From b5819d9bf1794071139c640b5f1e72c84a0e051a Mon Sep 17 00:00:00 2001 From: Philpax Date: Mon, 2 Jan 2023 10:17:33 +1100 Subject: feat(api): add /sdapi/v1/embeddings --- modules/api/models.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/api/models.py') diff --git a/modules/api/models.py b/modules/api/models.py index c446ce7a..a8472dc9 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -249,3 +249,6 @@ class ArtistItem(BaseModel): score: float = Field(title="Score") category: str = Field(title="Category") +class EmbeddingsResponse(BaseModel): + loaded: List[str] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: List[str] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file -- cgit v1.2.3 From c65909ad16a1962129114c6251de092f49479b06 Mon Sep 17 00:00:00 2001 From: Philpax Date: Mon, 2 Jan 2023 12:21:22 +1100 Subject: feat(api): return more data for embeddings --- modules/api/api.py | 17 +++++++++++++++-- modules/api/models.py | 11 +++++++++-- modules/textual_inversion/textual_inversion.py | 8 ++++---- 3 files changed, 28 insertions(+), 8 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index 30bf3dac..9c670f00 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -330,9 +330,22 @@ class Api: def get_embeddings(self): db = sd_hijack.model_hijack.embedding_db + + def convert_embedding(embedding): + return { + "step": embedding.step, + "sd_checkpoint": embedding.sd_checkpoint, + "sd_checkpoint_name": embedding.sd_checkpoint_name, + "shape": embedding.shape, + "vectors": embedding.vectors, + } + + def convert_embeddings(embeddings): + return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()} + return { - "loaded": sorted(db.word_embeddings.keys()), - "skipped": sorted(db.skipped_embeddings), + "loaded": convert_embeddings(db.word_embeddings), + "skipped": convert_embeddings(db.skipped_embeddings), } def refresh_checkpoints(self): diff --git a/modules/api/models.py b/modules/api/models.py index a8472dc9..4a632c68 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -249,6 +249,13 @@ class ArtistItem(BaseModel): score: float = Field(title="Score") category: str = Field(title="Category") +class EmbeddingItem(BaseModel): + step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") + sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") + sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") + shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") + vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") + class EmbeddingsResponse(BaseModel): - loaded: List[str] = Field(title="Loaded", description="Embeddings loaded for the current model") - skipped: List[str] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file + loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 1e5722e7..fd253477 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -59,7 +59,7 @@ class EmbeddingDatabase: def __init__(self, embeddings_dir): self.ids_lookup = {} self.word_embeddings = {} - self.skipped_embeddings = [] + self.skipped_embeddings = {} self.dir_mtime = None self.embeddings_dir = embeddings_dir self.expected_shape = -1 @@ -91,7 +91,7 @@ class EmbeddingDatabase: self.dir_mtime = mt self.ids_lookup.clear() self.word_embeddings.clear() - self.skipped_embeddings = [] + self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() def process_file(path, filename): @@ -136,7 +136,7 @@ class EmbeddingDatabase: if self.expected_shape == -1 or self.expected_shape == embedding.shape: self.register_embedding(embedding, shared.sd_model) else: - self.skipped_embeddings.append(name) + self.skipped_embeddings[name] = embedding for fn in os.listdir(self.embeddings_dir): try: @@ -153,7 +153,7 @@ class EmbeddingDatabase: print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") if len(self.skipped_embeddings) > 0: - print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings)}") + print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") def find_embedding_at_position(self, tokens, offset): token = tokens[offset] -- cgit v1.2.3 From 1288a3bb7d21064e5bd0af7158a3840886027c51 Mon Sep 17 00:00:00 2001 From: Suffocate <70031311+lolsuffocate@users.noreply.github.com> Date: Wed, 4 Jan 2023 20:36:30 +0000 Subject: Use the read_info_from_image function directly --- modules/api/api.py | 16 ++++++++++++---- modules/api/models.py | 5 +++-- 2 files changed, 15 insertions(+), 6 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index 48a70a44..2103709b 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -11,10 +11,10 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials from secrets import compare_digest import modules.shared as shared -from modules import sd_samplers, deepbooru, sd_hijack +from modules import sd_samplers, deepbooru, sd_hijack, images from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images -from modules.extras import run_extras, run_pnginfo +from modules.extras import run_extras from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.preprocess import preprocess from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork @@ -233,9 +233,17 @@ class Api: if(not req.image.strip()): return PNGInfoResponse(info="") - result = run_pnginfo(decode_base64_to_image(req.image.strip())) + image = decode_base64_to_image(req.image.strip()) + if image is None: + return PNGInfoResponse(info="") + + geninfo, items = images.read_info_from_image(image) + if geninfo is None: + geninfo = "" + + items = {**{'parameters': geninfo}, **items} - return PNGInfoResponse(info=result[1]) + return PNGInfoResponse(info=geninfo, items=items) def progressapi(self, req: ProgressRequest = Depends()): # copy from check_progress_call of ui.py diff --git a/modules/api/models.py b/modules/api/models.py index 4a632c68..d8198a27 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -157,7 +157,8 @@ class PNGInfoRequest(BaseModel): image: str = Field(title="Image", description="The base64 encoded PNG image") class PNGInfoResponse(BaseModel): - info: str = Field(title="Image info", description="A string with all the info the image had") + info: str = Field(title="Image info", description="A string with the parameters used to generate the image") + items: dict = Field(title="Items", description="An object containing all the info the image had") class ProgressRequest(BaseModel): skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") @@ -258,4 +259,4 @@ class EmbeddingItem(BaseModel): class EmbeddingsResponse(BaseModel): loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") - skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") \ No newline at end of file + skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") -- cgit v1.2.3 From b5253f0dab529707f1fe2e11211a10ce2f264617 Mon Sep 17 00:00:00 2001 From: noodleanon <122053346+noodleanon@users.noreply.github.com> Date: Thu, 5 Jan 2023 21:21:48 +0000 Subject: allow img2img api to run scripts --- modules/api/api.py | 27 ++++++++++++++++++++++++--- modules/api/models.py | 2 +- modules/processing.py | 4 ++-- 3 files changed, 27 insertions(+), 6 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index 2103709b..aa62a42e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials from secrets import compare_digest import modules.shared as shared -from modules import sd_samplers, deepbooru, sd_hijack, images +from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.extras import run_extras @@ -28,8 +28,13 @@ def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") +def script_name_to_index(name, scripts): + try: + return [script.title().lower() for script in scripts].index(name.lower()) + except: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -170,6 +175,14 @@ class Api: if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") + if img2imgreq.script_name is not None: + if scripts.scripts_img2img.scripts == []: + scripts.scripts_img2img.initialize_scripts(True) + ui.create_ui() + + script_idx = script_name_to_index(img2imgreq.script_name, scripts.scripts_img2img.selectable_scripts) + script = scripts.scripts_img2img.selectable_scripts[script_idx] + mask = img2imgreq.mask if mask: mask = decode_base64_to_image(mask) @@ -186,13 +199,21 @@ class Api: args = vars(populate) args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. + args.pop('script_name', None) with self.queue_lock: p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) p.init_images = [decode_base64_to_image(x) for x in init_images] shared.state.begin() - processed = process_images(p) + if 'script' in locals(): + p.outpath_grids = opts.outdir_img2img_grids + p.outpath_samples = opts.outdir_img2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) + else: + processed = process_images(p) + shared.state.end() b64images = list(map(encode_pil_to_base64, processed.images)) diff --git a/modules/api/models.py b/modules/api/models.py index d8198a27..862477e7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -106,7 +106,7 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() class TextToImageResponse(BaseModel): diff --git a/modules/processing.py b/modules/processing.py index a408d622..d5ac7eb1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -98,7 +98,7 @@ class StableDiffusionProcessing(): """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -149,7 +149,7 @@ class StableDiffusionProcessing(): self.seed_resize_from_w = 0 self.scripts = None - self.script_args = None + self.script_args = script_args self.all_prompts = None self.all_negative_prompts = None self.all_seeds = None -- cgit v1.2.3 From 82c1f10b144f733460feead0bdc37a861489dc57 Mon Sep 17 00:00:00 2001 From: Dean Hopkins Date: Fri, 6 Jan 2023 22:00:12 +0000 Subject: increase upscale api validation limit --- modules/api/models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/api/models.py') diff --git a/modules/api/models.py b/modules/api/models.py index f77951fc..22b88c59 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -125,7 +125,7 @@ class ExtrasBaseRequest(BaseModel): gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") - upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?") -- cgit v1.2.3 From 47534577eda63b0db1eeb8921c2a161773ec434c Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 7 Jan 2023 07:51:35 -0500 Subject: api-get-memory --- modules/api/api.py | 37 +++++++++++++++++++++++++++++++++++++ modules/api/models.py | 4 ++++ 2 files changed, 41 insertions(+) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index 2103709b..d2222b18 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -130,6 +130,7 @@ class Api: self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) def add_api_route(self, path: str, endpoint, **kwargs): if shared.cmd_opts.api_auth: @@ -465,6 +466,42 @@ class Api: shared.state.end() return TrainResponse(info = "train embedding error: {error}".format(error = error)) + def get_memory(self): + def gb(val: float): + return round(val / 1024 / 1024 / 1024, 2) + try: + import os, psutil + process = psutil.Process(os.getpid()) + res = process.memory_info() + ram_total = 100 * res.rss / process.memory_percent() + ram = { 'free': gb(ram_total - res.rss), 'used': gb(res.rss), 'total': gb(ram_total) } + except Exception as err: + ram = { 'error': f'{err}' } + try: + import torch + if torch.cuda.is_available(): + s = torch.cuda.mem_get_info() + system = { 'free': gb(s[0]), 'used': gb(s[1] - s[0]), 'total': gb(s[1]) } + s = dict(torch.cuda.memory_stats(shared.device)) + allocated = { 'current': gb(s['allocated_bytes.all.current']), 'peak': gb(s['allocated_bytes.all.peak']) } + reserved = { 'current': gb(s['reserved_bytes.all.current']), 'peak': gb(s['reserved_bytes.all.peak']) } + active = { 'current': gb(s['active_bytes.all.current']), 'peak': gb(s['active_bytes.all.peak']) } + inactive = { 'current': gb(s['inactive_split_bytes.all.current']), 'peak': gb(s['inactive_split_bytes.all.peak']) } + warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] } + cuda = { + 'system': system, + 'active': active, + 'allocated': allocated, + 'reserved': reserved, + 'inactive': inactive, + 'events': warnings, + } + else: + cuda = { 'error': 'unavailable' } + except Exception as err: + cuda = { 'error': f'{err}' } + return MemoryResponse(ram = ram, cuda = cuda) + def launch(self, server_name, port): self.app.include_router(self.router) uvicorn.run(self.app, host=server_name, port=port) diff --git a/modules/api/models.py b/modules/api/models.py index 5fa63774..49bf1e7a 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -260,3 +260,7 @@ class EmbeddingItem(BaseModel): class EmbeddingsResponse(BaseModel): loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") + +class MemoryResponse(BaseModel): + ram: dict[str, str] | dict[str, float] = Field(title="RAM", description="System memory stats") + cuda: dict[str, str] | dict[str, dict] = Field(title="CUDA", description="nVidia CUDA memory stats") -- cgit v1.2.3 From d38ede71d5330958f4bbac5f99c1be3c146b506a Mon Sep 17 00:00:00 2001 From: noodleanon <122053346+noodleanon@users.noreply.github.com> Date: Sat, 7 Jan 2023 14:21:31 +0000 Subject: Added script support in txt2img endpoint --- modules/api/api.py | 22 +++++++++++++++++++--- modules/api/models.py | 2 +- 2 files changed, 20 insertions(+), 4 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index aa62a42e..0e8ea263 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -149,6 +149,14 @@ class Api: raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + if txt2imgreq.script_name is not None: + if scripts.scripts_txt2img.scripts == []: + scripts.scripts_txt2img.initialize_scripts(True) + ui.create_ui() + + script_idx = script_name_to_index(txt2imgreq.script_name, scripts.scripts_txt2img.selectable_scripts) + script = scripts.scripts_txt2img.selectable_scripts[script_idx] + populate = txt2imgreq.copy(update={ # Override __init__ params "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), "do_not_save_samples": True, @@ -158,11 +166,20 @@ class Api: if populate.sampler_name: populate.sampler_index = None # prevent a warning later on + args = vars(populate) + args.pop('script_name', None) + with self.queue_lock: - p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate)) + p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) shared.state.begin() - processed = process_images(p) + if 'script' in locals(): + p.outpath_grids = opts.outdir_txt2img_grids + p.outpath_samples = opts.outdir_txt2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_txt2img.run(p, *p.script_args) + else: + processed = process_images(p) shared.state.end() @@ -213,7 +230,6 @@ class Api: processed = scripts.scripts_img2img.run(p, *p.script_args) else: processed = process_images(p) - shared.state.end() b64images = list(map(encode_pil_to_base64, processed.images)) diff --git a/modules/api/models.py b/modules/api/models.py index c85eb94d..ce43c858 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -100,7 +100,7 @@ class PydanticModelGenerator: StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( -- cgit v1.2.3 From 2275f130bfe437c3245a66559f92af94d0e4d8ff Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Mon, 9 Jan 2023 21:23:58 -0500 Subject: relax reponse type check enforcement --- modules/api/models.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/models.py b/modules/api/models.py index 880edde6..034b4aa0 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -262,5 +262,5 @@ class EmbeddingsResponse(BaseModel): skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") class MemoryResponse(BaseModel): - ram: dict[str, str] | dict[str, float] = Field(title="RAM", description="System memory stats") - cuda: dict[str, str] | dict[str, dict] = Field(title="CUDA", description="nVidia CUDA memory stats") + ram: dict = Field(title="RAM", description="System memory stats") + cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") -- cgit v1.2.3 From 39ea251945d70efcf9b59d44eb0e71269d754aa4 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Wed, 11 Jan 2023 10:23:51 -0500 Subject: add textinfo to progress response --- modules/api/api.py | 4 ++-- modules/api/models.py | 1 + 2 files changed, 3 insertions(+), 2 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index 6c564ad8..5767ba90 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -286,7 +286,7 @@ class Api: # copy from check_progress_call of ui.py if shared.state.job_count == 0: - return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict()) + return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) # avoid dividing zero progress = 0.01 @@ -308,7 +308,7 @@ class Api: if shared.state.current_image and not req.skip_current_image: current_image = encode_pil_to_base64(shared.state.current_image) - return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image) + return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) def interrogateapi(self, interrogatereq: InterrogateRequest): image_b64 = interrogatereq.image diff --git a/modules/api/models.py b/modules/api/models.py index 034b4aa0..c78095ca 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -168,6 +168,7 @@ class ProgressResponse(BaseModel): eta_relative: float = Field(title="ETA in secs") state: dict = Field(title="State", description="The current state snapshot") current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") + textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.") class InterrogateRequest(BaseModel): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") -- cgit v1.2.3 From a95f1353089bdeaccd7c266b40cdd79efedfe632 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 09:56:59 +0300 Subject: change hash to sha256 --- .gitignore | 1 + modules/api/api.py | 2 +- modules/api/models.py | 3 +- modules/hashes.py | 72 +++++++++++++++ modules/hypernetworks/hypernetwork.py | 4 +- modules/sd_models.py | 116 ++++++++++++++++--------- modules/shared.py | 2 +- modules/textual_inversion/textual_inversion.py | 6 +- webui.py | 2 + 9 files changed, 158 insertions(+), 50 deletions(-) create mode 100644 modules/hashes.py (limited to 'modules/api/models.py') diff --git a/.gitignore b/.gitignore index 21fa26a7..0b1d17ca 100644 --- a/.gitignore +++ b/.gitignore @@ -32,3 +32,4 @@ notification.mp3 /extensions /test/stdout.txt /test/stderr.txt +/cache.json diff --git a/modules/api/api.py b/modules/api/api.py index 5767ba90..9814bbc2 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -371,7 +371,7 @@ class Api: return upscalers def get_sd_models(self): - return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] + return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] def get_hypernetworks(self): return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] diff --git a/modules/api/models.py b/modules/api/models.py index c78095ca..1eb1fcf1 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -224,7 +224,8 @@ class UpscalerItem(BaseModel): class SDModelItem(BaseModel): title: str = Field(title="Title") model_name: str = Field(title="Model Name") - hash: str = Field(title="Hash") + hash: Optional[str] = Field(title="Short hash") + sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") config: str = Field(title="Config file") diff --git a/modules/hashes.py b/modules/hashes.py new file mode 100644 index 00000000..ebfbd90c --- /dev/null +++ b/modules/hashes.py @@ -0,0 +1,72 @@ +import hashlib +import json +import os.path + +import filelock + + +cache_filename = "cache.json" +cache_data = None + + +def dump_cache(): + with filelock.FileLock(cache_filename+".lock"): + with open(cache_filename, "w", encoding="utf8") as file: + json.dump(cache_data, file, indent=4) + + +def cache(subsection): + global cache_data + + if cache_data is None: + with filelock.FileLock(cache_filename+".lock"): + if not os.path.isfile(cache_filename): + cache_data = {} + else: + with open(cache_filename, "r", encoding="utf8") as file: + cache_data = json.load(file) + + s = cache_data.get(subsection, {}) + cache_data[subsection] = s + + return s + + +def calculate_sha256(filename): + hash_sha256 = hashlib.sha256() + + with open(filename, "rb") as f: + for chunk in iter(lambda: f.read(4096), b""): + hash_sha256.update(chunk) + + return hash_sha256.hexdigest() + + +def sha256(filename, title): + hashes = cache("hashes") + ondisk_mtime = os.path.getmtime(filename) + + if title in hashes: + cached_sha256 = hashes[title].get("sha256", None) + cached_mtime = hashes[title].get("mtime", 0) + + if ondisk_mtime <= cached_mtime and cached_sha256 is not None: + return cached_sha256 + + print(f"Calculating sha256 for {filename}: ", end='') + sha256_value = calculate_sha256(filename) + print(f"{sha256_value}") + + hashes[title] = { + "mtime": ondisk_mtime, + "sha256": sha256_value, + } + + dump_cache() + + return sha256_value + + + + + diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 83cbb4f0..9b5f2e79 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -509,7 +509,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, if shared.opts.save_training_settings_to_txt: saved_params = dict( - model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), + model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} ) logging.save_settings_to_file(log_directory, {**saved_params, **locals()}) @@ -737,7 +737,7 @@ def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None try: - hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint = checkpoint.shorthash hypernetwork.sd_checkpoint_name = checkpoint.model_name hypernetwork.name = hypernetwork_name hypernetwork.save(filename) diff --git a/modules/sd_models.py b/modules/sd_models.py index c466f273..7babb9ae 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,17 +14,56 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) -CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) checkpoints_list = {} +checkpoint_alisases = {} checkpoints_loaded = collections.OrderedDict() + +class CheckpointInfo: + def __init__(self, filename): + self.filename = filename + abspath = os.path.abspath(filename) + + if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): + name = abspath.replace(shared.cmd_opts.ckpt_dir, '') + elif abspath.startswith(model_path): + name = abspath.replace(model_path, '') + else: + name = os.path.basename(filename) + + if name.startswith("\\") or name.startswith("/"): + name = name[1:] + + self.title = name + self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] + self.hash = model_hash(filename) + self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]'] + self.shorthash = None + self.sha256 = None + + def register(self): + checkpoints_list[self.title] = self + for id in self.ids: + checkpoint_alisases[id] = self + + def calculate_shorthash(self): + self.sha256 = hashes.sha256(self.filename, self.title) + self.shorthash = self.sha256[0:10] + + if self.shorthash not in self.ids: + self.ids += [self.shorthash, self.sha256] + self.register() + + return self.shorthash + + try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. @@ -43,10 +82,14 @@ def setup_model(): enable_midas_autodownload() -def checkpoint_tiles(): - convert = lambda name: int(name) if name.isdigit() else name.lower() - alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] - return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key) +def checkpoint_tiles(): + def convert(name): + return int(name) if name.isdigit() else name.lower() + + def alphanumeric_key(key): + return [convert(c) for c in re.split('([0-9]+)', key)] + + return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key) def find_checkpoint_config(info): @@ -62,48 +105,38 @@ def find_checkpoint_config(info): def list_models(): checkpoints_list.clear() + checkpoint_alisases.clear() model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"]) - def modeltitle(path, shorthash): - abspath = os.path.abspath(path) - - if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): - name = abspath.replace(shared.cmd_opts.ckpt_dir, '') - elif abspath.startswith(model_path): - name = abspath.replace(model_path, '') - else: - name = os.path.basename(path) - - if name.startswith("\\") or name.startswith("/"): - name = name[1:] - - shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] - - return f'{name} [{shorthash}]', shortname - cmd_ckpt = shared.cmd_opts.ckpt if os.path.exists(cmd_ckpt): - h = model_hash(cmd_ckpt) - title, short_model_name = modeltitle(cmd_ckpt, h) - checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) - shared.opts.data['sd_model_checkpoint'] = title + checkpoint_info = CheckpointInfo(cmd_ckpt) + checkpoint_info.register() + + shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) + for filename in model_list: - h = model_hash(filename) - title, short_model_name = modeltitle(filename, h) + checkpoint_info = CheckpointInfo(filename) + checkpoint_info.register() + - checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) +def get_closet_checkpoint_match(search_string): + checkpoint_info = checkpoint_alisases.get(search_string, None) + if checkpoint_info is not None: + return + found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) + if found: + return found[0] -def get_closet_checkpoint_match(searchString): - applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title)) - if len(applicable) > 0: - return applicable[0] return None def model_hash(filename): + """old hash that only looks at a small part of the file and is prone to collisions""" + try: with open(filename, "rb") as file: import hashlib @@ -119,7 +152,7 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint - checkpoint_info = checkpoints_list.get(model_checkpoint, None) + checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) if checkpoint_info is not None: return checkpoint_info @@ -189,9 +222,8 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None return sd -def load_model_weights(model, checkpoint_info, vae_file="auto"): - checkpoint_file = checkpoint_info.filename - sd_model_hash = checkpoint_info.hash +def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"): + sd_model_hash = checkpoint_info.calculate_shorthash() cache_enabled = shared.opts.sd_checkpoint_cache > 0 @@ -201,9 +233,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.load_state_dict(checkpoints_loaded[checkpoint_info]) else: # load from file - print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") + print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") - sd = read_state_dict(checkpoint_file) + sd = read_state_dict(checkpoint_info.filename) model.load_state_dict(sd, strict=False) del sd @@ -235,14 +267,14 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoints_loaded.popitem(last=False) # LRU model.sd_model_hash = sd_model_hash - model.sd_model_checkpoint = checkpoint_file + model.sd_model_checkpoint = checkpoint_info.filename model.sd_checkpoint_info = checkpoint_info model.logvar = model.logvar.to(devices.device) # fix for training sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() - vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + vae_file = sd_vae.resolve_vae(checkpoint_info.filename, vae_file=vae_file) sd_vae.load_vae(model, vae_file) diff --git a/modules/shared.py b/modules/shared.py index b90ded52..d74c069d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -428,7 +428,7 @@ options_templates.update(options_section(('ui', "User interface"), { "return_grid": OptionInfo(True, "Show grid in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), - "add_model_name_to_info": OptionInfo(False, "Add model name to generation information"), + "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 6939efcc..63935878 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -407,7 +407,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize) if shared.opts.save_training_settings_to_txt: - save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) + save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) latent_sampling_method = ds.latent_sampling_method @@ -584,7 +584,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name - footer_mid = '[{}]'.format(checkpoint.hash) + footer_mid = '[{}]'.format(checkpoint.shorthash) footer_right = '{}v {}s'.format(vectorSize, steps_done) captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) @@ -626,7 +626,7 @@ def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, r old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None try: - embedding.sd_checkpoint = checkpoint.hash + embedding.sd_checkpoint = checkpoint.shorthash embedding.sd_checkpoint_name = checkpoint.model_name if remove_cached_checksum: embedding.cached_checksum = None diff --git a/webui.py b/webui.py index 47d372c7..1fff80da 100644 --- a/webui.py +++ b/webui.py @@ -78,6 +78,8 @@ def initialize(): print("Stable diffusion model failed to load, exiting", file=sys.stderr) exit(1) + shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) -- cgit v1.2.3 From 42a70d74771e8920f658e741679768ed145dd76a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 24 Jan 2023 10:05:45 +0300 Subject: repair sdapi/v1/upscalers returning bogus results --- modules/api/api.py | 16 +++++++++------- modules/api/models.py | 2 +- 2 files changed, 10 insertions(+), 8 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index e6e31e41..da2a5daf 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -375,13 +375,15 @@ class Api: return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] def get_upscalers(self): - upscalers = [] - - for upscaler in shared.sd_upscalers: - u = upscaler.scaler - upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url}) - - return upscalers + return [ + { + "name": upscaler.name, + "model_name": upscaler.scaler.model_name, + "model_path": upscaler.data_path, + "scale": upscaler.scale, + } + for upscaler in shared.sd_upscalers + ] def get_sd_models(self): return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] diff --git a/modules/api/models.py b/modules/api/models.py index 1eb1fcf1..e562ab54 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -219,7 +219,7 @@ class UpscalerItem(BaseModel): name: str = Field(title="Name") model_name: Optional[str] = Field(title="Model Name") model_path: Optional[str] = Field(title="Path") - model_url: Optional[str] = Field(title="URL") + scale: Optional[float] = Field(title="Scale") class SDModelItem(BaseModel): title: str = Field(title="Title") -- cgit v1.2.3 From 602a1864b05075ca4283986e6f5c7d5bce864e11 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 24 Jan 2023 10:09:30 +0300 Subject: also return the removed field to sdapi/v1/upscalers because someone might have relied on it existing --- modules/api/api.py | 1 + modules/api/models.py | 1 + 2 files changed, 2 insertions(+) (limited to 'modules/api/models.py') diff --git a/modules/api/api.py b/modules/api/api.py index da2a5daf..25c65e57 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -380,6 +380,7 @@ class Api: "name": upscaler.name, "model_name": upscaler.scaler.model_name, "model_path": upscaler.data_path, + "model_url": None, "scale": upscaler.scale, } for upscaler in shared.sd_upscalers diff --git a/modules/api/models.py b/modules/api/models.py index e562ab54..805bd8f7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -219,6 +219,7 @@ class UpscalerItem(BaseModel): name: str = Field(title="Name") model_name: Optional[str] = Field(title="Model Name") model_path: Optional[str] = Field(title="Path") + model_url: Optional[str] = Field(title="URL") scale: Optional[float] = Field(title="Scale") class SDModelItem(BaseModel): -- cgit v1.2.3 From 6f31d2210c189f8db118e6f95add7ba2a64f0238 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 27 Jan 2023 11:54:19 +0300 Subject: support detecting midas model fix broken api for checkpoint list --- modules/api/models.py | 2 +- modules/sd_models.py | 10 +++++----- modules/sd_models_config.py | 7 +++++-- 3 files changed, 11 insertions(+), 8 deletions(-) (limited to 'modules/api/models.py') diff --git a/modules/api/models.py b/modules/api/models.py index 805bd8f7..cba43d3b 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -228,7 +228,7 @@ class SDModelItem(BaseModel): hash: Optional[str] = Field(title="Short hash") sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") - config: str = Field(title="Config file") + config: Optional[str] = Field(title="Config file") class HypernetworkItem(BaseModel): name: str = Field(title="Name") diff --git a/modules/sd_models.py b/modules/sd_models.py index fa208728..37dad18d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -439,12 +439,12 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: - lowvram.send_everything_to_cpu() - else: - sd_model.to(devices.cpu) + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) - sd_hijack.model_hijack.undo_hijack(sd_model) + sd_hijack.model_hijack.undo_hijack(sd_model) timer = Timer() diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index ea773a10..4d1e92e1 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -10,6 +10,7 @@ sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", config_default = shared.sd_default_config config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml") config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml") +config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml") config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml") config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") @@ -22,7 +23,9 @@ def guess_model_config_from_state_dict(sd, filename): sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) - roberta_weight = sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) + + if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None: + return config_depth_model if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: if re.search(re_parametrization_v, fn) or "v2-1_768" in fn: @@ -36,7 +39,7 @@ def guess_model_config_from_state_dict(sd, filename): if diffusion_model_input.shape[1] == 8: return config_instruct_pix2pix - if roberta_weight is not None: + if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None: return config_alt_diffusion return config_default -- cgit v1.2.3