32,6 @@ import piexif
import piexif.helper
-def upscaler_to_index(name: str):
- try:
- return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
- except Exception as e:
- raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e
-
-
def script_name_to_index(name, scripts):
try:
return [script.title().lower() for script in scripts].index(name.lower())
diff --git a/modules/api/models.py b/modules/api/models.py
index b3a745f0..b5683071 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -274,10 +274,6 @@ class PromptStyleItem(BaseModel):
prompt: Optional[str] = Field(title="Prompt")
negative_prompt: Optional[str] = Field(title="Negative Prompt")
-class ArtistItem(BaseModel):
- name: str = Field(title="Name")
- score: float = Field(title="Score")
- category: str = Field(title="Category")
class EmbeddingItem(BaseModel):
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py
index 4260b016..a01fe63d 100644
--- a/modules/codeformer_model.py
+++ b/modules/codeformer_model.py
@@ -15,7 +15,6 @@ model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
-have_codeformer = False
codeformer = None
@@ -125,9 +124,6 @@ def setup_model(dirname):
return restored_img
- global have_codeformer
- have_codeformer = True
-
global codeformer
codeformer = FaceRestorerCodeFormer(dirname)
shared.face_restorers.append(codeformer)
diff --git a/modules/devices.py b/modules/devices.py
index 1ed6ffdc..620ed1a6 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -15,13 +15,6 @@ def has_mps() -> bool:
else:
return mac_specific.has_mps
-def extract_device_id(args, name):
- for x in range(len(args)):
- if name in args[x]:
- return args[x + 1]
-
- return None
-
def get_cuda_device_string():
from modules import shared
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 1d02ffae..699b1a81 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -174,31 +174,6 @@ def send_image_and_dimensions(x):
return img, w, h
-
-def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
- """Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
-
- Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
- parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
-
- If the infotext has no hash, then a hypernet with the same name will be selected instead.
- """
- hypernet_name = hypernet_name.lower()
- if hypernet_hash is not None:
- # Try to match the hash in the name
- for hypernet_key in shared.hypernetworks.keys():
- result = re_hypernet_hash.search(hypernet_key)
- if result is not None and result[1] == hypernet_hash:
- return hypernet_key
- else:
- # Fall back to a hypernet with the same name
- for hypernet_key in shared.hypernetworks.keys():
- if hypernet_key.lower().startswith(hypernet_name):
- return hypernet_key
-
- return None
-
-
def restore_old_hires_fix_params(res):
"""for infotexts that specify old First pass size parameter, convert it into
width, height, and hr scale"""
@@ -329,10 +304,6 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
return res
-settings_map = {}
-
-
-
infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'),
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 5d12b449..51941c11 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -353,17 +353,6 @@ def load_hypernetworks(names, multipliers=None):
shared.loaded_hypernetworks.append(hypernetwork)
-def find_closest_hypernetwork_name(search: str):
- if not search:
- return None
- search = search.lower()
- applicable = [name for name in shared.hypernetworks if search in name.lower()]
- if not applicable:
- return None
- applicable = sorted(applicable, key=lambda name: len(name))
- return applicable[0]
-
-
def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
@@ -446,18 +435,6 @@ def statistics(data):
return total_information, recent_information
-def report_statistics(loss_info:dict):
- keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
- for key in keys:
- try:
- print("Loss statistics for file " + key)
- info, recent = statistics(list(loss_info[key]))
- print(info)
- print(recent)
- except Exception as e:
- print(e)
-
-
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@@ -770,7 +747,6 @@ Last saved image: {html.escape(last_saved_image)}
pbar.leave = False
pbar.close()
hypernetwork.eval()
- #report_statistics(loss_dict)
sd_hijack_checkpoint.remove()
diff --git a/modules/paths.py b/modules/paths.py
index 5171df4f..bada804e 100644
--- a/modules/paths.py
+++ b/modules/paths.py
@@ -38,17 +38,3 @@ for d, must_exist, what, options in path_dirs:
else:
sys.path.append(d)
paths[what] = d
-
-
-class Prioritize:
- def __init__(self, name):
- self.name = name
- self.path = None
-
- def __enter__(self):
- self.path = sys.path.copy()
- sys.path = [paths[self.name]] + sys.path
-
- def __exit__(self, exc_type, exc_val, exc_tb):
- sys.path = self.path
- self.path = None
--
cgit v1.2.3
From 8ca34ad6d8cc2502403b3b96bb811366bc13c076 Mon Sep 17 00:00:00 2001
From: Su Wei
Date: Fri, 9 Jun 2023 13:14:20 +0800
Subject: add model exists status check to modeuls/api/api.py ,
/sdapi/v1/options [POST]
---
modules/api/api.py | 7 ++++++-
1 file changed, 6 insertions(+), 1 deletion(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index eee99bbb..56b7858d 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -22,7 +22,7 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
-from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights
+from modules.sd_models import checkpoints_list, unload_model_weights, reload_model_weights,checkpoint_alisases
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
@@ -515,6 +515,11 @@ class Api:
def set_config(self, req: Dict[str, Any]):
for k, v in req.items():
+ if k == "sd_model_checkpoint":
+ checkpoint_info = checkpoint_alisases.get(v, None)
+ if checkpoint_info is None:
+ print(f"model [{v}] not founded, skip config saving process")
+ return
shared.opts.set(k, v)
shared.opts.save(shared.config_filename)
--
cgit v1.2.3
From 9142be0a0d8cea37cf1ae86c17fc7dcb161d9a42 Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Sat, 10 Jun 2023 23:36:34 +0900
Subject: quit restart
---
modules/api/api.py | 11 ++++++++++-
1 file changed, 10 insertions(+), 1 deletion(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 2e49526e..317c809f 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -14,7 +14,7 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
-from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors
+from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
@@ -208,6 +208,8 @@ class Api:
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
+ self.add_api_route("/sdapi/v1/quit-webui", self.quit_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/restart-webui", self.restart_webui, methods=["POST"])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -715,3 +717,10 @@ class Api:
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)
+
+ def quit_webui(self):
+ restart.stop_program()
+
+ def restart_webui(self):
+ if restart.is_restartable():
+ restart.restart_program()
--
cgit v1.2.3
From 7e2d39a2d158d1426321686b05d31a3ea694a99e Mon Sep 17 00:00:00 2001
From: Su Wei
Date: Mon, 12 Jun 2023 15:22:49 +0800
Subject: update model checkpoint switch code
---
modules/api/api.py | 9 ++++-----
1 file changed, 4 insertions(+), 5 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 56b7858d..7d7dfe9a 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -514,12 +514,11 @@ class Api:
return options
def set_config(self, req: Dict[str, Any]):
+ checkpoint_key="sd_model_checkpoint"
+ if checkpoint_key in req and str(req[checkpoint_key]) not in checkpoint_alisases:
+ raise RuntimeError(f"model {v!r} not found")
+
for k, v in req.items():
- if k == "sd_model_checkpoint":
- checkpoint_info = checkpoint_alisases.get(v, None)
- if checkpoint_info is None:
- print(f"model [{v}] not founded, skip config saving process")
- return
shared.opts.set(k, v)
shared.opts.save(shared.config_filename)
--
cgit v1.2.3
From b9664ab6154818680ee25920e229b808a3cdec68 Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Mon, 12 Jun 2023 18:15:27 +0900
Subject: move _stop route to api
---
modules/api/api.py | 11 +++++++++--
webui.py | 7 -------
2 files changed, 9 insertions(+), 9 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 317c809f..cb1cde78 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -208,8 +208,11 @@ class Api:
self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
- self.add_api_route("/sdapi/v1/quit-webui", self.quit_webui, methods=["POST"])
- self.add_api_route("/sdapi/v1/restart-webui", self.restart_webui, methods=["POST"])
+
+ if shared.cmd_opts.add_stop_route:
+ self.add_api_route("/sdapi/v1/quit-webui", self.quit_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/restart-webui", self.restart_webui, methods=["POST"])
+ self.add_api_route("/_stop", self.stop_route, methods=["POST"])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -724,3 +727,7 @@ class Api:
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
+
+ def stop_route(request):
+ shared.state.server_command = "stop"
+ return Response("Stopping.")
diff --git a/webui.py b/webui.py
index 136d036d..ae6dc9fb 100644
--- a/webui.py
+++ b/webui.py
@@ -362,11 +362,6 @@ def api_only():
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
-def stop_route(request):
- shared.state.server_command = "stop"
- return Response("Stopping.")
-
-
def webui():
launch_api = cmd_opts.api
initialize()
@@ -404,8 +399,6 @@ def webui():
"redoc_url": "/redoc",
},
)
- if cmd_opts.add_stop_route:
- app.add_route("/_stop", stop_route, methods=["POST"])
# after initial launch, disable --autolaunch for subsequent restarts
cmd_opts.autolaunch = False
--
cgit v1.2.3
From 5be6c026f55760039b3ebb284cc2ce85586be4ac Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Wed, 14 Jun 2023 18:51:47 +0900
Subject: rename routes
---
modules/api/api.py | 10 +++++-----
1 file changed, 5 insertions(+), 5 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index cb1cde78..5ea1d21c 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -210,9 +210,9 @@ class Api:
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
if shared.cmd_opts.add_stop_route:
- self.add_api_route("/sdapi/v1/quit-webui", self.quit_webui, methods=["POST"])
- self.add_api_route("/sdapi/v1/restart-webui", self.restart_webui, methods=["POST"])
- self.add_api_route("/_stop", self.stop_route, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-terminate", self.terminate_webui, methods=["POST"])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -721,13 +721,13 @@ class Api:
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=0)
- def quit_webui(self):
+ def kill_webui(self):
restart.stop_program()
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
- def stop_route(request):
+ def terminate_webui(request):
shared.state.server_command = "stop"
return Response("Stopping.")
--
cgit v1.2.3
From 49fb2a337661d1b9a80de8ff35a640083fa98d2f Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Wed, 14 Jun 2023 19:52:12 +0900
Subject: response 501 if not a able to restart
---
modules/api/api.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 5ea1d21c..4dc48a03 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -727,6 +727,7 @@ class Api:
def restart_webui(self):
if restart.is_restartable():
restart.restart_program()
+ return Response(status_code=501)
def terminate_webui(request):
shared.state.server_command = "stop"
--
cgit v1.2.3
From 6091c4e4aa32b674f8ec755e6bd58989f09b08c5 Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Wed, 14 Jun 2023 19:53:08 +0900
Subject: terminate -> stop
---
.github/workflows/run_tests.yaml | 2 +-
modules/api/api.py | 4 ++--
2 files changed, 3 insertions(+), 3 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml
index 394811ac..96546011 100644
--- a/.github/workflows/run_tests.yaml
+++ b/.github/workflows/run_tests.yaml
@@ -50,7 +50,7 @@ jobs:
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
- name: Kill test server
if: always()
- run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-terminate && sleep 10
+ run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-stop && sleep 10
- name: Show coverage
run: |
python -m coverage combine .coverage*
diff --git a/modules/api/api.py b/modules/api/api.py
index 4dc48a03..80d45ca7 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -212,7 +212,7 @@ class Api:
if shared.cmd_opts.add_stop_route:
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
- self.add_api_route("/sdapi/v1/server-terminate", self.terminate_webui, methods=["POST"])
+ self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
self.default_script_arg_txt2img = []
self.default_script_arg_img2img = []
@@ -729,6 +729,6 @@ class Api:
restart.restart_program()
return Response(status_code=501)
- def terminate_webui(request):
+ def stop_webui(request):
shared.state.server_command = "stop"
return Response("Stopping.")
--
cgit v1.2.3
From d06af4e517865277d0521642c2c5513af9afd76f Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 27 Jun 2023 09:26:18 +0300
Subject: fix and rework #11113
---
modules/api/api.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index f96056b6..1d4aeff5 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -522,9 +522,9 @@ class Api:
return options
def set_config(self, req: Dict[str, Any]):
- checkpoint_key="sd_model_checkpoint"
- if checkpoint_key in req and str(req[checkpoint_key]) not in checkpoint_alisases:
- raise RuntimeError(f"model {v!r} not found")
+ checkpoint_name = req.get("sd_model_checkpoint", None)
+ if checkpoint_name is not None and checkpoint_name not in checkpoint_alisases:
+ raise RuntimeError(f"model {checkpoint_name!r} not found")
for k, v in req.items():
shared.opts.set(k, v)
--
cgit v1.2.3
From cc9c1719786de00d4a5bfcf83be4bf2808cf0cb5 Mon Sep 17 00:00:00 2001
From: w-e-w <40751091+w-e-w@users.noreply.github.com>
Date: Thu, 29 Jun 2023 14:21:28 +0900
Subject: rename --add-stop-route to --api-server-stop
---
.github/workflows/run_tests.yaml | 2 +-
modules/api/api.py | 2 +-
modules/cmd_args.py | 2 +-
3 files changed, 3 insertions(+), 3 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/.github/workflows/run_tests.yaml b/.github/workflows/run_tests.yaml
index 96546011..178c026a 100644
--- a/.github/workflows/run_tests.yaml
+++ b/.github/workflows/run_tests.yaml
@@ -42,7 +42,7 @@ jobs:
--no-half
--disable-opt-split-attention
--use-cpu all
- --add-stop-route
+ --api-server-stop
2>&1 | tee output.txt &
- name: Run tests
run: |
diff --git a/modules/api/api.py b/modules/api/api.py
index 279c384a..adc633db 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -202,7 +202,7 @@ class Api:
self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])
- if shared.cmd_opts.add_stop_route:
+ if shared.cmd_opts.api_server_stop:
self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index 624dcb4f..278a605e 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -106,4 +106,4 @@ parser.add_argument("--skip-version-check", action='store_true', help="Do not ch
parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False)
parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False)
parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy')
-parser.add_argument('--add-stop-route', action='store_true', help='enable server stop/restart/kill via api')
+parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')
--
cgit v1.2.3
From 74d001bc68c2106aa963e3474eee70327b8f3760 Mon Sep 17 00:00:00 2001
From: ramyma
Date: Sun, 2 Jul 2023 04:59:59 +0300
Subject: Hotfix: call processing close to cleanup API generation calls
---
modules/api/api.py | 2 ++
1 file changed, 2 insertions(+)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 279c384a..f10e3fe3 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -335,6 +335,7 @@ class Api:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
+ p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@@ -392,6 +393,7 @@ class Api:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
+ p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
--
cgit v1.2.3
From f44feb6a10aacc6a5ff4c9275fba2546b2858935 Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Fri, 30 Jun 2023 13:11:31 +0300
Subject: Add job argument to State.begin()
---
modules/api/api.py | 14 +++++++-------
modules/call_queue.py | 2 +-
modules/extras.py | 3 +--
modules/interrogate.py | 3 +--
modules/postprocessing.py | 3 +--
modules/shared.py | 4 ++--
6 files changed, 13 insertions(+), 16 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 279c384a..3ea099ad 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -327,7 +327,7 @@ class Api:
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
- shared.state.begin()
+ shared.state.begin(job="scripts_txt2img")
if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
@@ -384,7 +384,7 @@ class Api:
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
- shared.state.begin()
+ shared.state.begin(job="scripts_img2img")
if selectable_scripts is not None:
p.script_args = script_args
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
@@ -599,7 +599,7 @@ class Api:
def create_embedding(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
@@ -610,7 +610,7 @@ class Api:
def create_hypernetwork(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
@@ -620,7 +620,7 @@ class Api:
def preprocess(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
return models.PreprocessResponse(info = 'preprocess complete')
@@ -636,7 +636,7 @@ class Api:
def train_embedding(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="train_embedding")
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
@@ -657,7 +657,7 @@ class Api:
def train_hypernetwork(self, args: dict):
try:
- shared.state.begin()
+ shared.state.begin(job="train_hypernetwork")
shared.loaded_hypernetworks = []
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
diff --git a/modules/call_queue.py b/modules/call_queue.py
index 69bf63d2..3b94f8a4 100644
--- a/modules/call_queue.py
+++ b/modules/call_queue.py
@@ -30,7 +30,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
id_task = None
with queue_lock:
- shared.state.begin()
+ shared.state.begin(job=id_task)
progress.start_task(id_task)
try:
diff --git a/modules/extras.py b/modules/extras.py
index 830b53aa..e9c0263e 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -73,8 +73,7 @@ def to_half(tensor, enable):
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
- shared.state.begin()
- shared.state.job = 'model-merge'
+ shared.state.begin(job="model-merge")
def fail(message):
shared.state.textinfo = message
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 9b2c5b60..a3ae1dd5 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -184,8 +184,7 @@ class InterrogateModels:
def interrogate(self, pil_image):
res = ""
- shared.state.begin()
- shared.state.job = 'interrogate'
+ shared.state.begin(job="interrogate")
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
diff --git a/modules/postprocessing.py b/modules/postprocessing.py
index 736315e2..544b2f72 100644
--- a/modules/postprocessing.py
+++ b/modules/postprocessing.py
@@ -9,8 +9,7 @@ from modules.shared import opts
def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
devices.torch_gc()
- shared.state.begin()
- shared.state.job = 'extras'
+ shared.state.begin(job="extras")
image_data = []
image_names = []
diff --git a/modules/shared.py b/modules/shared.py
index 203ee1b9..7df2879c 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -173,7 +173,7 @@ class State:
return obj
- def begin(self):
+ def begin(self, job: str = "(unknown)"):
self.sampling_step = 0
self.job_count = -1
self.processing_has_refined_job_count = False
@@ -187,7 +187,7 @@ class State:
self.interrupted = False
self.textinfo = None
self.time_start = time.time()
-
+ self.job = job
devices.torch_gc()
def end(self):
--
cgit v1.2.3
From e4303443477b9ac3c90ec4dd58a4810f7ac1eabe Mon Sep 17 00:00:00 2001
From: Aarni Koskela
Date: Fri, 30 Jun 2023 13:11:49 +0300
Subject: API: use finally: for state.end()
---
modules/api/api.py | 29 ++++++++++++++---------------
1 file changed, 14 insertions(+), 15 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 3ea099ad..8b79495d 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -602,37 +602,35 @@ class Api:
shared.state.begin(job="create_embedding")
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
- shared.state.end()
return models.CreateResponse(info=f"create embedding filename: {filename}")
except AssertionError as e:
- shared.state.end()
return models.TrainResponse(info=f"create embedding error: {e}")
+ finally:
+ shared.state.end()
+
def create_hypernetwork(self, args: dict):
try:
shared.state.begin(job="create_hypernetwork")
filename = create_hypernetwork(**args) # create empty embedding
- shared.state.end()
return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
except AssertionError as e:
- shared.state.end()
return models.TrainResponse(info=f"create hypernetwork error: {e}")
+ finally:
+ shared.state.end()
def preprocess(self, args: dict):
try:
shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
- return models.PreprocessResponse(info = 'preprocess complete')
+ return models.PreprocessResponse(info='preprocess complete')
except KeyError as e:
- shared.state.end()
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
- except AssertionError as e:
- shared.state.end()
+ except Exception as e:
return models.PreprocessResponse(info=f"preprocess error: {e}")
- except FileNotFoundError as e:
+ finally:
shared.state.end()
- return models.PreprocessResponse(info=f'preprocess error: {e}')
def train_embedding(self, args: dict):
try:
@@ -649,11 +647,11 @@ class Api:
finally:
if not apply_optimizations:
sd_hijack.apply_optimizations()
- shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
- except AssertionError as msg:
- shared.state.end()
+ except Exception as msg:
return models.TrainResponse(info=f"train embedding error: {msg}")
+ finally:
+ shared.state.end()
def train_hypernetwork(self, args: dict):
try:
@@ -675,9 +673,10 @@ class Api:
sd_hijack.apply_optimizations()
shared.state.end()
return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
- except AssertionError:
+ except Exception as exc:
+ return models.TrainResponse(info=f"train embedding error: {exc}")
+ finally:
shared.state.end()
- return models.TrainResponse(info=f"train embedding error: {error}")
def get_memory(self):
try:
--
cgit v1.2.3
From 32788873176e9d79e1fffd6f89f94b6d0ec8bb91 Mon Sep 17 00:00:00 2001
From: ramyma
Date: Mon, 3 Jul 2023 20:02:30 +0300
Subject: Handle cleanup in case there's an exception thrown
---
modules/api/api.py | 57 +++++++++++++++++++++++++++++-------------------------
1 file changed, 31 insertions(+), 26 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index f10e3fe3..d9278e9e 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -323,19 +323,21 @@ class Api:
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
- p.scripts = script_runner
- p.outpath_grids = opts.outdir_txt2img_grids
- p.outpath_samples = opts.outdir_txt2img_samples
-
- shared.state.begin()
- if selectable_scripts is not None:
- p.script_args = script_args
- processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
- else:
- p.script_args = tuple(script_args) # Need to pass args as tuple here
- processed = process_images(p)
- shared.state.end()
- p.close()
+ try:
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_txt2img_grids
+ p.outpath_samples = opts.outdir_txt2img_samples
+
+ shared.state.begin()
+ if selectable_scripts is not None:
+ p.script_args = script_args
+ processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
+ else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
+ processed = process_images(p)
+ shared.state.end()
+ finally:
+ p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@@ -380,20 +382,23 @@ class Api:
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
- p.init_images = [decode_base64_to_image(x) for x in init_images]
- p.scripts = script_runner
- p.outpath_grids = opts.outdir_img2img_grids
- p.outpath_samples = opts.outdir_img2img_samples
+ try:
+ p.init_images = [decode_base64_to_image(x) for x in init_images]
+ p.scripts = script_runner
+ p.outpath_grids = opts.outdir_img2img_grids
+ p.outpath_samples = opts.outdir_img2img_samples
+
+ shared.state.begin()
+ if selectable_scripts is not None:
+ p.script_args = script_args
+ processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
+ else:
+ p.script_args = tuple(script_args) # Need to pass args as tuple here
+ processed = process_images(p)
+ shared.state.end()
- shared.state.begin()
- if selectable_scripts is not None:
- p.script_args = script_args
- processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
- else:
- p.script_args = tuple(script_args) # Need to pass args as tuple here
- processed = process_images(p)
- shared.state.end()
- p.close()
+ finally:
+ p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
--
cgit v1.2.3
From c1c04928596f69ddb39b8841a8435ecefb0594e9 Mon Sep 17 00:00:00 2001
From: ramyma
Date: Mon, 3 Jul 2023 20:17:47 +0300
Subject: Use contextlib for closing the generation process
---
modules/api/api.py | 11 +++--------
1 file changed, 3 insertions(+), 8 deletions(-)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index d9278e9e..e92c2938 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -30,6 +30,7 @@ from modules import devices
from typing import Dict, List, Any
import piexif
import piexif.helper
+from contextlib import closing
def script_name_to_index(name, scripts):
@@ -322,8 +323,7 @@ class Api:
args.pop('save_images', None)
with self.queue_lock:
- p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
- try:
+ with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
p.scripts = script_runner
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
@@ -336,8 +336,6 @@ class Api:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
shared.state.end()
- finally:
- p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@@ -381,8 +379,7 @@ class Api:
args.pop('save_images', None)
with self.queue_lock:
- p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
- try:
+ with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
p.init_images = [decode_base64_to_image(x) for x in init_images]
p.scripts = script_runner
p.outpath_grids = opts.outdir_img2img_grids
@@ -397,8 +394,6 @@ class Api:
processed = process_images(p)
shared.state.end()
- finally:
- p.close()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
--
cgit v1.2.3
From 259967b7c60cbd2aeb091e691b5f49d9fb64b872 Mon Sep 17 00:00:00 2001
From: jovijovi
Date: Thu, 6 Jul 2023 18:43:17 +0800
Subject: fix(api): convert to "RGB" if image mode is "RGBA"
---
modules/api/api.py | 2 ++
1 file changed, 2 insertions(+)
(limited to 'modules/api/api.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 2e49526e..6507f641 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -84,6 +84,8 @@ def encode_pil_to_base64(image):
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
+ if image.mode == "RGBA":
+ image = image.convert("RGB")
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
--
cgit v1.2.3