From 873efeed49bb5197a42da18272115b326c5d68f3 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 15:51:22 +0300
Subject: rename hypernetwork dir to hypernetworks to prevent clash with an old
filename that people who use zip instead of git clone will have
---
modules/hypernetworks/hypernetwork.py | 283 ++++++++++++++++++++++++++++++++++
1 file changed, 283 insertions(+)
create mode 100644 modules/hypernetworks/hypernetwork.py
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
new file mode 100644
index 00000000..aa701bda
--- /dev/null
+++ b/modules/hypernetworks/hypernetwork.py
@@ -0,0 +1,283 @@
+import datetime
+import glob
+import html
+import os
+import sys
+import traceback
+import tqdm
+
+import torch
+
+from ldm.util import default
+from modules import devices, shared, processing, sd_models
+import torch
+from torch import einsum
+from einops import rearrange, repeat
+import modules.textual_inversion.dataset
+
+
+class HypernetworkModule(torch.nn.Module):
+ def __init__(self, dim, state_dict=None):
+ super().__init__()
+
+ self.linear1 = torch.nn.Linear(dim, dim * 2)
+ self.linear2 = torch.nn.Linear(dim * 2, dim)
+
+ if state_dict is not None:
+ self.load_state_dict(state_dict, strict=True)
+ else:
+
+ self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear1.bias.data.zero_()
+ self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear2.bias.data.zero_()
+
+ self.to(devices.device)
+
+ def forward(self, x):
+ return x + (self.linear2(self.linear1(x)))
+
+
+class Hypernetwork:
+ filename = None
+ name = None
+
+ def __init__(self, name=None):
+ self.filename = None
+ self.name = name
+ self.layers = {}
+ self.step = 0
+ self.sd_checkpoint = None
+ self.sd_checkpoint_name = None
+
+ for size in [320, 640, 768, 1280]:
+ self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+
+ def weights(self):
+ res = []
+
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.train()
+ res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+
+ return res
+
+ def save(self, filename):
+ state_dict = {}
+
+ for k, v in self.layers.items():
+ state_dict[k] = (v[0].state_dict(), v[1].state_dict())
+
+ state_dict['step'] = self.step
+ state_dict['name'] = self.name
+ state_dict['sd_checkpoint'] = self.sd_checkpoint
+ state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
+
+ torch.save(state_dict, filename)
+
+ def load(self, filename):
+ self.filename = filename
+ if self.name is None:
+ self.name = os.path.splitext(os.path.basename(filename))[0]
+
+ state_dict = torch.load(filename, map_location='cpu')
+
+ for size, sd in state_dict.items():
+ if type(size) == int:
+ self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+
+ self.name = state_dict.get('name', self.name)
+ self.step = state_dict.get('step', 0)
+ self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
+ self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
+
+
+def list_hypernetworks(path):
+ res = {}
+ for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ name = os.path.splitext(os.path.basename(filename))[0]
+ res[name] = filename
+ return res
+
+
+def load_hypernetwork(filename):
+ path = shared.hypernetworks.get(filename, None)
+ if path is not None:
+ print(f"Loading hypernetwork {filename}")
+ try:
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ except Exception:
+ print(f"Error loading hypernetwork {path}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+ else:
+ if shared.loaded_hypernetwork is not None:
+ print(f"Unloading hypernetwork")
+
+ shared.loaded_hypernetwork = None
+
+
+def apply_hypernetwork(hypernetwork, context, layer=None):
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
+
+ if hypernetwork_layers is None:
+ return context, context
+
+ if layer is not None:
+ layer.hyper_k = hypernetwork_layers[0]
+ layer.hyper_v = hypernetwork_layers[1]
+
+ context_k = hypernetwork_layers[0](context)
+ context_v = hypernetwork_layers[1](context)
+ return context_k, context_v
+
+
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+
+ context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
+ k = self.to_k(context_k)
+ v = self.to_v(context_v)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if mask is not None:
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
+ assert hypernetwork_name, 'embedding not selected'
+
+ path = shared.hypernetworks.get(hypernetwork_name, None)
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ shared.state.textinfo = "Initializing hypernetwork training..."
+ shared.state.job_count = steps
+
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+
+ log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
+
+ if save_hypernetwork_every > 0:
+ hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
+ os.makedirs(hypernetwork_dir, exist_ok=True)
+ else:
+ hypernetwork_dir = None
+
+ if create_image_every > 0:
+ images_dir = os.path.join(log_directory, "images")
+ os.makedirs(images_dir, exist_ok=True)
+ else:
+ images_dir = None
+
+ cond_model = shared.sd_model.cond_stage_model
+
+ shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
+ with torch.autocast("cuda"):
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+
+ hypernetwork = shared.loaded_hypernetwork
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
+
+ optimizer = torch.optim.AdamW(weights, lr=learn_rate)
+
+ losses = torch.zeros((32,))
+
+ last_saved_file = ""
+ last_saved_image = ""
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step > steps:
+ return hypernetwork, filename
+
+ pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
+ for i, (x, text) in pbar:
+ hypernetwork.step = i + ititial_step
+
+ if hypernetwork.step > steps:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = cond_model([text])
+
+ x = x.to(devices.device)
+ loss = shared.sd_model(x.unsqueeze(0), c)[0]
+ del x
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ pbar.set_description(f"loss: {losses.mean():.7f}")
+
+ if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
+ hypernetwork.save(last_saved_file)
+
+ if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
+ last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+
+ preview_text = text if preview_image_prompt == "" else preview_image_prompt
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ prompt=preview_text,
+ steps=20,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
+
+ processed = processing.process_images(p)
+ image = processed.images[0]
+
+ shared.state.current_image = image
+ image.save(last_saved_image)
+
+ last_saved_image += f", prompt: {preview_text}"
+
+ shared.state.job_no = hypernetwork.step
+
+ shared.state.textinfo = f"""
+
+Loss: {losses.mean():.7f}
+Step: {hypernetwork.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+
+"""
+
+ checkpoint = sd_models.select_checkpoint()
+
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.save(filename)
+
+ return hypernetwork, filename
+
+
--
cgit v1.2.3
From d682444ecc99319fbd2b142a12727501e2884ba7 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 18:04:47 +0300
Subject: add option to select hypernetwork modules when creating
---
modules/hypernetworks/hypernetwork.py | 4 ++--
modules/hypernetworks/ui.py | 4 ++--
modules/ui.py | 2 ++
3 files changed, 6 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index aa701bda..b081f14e 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -42,7 +42,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None):
+ def __init__(self, name=None, enable_sizes=None):
self.filename = None
self.name = name
self.layers = {}
@@ -50,7 +50,7 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
- for size in [320, 640, 768, 1280]:
+ for size in enable_sizes or [320, 640, 768, 1280]:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
def weights(self):
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index e7540f41..cdddcce1 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -9,11 +9,11 @@ from modules import sd_hijack, shared
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name):
+def create_hypernetwork(name, enable_sizes):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name)
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
hypernet.save(fn)
shared.reload_hypernetworks()
diff --git a/modules/ui.py b/modules/ui.py
index f2d16b12..14b87b92 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1037,6 +1037,7 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="Create a new hypernetwork
")
new_hypernetwork_name = gr.Textbox(label="Name")
+ new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
with gr.Row():
with gr.Column(scale=3):
@@ -1114,6 +1115,7 @@ def create_ui(wrap_gradio_gpu_call):
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
+ new_hypernetwork_sizes,
],
outputs=[
train_hypernetwork_name,
--
cgit v1.2.3
From d4ea5f4d8631f778d11efcde397e4a5b8801d43b Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 19:03:08 +0300
Subject: add an option to unload models during hypernetwork training to save
VRAM
---
modules/hypernetworks/hypernetwork.py | 25 +++++++++++++++-------
modules/hypernetworks/ui.py | 4 +++-
modules/shared.py | 4 ++++
modules/textual_inversion/dataset.py | 29 ++++++++++++++++++--------
modules/textual_inversion/textual_inversion.py | 2 +-
5 files changed, 46 insertions(+), 18 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b081f14e..4700e1ec 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -175,6 +175,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
+ unload = shared.opts.unload_models_when_training
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
@@ -188,11 +189,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
else:
images_dir = None
- cond_model = shared.sd_model.cond_stage_model
-
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
+
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
@@ -211,7 +214,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
return hypernetwork, filename
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, (x, text) in pbar:
+ for i, (x, text, cond) in pbar:
hypernetwork.step = i + ititial_step
if hypernetwork.step > steps:
@@ -221,11 +224,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
break
with torch.autocast("cuda"):
- c = cond_model([text])
-
+ cond = cond.to(devices.device)
x = x.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), c)[0]
+ loss = shared.sd_model(x.unsqueeze(0), cond)[0]
del x
+ del cond
losses[hypernetwork.step % losses.shape[0]] = loss.item()
@@ -244,6 +247,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
preview_text = text if preview_image_prompt == "" else preview_image_prompt
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
prompt=preview_text,
@@ -255,6 +262,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
processed = processing.process_images(p)
image = processed.images[0]
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
shared.state.current_image = image
image.save(last_saved_image)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 3541a388..c67facbb 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -5,7 +5,7 @@ import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
-from modules import sd_hijack, shared
+from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
@@ -41,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)}
raise
finally:
shared.loaded_hypernetwork = initial_hypernetwork
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()
diff --git a/modules/shared.py b/modules/shared.py
index 20b45f23..c1092ff7 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -228,6 +228,10 @@ options_templates.update(options_section(('system', "System"), {
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
}))
+options_templates.update(options_section(('training', "Training"), {
+ "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"),
+}))
+
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 4d006366..f61f40d3 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -8,14 +8,14 @@ from torchvision import transforms
import random
import tqdm
-from modules import devices
+from modules import devices, shared
import re
re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None):
+ def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
self.placeholder_token = placeholder_token
@@ -32,6 +32,8 @@ class PersonalizedBase(Dataset):
assert data_root, 'dataset directory not specified'
+ cond_model = shared.sd_model.cond_stage_model
+
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
@@ -53,7 +55,13 @@ class PersonalizedBase(Dataset):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
- self.dataset.append((init_latent, filename_tokens))
+ if include_cond:
+ text = self.create_text(filename_tokens)
+ cond = cond_model([text]).to(devices.cpu)
+ else:
+ cond = None
+
+ self.dataset.append((init_latent, filename_tokens, cond))
self.length = len(self.dataset) * repeats
@@ -64,6 +72,12 @@ class PersonalizedBase(Dataset):
def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
+ def create_text(self, filename_tokens):
+ text = random.choice(self.lines)
+ text = text.replace("[name]", self.placeholder_token)
+ text = text.replace("[filewords]", ' '.join(filename_tokens))
+ return text
+
def __len__(self):
return self.length
@@ -72,10 +86,7 @@ class PersonalizedBase(Dataset):
self.shuffle()
index = self.indexes[i % len(self.indexes)]
- x, filename_tokens = self.dataset[index]
-
- text = random.choice(self.lines)
- text = text.replace("[name]", self.placeholder_token)
- text = text.replace("[filewords]", ' '.join(filename_tokens))
+ x, filename_tokens, cond = self.dataset[index]
- return x, text
+ text = self.create_text(filename_tokens)
+ return x, text, cond
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index bb05cdc6..35f4bd9e 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -201,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
return embedding, filename
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, (x, text) in pbar:
+ for i, (x, text, _) in pbar:
embedding.step = i + ititial_step
if embedding.step > steps:
--
cgit v1.2.3
From 6a9ea5b41cf92cd9e980349bb5034439f4e7a58b Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 19:22:30 +0300
Subject: prevent extra modules from being saved/loaded with hypernet
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4700e1ec..5608e799 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -50,7 +50,7 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
- for size in enable_sizes or [320, 640, 768, 1280]:
+ for size in enable_sizes or []:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
def weights(self):
--
cgit v1.2.3
From d6fcc6b87bc00fcdecea276fe5b7c7945f7a8b14 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 22:03:05 +0300
Subject: apply lr schedule to hypernets
---
modules/hypernetworks/hypernetwork.py | 19 ++++++++---
modules/textual_inversion/learn_schedule.py | 34 ++++++++++++++++++++
modules/textual_inversion/textual_inversion.py | 44 +++-----------------------
modules/ui.py | 2 +-
4 files changed, 54 insertions(+), 45 deletions(-)
create mode 100644 modules/textual_inversion/learn_schedule.py
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 5608e799..470659df 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -14,6 +14,7 @@ import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
+from modules.textual_inversion.learn_schedule import LearnSchedule
class HypernetworkModule(torch.nn.Module):
@@ -202,8 +203,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
for weight in weights:
weight.requires_grad = True
- optimizer = torch.optim.AdamW(weights, lr=learn_rate)
-
losses = torch.zeros((32,))
last_saved_file = ""
@@ -213,12 +212,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if ititial_step > steps:
return hypernetwork, filename
+ schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
+ (learn_rate, end_step) = next(schedules)
+ print(f'Training at rate of {learn_rate} until step {end_step}')
+
+ optimizer = torch.optim.AdamW(weights, lr=learn_rate)
+
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, (x, text, cond) in pbar:
hypernetwork.step = i + ititial_step
- if hypernetwork.step > steps:
- break
+ if hypernetwork.step > end_step:
+ try:
+ (learn_rate, end_step) = next(schedules)
+ except Exception:
+ break
+ tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
+ for pg in optimizer.param_groups:
+ pg['lr'] = learn_rate
if shared.state.interrupted:
break
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
new file mode 100644
index 00000000..db720271
--- /dev/null
+++ b/modules/textual_inversion/learn_schedule.py
@@ -0,0 +1,34 @@
+
+class LearnSchedule:
+ def __init__(self, learn_rate, max_steps, cur_step=0):
+ pairs = learn_rate.split(',')
+ self.rates = []
+ self.it = 0
+ self.maxit = 0
+ for i, pair in enumerate(pairs):
+ tmp = pair.split(':')
+ if len(tmp) == 2:
+ step = int(tmp[1])
+ if step > cur_step:
+ self.rates.append((float(tmp[0]), min(step, max_steps)))
+ self.maxit += 1
+ if step > max_steps:
+ return
+ elif step == -1:
+ self.rates.append((float(tmp[0]), max_steps))
+ self.maxit += 1
+ return
+ else:
+ self.rates.append((float(tmp[0]), max_steps))
+ self.maxit += 1
+ return
+
+ def __iter__(self):
+ return self
+
+ def __next__(self):
+ if self.it < self.maxit:
+ self.it += 1
+ return self.rates[self.it - 1]
+ else:
+ raise StopIteration
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 47a27faf..7717837d 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -10,6 +10,7 @@ import datetime
from modules import shared, devices, sd_hijack, processing, sd_models
import modules.textual_inversion.dataset
+from modules.textual_inversion.learn_schedule import LearnSchedule
class Embedding:
@@ -198,11 +199,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if ititial_step > steps:
return embedding, filename
- tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)])
- epoch_len = (tr_img_len * num_repeats) + tr_img_len
-
- scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step))
- (learn_rate, end_step) = next(scheduleIter)
+ schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
+ (learn_rate, end_step) = next(schedules)
print(f'Training at rate of {learn_rate} until step {end_step}')
optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
@@ -213,7 +211,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > end_step:
try:
- (learn_rate, end_step) = next(scheduleIter)
+ (learn_rate, end_step) = next(schedules)
except:
break
tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
@@ -288,37 +286,3 @@ Last saved image: {html.escape(last_saved_image)}
embedding.save(filename)
return embedding, filename
-
-class LearnSchedule:
- def __init__(self, learn_rate, max_steps, cur_step=0):
- pairs = learn_rate.split(',')
- self.rates = []
- self.it = 0
- self.maxit = 0
- for i, pair in enumerate(pairs):
- tmp = pair.split(':')
- if len(tmp) == 2:
- step = int(tmp[1])
- if step > cur_step:
- self.rates.append((float(tmp[0]), min(step, max_steps)))
- self.maxit += 1
- if step > max_steps:
- return
- elif step == -1:
- self.rates.append((float(tmp[0]), max_steps))
- self.maxit += 1
- return
- else:
- self.rates.append((float(tmp[0]), max_steps))
- self.maxit += 1
- return
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.it < self.maxit:
- self.it += 1
- return self.rates[self.it - 1]
- else:
- raise StopIteration
diff --git a/modules/ui.py b/modules/ui.py
index 2b688e32..1204eef7 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1070,7 +1070,7 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="Train an embedding; must specify a directory with a set of 1:1 ratio images
")
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
- learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03")
+ learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
--
cgit v1.2.3
From 2d006ce16cd95d587533656c3ac4991495e96f23 Mon Sep 17 00:00:00 2001
From: Milly
Date: Mon, 10 Oct 2022 00:56:36 +0900
Subject: xy_grid: Find hypernetwork by closest name
---
modules/hypernetworks/hypernetwork.py | 11 +++++++++++
scripts/xy_grid.py | 6 +++++-
2 files changed, 16 insertions(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 470659df..8f2192e2 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -120,6 +120,17 @@ def load_hypernetwork(filename):
shared.loaded_hypernetwork = None
+def find_closest_hypernetwork_name(search: str):
+ if not search:
+ return None
+ search = search.lower()
+ applicable = [name for name in shared.hypernetworks if search in name.lower()]
+ if not applicable:
+ return None
+ applicable = sorted(applicable, key=lambda name: len(name))
+ return applicable[0]
+
+
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index ef431105..6f4217ec 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -84,7 +84,11 @@ def apply_checkpoint(p, x, xs):
def apply_hypernetwork(p, x, xs):
- hypernetwork.load_hypernetwork(x)
+ if x.lower() in ["", "none"]:
+ name = None
+ else:
+ name = hypernetwork.find_closest_hypernetwork_name(x)
+ hypernetwork.load_hypernetwork(name)
def apply_clip_skip(p, x, xs):
--
cgit v1.2.3
From ee015a1af66a94a75c914659fa0d321e702a0a87 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 12 Oct 2022 11:05:57 +0300
Subject: change textual inversion tab to train remake train interface to use
tabs
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/ui.py | 22 +++++++++-------------
2 files changed, 10 insertions(+), 14 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8f2192e2..8314450a 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -175,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
- assert hypernetwork_name, 'embedding not selected'
+ assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
diff --git a/modules/ui.py b/modules/ui.py
index 4bfdd275..86a2da6c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1035,14 +1035,14 @@ def create_ui(wrap_gradio_gpu_call):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
- with gr.Blocks() as textual_inversion_interface:
+ with gr.Blocks() as train_interface:
with gr.Row().style(equal_height=False):
- with gr.Column():
- with gr.Group():
- gr.HTML(value="See wiki for detailed explanation.
")
+ gr.HTML(value="See wiki for detailed explanation.
")
- gr.HTML(value="Create a new embedding
")
+ with gr.Row().style(equal_height=False):
+ with gr.Tabs(elem_id="train_tabs"):
+ with gr.Tab(label="Create embedding"):
new_embedding_name = gr.Textbox(label="Name")
initialization_text = gr.Textbox(label="Initialization text", value="*")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
@@ -1054,9 +1054,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Group():
- gr.HTML(value="Create a new hypernetwork
")
-
+ with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1067,9 +1065,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
- with gr.Group():
- gr.HTML(value="Preprocess images
")
-
+ with gr.Tab(label="Preprocess images"):
process_src = gr.Textbox(label='Source directory')
process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
@@ -1091,7 +1087,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
run_preprocess = gr.Button(value="Preprocess", variant='primary')
- with gr.Group():
+ with gr.Tab(label="Train"):
gr.HTML(value="Train an embedding; must specify a directory with a set of 1:1 ratio images
")
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
@@ -1388,7 +1384,7 @@ Requested path was: {f}
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
- (textual_inversion_interface, "Textual inversion", "ti"),
+ (train_interface, "Train", "ti"),
(settings_interface, "Settings", "settings"),
]
--
cgit v1.2.3
From c3c8eef9fd5a0c8b26319e32ca4a19b56204e6df Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 12 Oct 2022 20:49:47 +0300
Subject: train: change filename processing to be more simple and configurable
train: make it possible to make text files with prompts train: rework
scheduler so that there's less repeating code in textual inversion and
hypernets train: move epochs setting to options
---
javascript/hints.js | 3 ++
modules/hypernetworks/hypernetwork.py | 40 +++++++++-------------
modules/shared.py | 3 ++
modules/textual_inversion/dataset.py | 47 +++++++++++++++++++-------
modules/textual_inversion/learn_schedule.py | 37 +++++++++++++++++++-
modules/textual_inversion/textual_inversion.py | 35 +++++++------------
modules/ui.py | 2 --
7 files changed, 105 insertions(+), 62 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/javascript/hints.js b/javascript/hints.js
index b81c181b..d51ee14c 100644
--- a/javascript/hints.js
+++ b/javascript/hints.js
@@ -81,6 +81,9 @@ titles = {
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
+
+ "Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
+ "Filename join string": "This string will be used to hoin split words into a single line if the option above is enabled.",
}
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8314450a..b6c06d49 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -14,7 +14,7 @@ import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
-from modules.textual_inversion.learn_schedule import LearnSchedule
+from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
@@ -223,31 +223,23 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if ititial_step > steps:
return hypernetwork, filename
- schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
- (learn_rate, end_step) = next(schedules)
- print(f'Training at rate of {learn_rate} until step {end_step}')
-
- optimizer = torch.optim.AdamW(weights, lr=learn_rate)
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+ optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, (x, text, cond) in pbar:
+ for i, entry in pbar:
hypernetwork.step = i + ititial_step
- if hypernetwork.step > end_step:
- try:
- (learn_rate, end_step) = next(schedules)
- except Exception:
- break
- tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
- for pg in optimizer.param_groups:
- pg['lr'] = learn_rate
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
- cond = cond.to(devices.device)
- x = x.to(devices.device)
+ cond = entry.cond.to(devices.device)
+ x = entry.latent.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), cond)[0]
del x
del cond
@@ -267,7 +259,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
- preview_text = text if preview_image_prompt == "" else preview_image_prompt
+ preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@@ -282,16 +274,16 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
)
processed = processing.process_images(p)
- image = processed.images[0]
+ image = processed.images[0] if len(processed.images)>0 else None
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- shared.state.current_image = image
- image.save(last_saved_image)
-
- last_saved_image += f", prompt: {preview_text}"
+ if image is not None:
+ shared.state.current_image = image
+ image.save(last_saved_image)
+ last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
@@ -299,7 +291,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
Loss: {losses.mean():.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(text)}
+Last prompt: {html.escape(entry.cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/shared.py b/modules/shared.py
index 42e99741..e64e69fc 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -231,6 +231,9 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
+ "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
+ "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
+ "training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index f61f40d3..67e90afe 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -11,11 +11,21 @@ import tqdm
from modules import devices, shared
import re
-re_tag = re.compile(r"[a-zA-Z][_\w\d()]+")
+re_numbers_at_start = re.compile(r"^[-\d]+\s*")
+
+
+class DatasetEntry:
+ def __init__(self, filename=None, latent=None, filename_text=None):
+ self.filename = filename
+ self.latent = latent
+ self.filename_text = filename_text
+ self.cond = None
+ self.cond_text = None
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
+ re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None
self.placeholder_token = placeholder_token
@@ -42,9 +52,18 @@ class PersonalizedBase(Dataset):
except Exception:
continue
+ text_filename = os.path.splitext(path)[0] + ".txt"
filename = os.path.basename(path)
- filename_tokens = os.path.splitext(filename)[0]
- filename_tokens = re_tag.findall(filename_tokens)
+
+ if os.path.exists(text_filename):
+ with open(text_filename, "r", encoding="utf8") as file:
+ filename_text = file.read()
+ else:
+ filename_text = os.path.splitext(filename)[0]
+ filename_text = re.sub(re_numbers_at_start, '', filename_text)
+ if re_word:
+ tokens = re_word.findall(filename_text)
+ filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
@@ -55,13 +74,13 @@ class PersonalizedBase(Dataset):
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
+
if include_cond:
- text = self.create_text(filename_tokens)
- cond = cond_model([text]).to(devices.cpu)
- else:
- cond = None
+ entry.cond_text = self.create_text(filename_text)
+ entry.cond = cond_model([entry.cond_text]).to(devices.cpu)
- self.dataset.append((init_latent, filename_tokens, cond))
+ self.dataset.append(entry)
self.length = len(self.dataset) * repeats
@@ -72,10 +91,10 @@ class PersonalizedBase(Dataset):
def shuffle(self):
self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
- def create_text(self, filename_tokens):
+ def create_text(self, filename_text):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
- text = text.replace("[filewords]", ' '.join(filename_tokens))
+ text = text.replace("[filewords]", filename_text)
return text
def __len__(self):
@@ -86,7 +105,9 @@ class PersonalizedBase(Dataset):
self.shuffle()
index = self.indexes[i % len(self.indexes)]
- x, filename_tokens, cond = self.dataset[index]
+ entry = self.dataset[index]
+
+ if entry.cond is None:
+ entry.cond_text = self.create_text(entry.filename_text)
- text = self.create_text(filename_tokens)
- return x, text, cond
+ return entry
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
index db720271..2062726a 100644
--- a/modules/textual_inversion/learn_schedule.py
+++ b/modules/textual_inversion/learn_schedule.py
@@ -1,6 +1,12 @@
+import tqdm
-class LearnSchedule:
+
+class LearnScheduleIterator:
def __init__(self, learn_rate, max_steps, cur_step=0):
+ """
+ specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000
+ """
+
pairs = learn_rate.split(',')
self.rates = []
self.it = 0
@@ -32,3 +38,32 @@ class LearnSchedule:
return self.rates[self.it - 1]
else:
raise StopIteration
+
+
+class LearnRateScheduler:
+ def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True):
+ self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step)
+ (self.learn_rate, self.end_step) = next(self.schedules)
+ self.verbose = verbose
+
+ if self.verbose:
+ print(f'Training at rate of {self.learn_rate} until step {self.end_step}')
+
+ self.finished = False
+
+ def apply(self, optimizer, step_number):
+ if step_number <= self.end_step:
+ return
+
+ try:
+ (self.learn_rate, self.end_step) = next(self.schedules)
+ except Exception:
+ self.finished = True
+ return
+
+ if self.verbose:
+ tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}')
+
+ for pg in optimizer.param_groups:
+ pg['lr'] = self.learn_rate
+
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index c5153e4a..fa0e33a2 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -11,7 +11,7 @@ from PIL import Image, PngImagePlugin
from modules import shared, devices, sd_hijack, processing, sd_models
import modules.textual_inversion.dataset
-from modules.textual_inversion.learn_schedule import LearnSchedule
+from modules.textual_inversion.learn_schedule import LearnRateScheduler
from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64,
insert_image_data_embed, extract_image_data_embed,
@@ -172,8 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
-
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -205,7 +204,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
hijack = sd_hijack.model_hijack
@@ -221,32 +220,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if ititial_step > steps:
return embedding, filename
- schedules = iter(LearnSchedule(learn_rate, steps, ititial_step))
- (learn_rate, end_step) = next(schedules)
- print(f'Training at rate of {learn_rate} until step {end_step}')
-
- optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate)
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+ optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, (x, text, _) in pbar:
+ for i, entry in pbar:
embedding.step = i + ititial_step
- if embedding.step > end_step:
- try:
- (learn_rate, end_step) = next(schedules)
- except:
- break
- tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}')
- for pg in optimizer.param_groups:
- pg['lr'] = learn_rate
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
- c = cond_model([text])
+ c = cond_model([entry.cond_text])
- x = x.to(devices.device)
+ x = entry.latent.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), c)[0]
del x
@@ -268,7 +259,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
- preview_text = text if preview_image_prompt == "" else preview_image_prompt
+ preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
@@ -314,7 +305,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(text)}
+Last prompt: {html.escape(entry.cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/ui.py b/modules/ui.py
index 2b332267..c42535c8 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1098,7 +1098,6 @@ def create_ui(wrap_gradio_gpu_call):
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
steps = gr.Number(label='Max steps', value=100000, precision=0)
- num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
@@ -1176,7 +1175,6 @@ def create_ui(wrap_gradio_gpu_call):
training_width,
training_height,
steps,
- num_repeats,
create_image_every,
save_embedding_every,
template_file,
--
cgit v1.2.3
From 1cfc2a18981ee56bdb69a2de7b463a11ad05e329 Mon Sep 17 00:00:00 2001
From: Melan
Date: Wed, 12 Oct 2022 23:36:29 +0200
Subject: Save a csv containing the loss while training
---
modules/hypernetworks/hypernetwork.py | 17 ++++++++++++++++-
modules/textual_inversion/textual_inversion.py | 17 ++++++++++++++++-
modules/ui.py | 3 +++
3 files changed, 35 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b6c06d49..6522078f 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -5,6 +5,7 @@ import os
import sys
import traceback
import tqdm
+import csv
import torch
@@ -174,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
return self.to_out(out)
-def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
+def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, write_csv_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -256,6 +257,20 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
+ print(f"{write_csv_every} > {hypernetwork.step % write_csv_every == 0}, {write_csv_every}")
+ if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0:
+ write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True
+
+ with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout:
+
+ csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss"])
+
+ if write_csv_header:
+ csv_writer.writeheader()
+
+ csv_writer.writerow({"step": hypernetwork.step,
+ "loss": f"{losses.mean():.7f}"})
+
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fa0e33a2..25038a89 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -6,6 +6,7 @@ import torch
import tqdm
import html
import datetime
+import csv
from PIL import Image, PngImagePlugin
@@ -172,7 +173,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, write_csv_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -256,6 +257,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
embedding.save(last_saved_file)
+ if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0:
+ write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True
+
+ with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout:
+
+ csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss"])
+
+ if write_csv_header:
+ csv_writer.writeheader()
+
+ csv_writer.writerow({"epoch": epoch_num + 1,
+ "epoch_step": epoch_step - 1,
+ "loss": f"{losses.mean():.7f}"})
+
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
diff --git a/modules/ui.py b/modules/ui.py
index e07ee0e1..1195c2f1 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1096,6 +1096,7 @@ def create_ui(wrap_gradio_gpu_call):
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
steps = gr.Number(label='Max steps', value=100000, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
+ write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
@@ -1174,6 +1175,7 @@ def create_ui(wrap_gradio_gpu_call):
steps,
create_image_every,
save_embedding_every,
+ write_csv_every,
template_file,
save_image_with_stored_embedding,
preview_image_prompt,
@@ -1195,6 +1197,7 @@ def create_ui(wrap_gradio_gpu_call):
steps,
create_image_every,
save_embedding_every,
+ write_csv_every,
template_file,
preview_image_prompt,
],
--
cgit v1.2.3
From 8636b50aea83f9c743f005722d9f3f8ee9303e00 Mon Sep 17 00:00:00 2001
From: Melan
Date: Thu, 13 Oct 2022 12:37:58 +0200
Subject: Add learn_rate to csv and removed a left-over debug statement
---
modules/hypernetworks/hypernetwork.py | 6 +++---
modules/textual_inversion/textual_inversion.py | 5 +++--
2 files changed, 6 insertions(+), 5 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6522078f..2751a8c8 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -257,19 +257,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
- print(f"{write_csv_every} > {hypernetwork.step % write_csv_every == 0}, {write_csv_every}")
if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0:
write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True
with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout:
- csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss"])
+ csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"])
if write_csv_header:
csv_writer.writeheader()
csv_writer.writerow({"step": hypernetwork.step,
- "loss": f"{losses.mean():.7f}"})
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 25038a89..b83df079 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -262,14 +262,15 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout:
- csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss"])
+ csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"])
if write_csv_header:
csv_writer.writeheader()
csv_writer.writerow({"epoch": epoch_num + 1,
"epoch_step": epoch_step - 1,
- "loss": f"{losses.mean():.7f}"})
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate})
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
--
cgit v1.2.3
From 354ef0da3b1f0fa5c113d04b6c79e3908c848d23 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Thu, 13 Oct 2022 20:12:37 +0300
Subject: add hypernetwork multipliers
---
modules/hypernetworks/hypernetwork.py | 8 +++++++-
modules/shared.py | 5 ++++-
modules/ui.py | 5 ++++-
scripts/xy_grid.py | 9 ++++++++-
style.css | 3 +++
webui.py | 2 +-
6 files changed, 27 insertions(+), 5 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b6c06d49..f1248bb7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -18,6 +18,8 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
+ multiplier = 1.0
+
def __init__(self, dim, state_dict=None):
super().__init__()
@@ -36,7 +38,11 @@ class HypernetworkModule(torch.nn.Module):
self.to(devices.device)
def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
+ return x + (self.linear2(self.linear1(x))) * self.multiplier
+
+
+def apply_strength(value=None):
+ HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
class Hypernetwork:
diff --git a/modules/shared.py b/modules/shared.py
index d8e3a286..5901e605 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -238,7 +238,8 @@ options_templates.update(options_section(('training', "Training"), {
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
- "sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
+ "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
+ "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
@@ -348,6 +349,8 @@ class Options:
item = self.data_labels.get(key)
item.onchange = func
+ func()
+
def dumpjson(self):
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
return json.dumps(d)
diff --git a/modules/ui.py b/modules/ui.py
index 0a58f6be..673014f2 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1244,7 +1244,10 @@ def create_ui(wrap_gradio_gpu_call):
def refresh():
info.refresh()
refreshed_args = info.component_args() if callable(info.component_args) else info.component_args
- res.choices = refreshed_args["choices"]
+
+ for k, v in refreshed_args.items():
+ setattr(res, k, v)
+
return gr.update(**(refreshed_args or {}))
refresh_button.click(
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 02931ae6..efb63af5 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -107,6 +107,10 @@ def apply_hypernetwork(p, x, xs):
hypernetwork.load_hypernetwork(name)
+def apply_hypernetwork_strength(p, x, xs):
+ hypernetwork.apply_strength(x)
+
+
def confirm_hypernetworks(p, xs):
for x in xs:
if x.lower() in ["", "none"]:
@@ -165,6 +169,7 @@ axis_options = [
AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
+ AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
@@ -250,7 +255,7 @@ class Script(scripts.Script):
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
draw_legend = gr.Checkbox(label='Draw legend', value=True)
- include_lone_images = gr.Checkbox(label='Include Separate Images', value=True)
+ include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
@@ -377,6 +382,8 @@ class Script(scripts.Script):
modules.sd_models.reload_model_weights(shared.sd_model)
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
+ hypernetwork.apply_strength()
+
opts.data["CLIP_stop_at_last_layers"] = CLIP_stop_at_last_layers
diff --git a/style.css b/style.css
index ad2a52cc..aa3d379c 100644
--- a/style.css
+++ b/style.css
@@ -522,6 +522,9 @@ canvas[key="mask"] {
z-index: 200;
width: 8em;
}
+#quicksettings .gr-box > div > div > input.gr-text-input {
+ top: -1.12em;
+}
.row.gr-compact{
overflow: visible;
diff --git a/webui.py b/webui.py
index 33ba7905..fe0ce321 100644
--- a/webui.py
+++ b/webui.py
@@ -72,7 +72,6 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
-
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
@@ -86,6 +85,7 @@ def initialize():
shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
+ shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
def webui():
--
cgit v1.2.3
From c344ba3b325459abbf9b0df2c1b18f7bf99805b2 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 14 Oct 2022 20:31:49 +0300
Subject: add option to read generation params for learning previews from
txt2img
---
modules/hypernetworks/hypernetwork.py | 21 ++++++++++++++++-----
modules/textual_inversion/textual_inversion.py | 25 ++++++++++++++++++-------
modules/ui.py | 20 +++++++++++++++++---
3 files changed, 51 insertions(+), 15 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index f1248bb7..e5cb1817 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -180,7 +180,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
return self.to_out(out)
-def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
+def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -265,20 +265,31 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
- preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
-
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
- prompt=preview_text,
- steps=20,
do_not_save_grid=True,
do_not_save_samples=True,
)
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entry.cond_text
+ p.steps = 20
+
+ preview_text = p.prompt
+
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images)>0 else None
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fa0e33a2..3d835358 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -172,7 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -259,18 +259,29 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
- preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
-
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
- prompt=preview_text,
- steps=20,
- height=training_height,
- width=training_width,
do_not_save_grid=True,
do_not_save_samples=True,
)
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entry.cond_text
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
+
+ preview_text = p.prompt
+
processed = processing.process_images(p)
image = processed.images[0]
diff --git a/modules/ui.py b/modules/ui.py
index 828bfeea..4a04c2cc 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -711,6 +711,18 @@ def create_ui(wrap_gradio_gpu_call):
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
]
+
+ txt2img_preview_params = [
+ txt2img_prompt,
+ txt2img_negative_prompt,
+ steps,
+ sampler_index,
+ cfg_scale,
+ seed,
+ width,
+ height,
+ ]
+
token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
with gr.Blocks(analytics_enabled=False) as img2img_interface:
@@ -1162,7 +1174,7 @@ def create_ui(wrap_gradio_gpu_call):
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
- preview_image_prompt = gr.Textbox(label='Preview prompt', value="")
+ preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
with gr.Row():
interrupt_training = gr.Button(value="Interrupt")
@@ -1240,7 +1252,8 @@ def create_ui(wrap_gradio_gpu_call):
save_embedding_every,
template_file,
save_image_with_stored_embedding,
- preview_image_prompt,
+ preview_from_txt2img,
+ *txt2img_preview_params,
],
outputs=[
ti_output,
@@ -1260,7 +1273,8 @@ def create_ui(wrap_gradio_gpu_call):
create_image_every,
save_embedding_every,
template_file,
- preview_image_prompt,
+ preview_from_txt2img,
+ *txt2img_preview_params,
],
outputs=[
ti_output,
--
cgit v1.2.3
From 03d62538aebeff51713619fe808c953bdb70193d Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 14 Oct 2022 22:43:55 +0300
Subject: remove duplicate code for log loss, add step, make it read from
options rather than gradio input
---
modules/hypernetworks/hypernetwork.py | 20 ++++--------
modules/shared.py | 3 +-
modules/textual_inversion/textual_inversion.py | 44 ++++++++++++++++++--------
modules/ui.py | 3 --
4 files changed, 38 insertions(+), 32 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index edb8cba1..59c7ac6e 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -15,6 +15,7 @@ import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
+from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -210,7 +211,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
@@ -263,19 +264,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
- if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0:
- write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True
-
- with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout:
-
- csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"])
-
- if write_csv_header:
- csv_writer.writeheader()
-
- csv_writer.writerow({"step": hypernetwork.step,
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate})
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
diff --git a/modules/shared.py b/modules/shared.py
index 695d29b6..d41a7ab3 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -236,7 +236,8 @@ options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
- "training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
+ "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
+ "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 1f5ace6f..da0d77a0 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -173,6 +173,32 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
+def write_loss(log_directory, filename, step, epoch_len, values):
+ if shared.opts.training_write_csv_every == 0:
+ return
+
+ if step % shared.opts.training_write_csv_every != 0:
+ return
+
+ write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
+
+ with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
+ csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())])
+
+ if write_csv_header:
+ csv_writer.writeheader()
+
+ epoch = step // epoch_len
+ epoch_step = step - epoch * epoch_len
+
+ csv_writer.writerow({
+ "step": step + 1,
+ "epoch": epoch + 1,
+ "epoch_step": epoch_step + 1,
+ **values,
+ })
+
+
def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
@@ -257,20 +283,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')
embedding.save(last_saved_file)
- if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0:
- write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True
-
- with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout:
-
- csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"])
-
- if write_csv_header:
- csv_writer.writeheader()
-
- csv_writer.writerow({"epoch": epoch_num + 1,
- "epoch_step": epoch_step - 1,
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate})
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
diff --git a/modules/ui.py b/modules/ui.py
index be4a43a7..a08ffc9b 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1172,7 +1172,6 @@ def create_ui(wrap_gradio_gpu_call):
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
steps = gr.Number(label='Max steps', value=100000, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
- write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
@@ -1251,7 +1250,6 @@ def create_ui(wrap_gradio_gpu_call):
steps,
create_image_every,
save_embedding_every,
- write_csv_every,
template_file,
save_image_with_stored_embedding,
preview_from_txt2img,
@@ -1274,7 +1272,6 @@ def create_ui(wrap_gradio_gpu_call):
steps,
create_image_every,
save_embedding_every,
- write_csv_every,
template_file,
preview_from_txt2img,
*txt2img_preview_params,
--
cgit v1.2.3
From c7a86f7fe9c0b8967a87e8d709f507d2f44400d8 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 15 Oct 2022 09:24:59 +0300
Subject: add option to use batch size for training
---
modules/hypernetworks/hypernetwork.py | 33 +++++++++++++++++++-------
modules/textual_inversion/dataset.py | 31 ++++++++++++++----------
modules/textual_inversion/textual_inversion.py | 17 +++++++------
modules/ui.py | 3 +++
4 files changed, 54 insertions(+), 30 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 59c7ac6e..a2b3bc0a 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -182,7 +182,21 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
return self.to_out(out)
-def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def stack_conds(conds):
+ if len(conds) == 1:
+ return torch.stack(conds)
+
+ # same as in reconstruct_multicond_batch
+ token_count = max([x.shape[0] for x in conds])
+ for i in range(len(conds)):
+ if conds[i].shape[0] != token_count:
+ last_vector = conds[i][-1:]
+ last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
+ conds[i] = torch.vstack([conds[i], last_vector_repeated])
+
+ return torch.stack(conds)
+
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -211,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
@@ -235,7 +249,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, entry in pbar:
+ for i, entries in pbar:
hypernetwork.step = i + ititial_step
scheduler.apply(optimizer, hypernetwork.step)
@@ -246,11 +260,12 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
break
with torch.autocast("cuda"):
- cond = entry.cond.to(devices.device)
- x = entry.latent.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), cond)[0]
+ c = stack_conds([entry.cond for entry in entries]).to(devices.device)
+# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
del x
- del cond
+ del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
@@ -292,7 +307,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
p.width = preview_width
p.height = preview_height
else:
- p.prompt = entry.cond_text
+ p.prompt = entries[0].cond_text
p.steps = 20
preview_text = p.prompt
@@ -315,7 +330,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
Loss: {losses.mean():.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 67e90afe..bd99c0cb 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -24,11 +24,12 @@ class DatasetEntry:
class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False):
- re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None
+ def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
+ re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
+ self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
@@ -78,13 +79,13 @@ class PersonalizedBase(Dataset):
if include_cond:
entry.cond_text = self.create_text(filename_text)
- entry.cond = cond_model([entry.cond_text]).to(devices.cpu)
+ entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
- self.length = len(self.dataset) * repeats
+ self.length = len(self.dataset) * repeats // batch_size
- self.initial_indexes = np.arange(self.length) % len(self.dataset)
+ self.initial_indexes = np.arange(len(self.dataset))
self.indexes = None
self.shuffle()
@@ -101,13 +102,19 @@ class PersonalizedBase(Dataset):
return self.length
def __getitem__(self, i):
- if i % len(self.dataset) == 0:
- self.shuffle()
+ res = []
- index = self.indexes[i % len(self.indexes)]
- entry = self.dataset[index]
+ for j in range(self.batch_size):
+ position = i * self.batch_size + j
+ if position % len(self.indexes) == 0:
+ self.shuffle()
- if entry.cond is None:
- entry.cond_text = self.create_text(entry.filename_text)
+ index = self.indexes[position % len(self.indexes)]
+ entry = self.dataset[index]
- return entry
+ if entry.cond is None:
+ entry.cond_text = self.create_text(entry.filename_text)
+
+ res.append(entry)
+
+ return res
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index da0d77a0..e754747e 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -199,7 +199,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
})
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -231,7 +231,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
hijack = sd_hijack.model_hijack
@@ -251,7 +251,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, entry in pbar:
+ for i, entries in pbar:
embedding.step = i + ititial_step
scheduler.apply(optimizer, embedding.step)
@@ -262,10 +262,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
break
with torch.autocast("cuda"):
- c = cond_model([entry.cond_text])
-
- x = entry.latent.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), c)[0]
+ c = cond_model([entry.cond_text for entry in entries])
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
del x
losses[embedding.step % losses.shape[0]] = loss.item()
@@ -307,7 +306,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
p.width = preview_width
p.height = preview_height
else:
- p.prompt = entry.cond_text
+ p.prompt = entries[0].cond_text
p.steps = 20
p.width = training_width
p.height = training_height
@@ -348,7 +347,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/ui.py b/modules/ui.py
index 1bc919c7..45550ea8 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1166,6 +1166,7 @@ def create_ui(wrap_gradio_gpu_call):
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
+ batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@@ -1244,6 +1245,7 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
train_embedding_name,
learn_rate,
+ batch_size,
dataset_directory,
log_directory,
training_width,
@@ -1268,6 +1270,7 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
train_hypernetwork_name,
learn_rate,
+ batch_size,
dataset_directory,
log_directory,
steps,
--
cgit v1.2.3
From 703e6d9e4e161d36b9328eefb5200e1c44fb4afd Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sat, 15 Oct 2022 21:47:08 +0900
Subject: check NaN for hypernetwork tuning
---
modules/hypernetworks/hypernetwork.py | 10 ++++++----
1 file changed, 6 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index a2b3bc0a..4905710e 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -272,15 +272,17 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer.zero_grad()
loss.backward()
optimizer.step()
-
- pbar.set_description(f"loss: {losses.mean():.7f}")
+ mean_loss = losses.mean()
+ if torch.isnan(mean_loss):
+ raise RuntimeError("Loss diverged.")
+ pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
+ "loss": f"{mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
@@ -328,7 +330,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"""
-Loss: {losses.mean():.7f}
+Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
--
cgit v1.2.3
From 6021f7a75f7b5208a2be15cda5526028152f922d Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 00:51:36 +0900
Subject: add options to custom hypernetwork layer structure
---
.gitignore | 1 +
modules/hypernetworks/hypernetwork.py | 88 ++++++++++++++++++++++++++---------
modules/shared.py | 4 +-
webui.py | 6 ++-
4 files changed, 75 insertions(+), 24 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/.gitignore b/.gitignore
index 69785b3e..4794865c 100644
--- a/.gitignore
+++ b/.gitignore
@@ -27,3 +27,4 @@ __pycache__
notification.mp3
/SwinIR
/textual_inversion
+/hypernetwork
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..cadb9911 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,52 +1,98 @@
+import csv
import datetime
import glob
import html
import os
import sys
import traceback
-import tqdm
-import csv
+import modules.textual_inversion.dataset
import torch
-
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
-import torch
-from torch import einsum
+import tqdm
from einops import rearrange, repeat
-import modules.textual_inversion.dataset
+from ldm.util import default
+from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
+from torch import einsum
+
+
+def parse_layer_structure(dim, state_dict):
+ i = 0
+ res = [1]
+ while (key := "linear.{}.weight".format(i)) in state_dict:
+ weight = state_dict[key]
+ res.append(len(weight) // dim)
+ i += 1
+ return res
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
+ layer_structure = None
+ add_layer_norm = False
def __init__(self, dim, state_dict=None):
super().__init__()
+ if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None:
+ layer_structure = (1, 2, 1)
+ else:
+ if self.layer_structure is not None:
+ assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
+ layer_structure = self.layer_structure
+ else:
+ layer_structure = parse_layer_structure(dim, state_dict)
+
+ linears = []
+ for i in range(len(layer_structure) - 1):
+ linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+ if self.add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
+ self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
- self.load_state_dict(state_dict, strict=True)
+ try:
+ self.load_state_dict(state_dict)
+ except RuntimeError:
+ self.try_load_previous(state_dict)
else:
-
- self.linear1.weight.data.normal_(mean=0.0, std=0.01)
- self.linear1.bias.data.zero_()
- self.linear2.weight.data.normal_(mean=0.0, std=0.01)
- self.linear2.bias.data.zero_()
+ for layer in self.linear:
+ layer.weight.data.normal_(mean = 0.0, std = 0.01)
+ layer.bias.data.zero_()
self.to(devices.device)
+ def try_load_previous(self, state_dict):
+ states = self.state_dict()
+ states['linear.0.bias'].copy_(state_dict['linear1.bias'])
+ states['linear.0.weight'].copy_(state_dict['linear1.weight'])
+ states['linear.1.bias'].copy_(state_dict['linear2.bias'])
+ states['linear.1.weight'].copy_(state_dict['linear2.weight'])
+
def forward(self, x):
- return x + (self.linear2(self.linear1(x))) * self.multiplier
+ return x + self.linear(x) * self.multiplier
+
+ def trainables(self):
+ res = []
+ for layer in self.linear:
+ res += [layer.weight, layer.bias]
+ return res
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
+def apply_layer_structure(value=None):
+ HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure
+
+
+def apply_layer_norm(value=None):
+ HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm
+
+
class Hypernetwork:
filename = None
name = None
@@ -68,7 +114,7 @@ class Hypernetwork:
for k, layers in self.layers.items():
for layer in layers:
layer.train()
- res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+ res += layer.trainables()
return res
@@ -226,7 +272,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
-
+ assert ds.length > 1, "Dataset should contain more than 1 images"
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
@@ -261,7 +307,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
-# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
@@ -283,7 +329,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
+ "learn_rate": f"{scheduler.learn_rate:.7f}"
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
diff --git a/modules/shared.py b/modules/shared.py
index c0d87168..c87ce70e 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -13,7 +13,7 @@ import modules.memmon
import modules.sd_models
import modules.styles
import modules.devices as devices
-from modules import sd_samplers, sd_models, localization
+from modules import sd_models, sd_samplers, localization
from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path
@@ -258,6 +258,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
+ "sd_hypernetwork_layer_structure": OptionInfo(None, "Hypernetwork layer structure Default: (1,2,1).", gr.Dropdown, lambda: {"choices": [(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]}),
+ "sd_hypernetwork_add_layer_norm": OptionInfo(False, "Add layer normalization to hypernetwork architecture."),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
diff --git a/webui.py b/webui.py
index fe0ce321..86e98ad0 100644
--- a/webui.py
+++ b/webui.py
@@ -86,11 +86,13 @@ def initialize():
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
+ shared.opts.onchange("sd_hypernetwork_layer_structure", modules.hypernetworks.hypernetwork.apply_layer_structure)
+ shared.opts.onchange("sd_hypernetwork_add_layer_norm", modules.hypernetworks.hypernetwork.apply_layer_norm)
def webui():
initialize()
-
+
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
@@ -101,7 +103,7 @@ def webui():
while 1:
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
-
+
app, local_url, share_url = demo.launch(
share=cmd_opts.share,
server_name="0.0.0.0" if cmd_opts.listen else None,
--
cgit v1.2.3
From a5611ea5026bd8e12d8e84023384c369d0511dda Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 01:00:01 +0900
Subject: update
---
.gitignore | 1 -
modules/hypernetworks/hypernetwork.py | 14 ++++++++------
2 files changed, 8 insertions(+), 7 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/.gitignore b/.gitignore
index 4794865c..69785b3e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -27,4 +27,3 @@ __pycache__
notification.mp3
/SwinIR
/textual_inversion
-/hypernetwork
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index cadb9911..c5835bce 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,20 +1,22 @@
-import csv
import datetime
import glob
import html
import os
import sys
import traceback
+import tqdm
+import csv
-import modules.textual_inversion.dataset
import torch
-import tqdm
-from einops import rearrange, repeat
+
from ldm.util import default
-from modules import devices, processing, sd_models, shared
+from modules import devices, shared, processing, sd_models
+import torch
+from torch import einsum
+from einops import rearrange, repeat
+import modules.textual_inversion.dataset
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
-from torch import einsum
def parse_layer_structure(dim, state_dict):
--
cgit v1.2.3
From e40ba281f1b419cf99552962ea01d87d699840a5 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 01:03:58 +0900
Subject: update
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index c5835bce..082165f4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -309,7 +309,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
@@ -331,7 +331,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
- "learn_rate": f"{scheduler.learn_rate:.7f}"
+ "learn_rate": scheduler.learn_rate
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
--
cgit v1.2.3
From da72becb13e4b750fbcb3d158c3f843311ef9938 Mon Sep 17 00:00:00 2001
From: Silent <16026653+s-ilent@users.noreply.github.com>
Date: Wed, 19 Oct 2022 16:14:33 +1030
Subject: Use training width/height when training hypernetworks.
---
modules/hypernetworks/hypernetwork.py | 4 ++--
modules/ui.py | 2 ++
2 files changed, 4 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..b8695fc1 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -196,7 +196,7 @@ def stack_conds(conds):
return torch.stack(conds)
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -225,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
diff --git a/modules/ui.py b/modules/ui.py
index fb6eb5a0..ca46343f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1341,6 +1341,8 @@ def create_ui(wrap_gradio_gpu_call):
batch_size,
dataset_directory,
log_directory,
+ training_width,
+ training_height,
steps,
create_image_every,
save_embedding_every,
--
cgit v1.2.3
From 42fbda83bb9830af18187fddb50c1bedd01da502 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 14:30:33 +0000
Subject: layer options moves into create hnet ui
---
modules/hypernetworks/hypernetwork.py | 64 +++++++++++++++++------------------
modules/hypernetworks/ui.py | 9 +++--
modules/shared.py | 2 --
modules/ui.py | 8 +++--
webui.py | 8 ++---
5 files changed, 48 insertions(+), 43 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 583ada31..7d519cd9 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -19,37 +19,21 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
-def parse_layer_structure(dim, state_dict):
- i = 0
- res = [1]
- while (key := "linear.{}.weight".format(i)) in state_dict:
- weight = state_dict[key]
- res.append(len(weight) // dim)
- i += 1
- return res
-
-
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- layer_structure = None
- add_layer_norm = False
- def __init__(self, dim, state_dict=None):
+ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__()
- if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None:
- layer_structure = (1, 2, 1)
+ if layer_structure is not None:
+ assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
else:
- if self.layer_structure is not None:
- assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
- assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- layer_structure = self.layer_structure
- else:
- layer_structure = parse_layer_structure(dim, state_dict)
+ layer_structure = parse_layer_structure(dim, state_dict)
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- if self.add_layer_norm:
+ if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
@@ -77,38 +61,47 @@ class HypernetworkModule(torch.nn.Module):
return x + self.linear(x) * self.multiplier
def trainables(self):
- res = []
+ layer_structure = []
for layer in self.linear:
- res += [layer.weight, layer.bias]
- return res
+ layer_structure += [layer.weight, layer.bias]
+ return layer_structure
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
-def apply_layer_structure(value=None):
- HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure
+def parse_layer_structure(dim, state_dict):
+ i = 0
+ layer_structure = [1]
+ while (key := "linear.{}.weight".format(i)) in state_dict:
+ weight = state_dict[key]
+ layer_structure.append(len(weight) // dim)
+ i += 1
-def apply_layer_norm(value=None):
- HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm
+ return layer_structure
class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.layer_structure = layer_structure
+ self.add_layer_norm = add_layer_norm
for size in enable_sizes or []:
- self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+ self.layers[size] = (
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ )
def weights(self):
res = []
@@ -128,6 +121,8 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
+ state_dict['layer_structure'] = self.layer_structure
+ state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -142,10 +137,15 @@ class Hypernetwork:
for size, sd in state_dict.items():
if type(size) == int:
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+ self.layers[size] = (
+ HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ )
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
+ self.layer_structure = state_dict.get('layer_structure', None)
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index dfa599af..7e8ea95e 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -9,11 +9,16 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes):
+def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
+ name=name,
+ enable_sizes=[int(x) for x in enable_sizes],
+ layer_structure=layer_structure,
+ add_layer_norm=add_layer_norm,
+ )
hypernet.save(fn)
shared.reload_hypernetworks()
diff --git a/modules/shared.py b/modules/shared.py
index 0540cae9..faede821 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -260,8 +260,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
- "sd_hypernetwork_layer_structure": OptionInfo(None, "Hypernetwork layer structure Default: (1,2,1).", gr.Dropdown, lambda: {"choices": [(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]}),
- "sd_hypernetwork_add_layer_norm": OptionInfo(False, "Add layer normalization to hypernetwork architecture."),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
diff --git a/modules/ui.py b/modules/ui.py
index ca46343f..d9ee462f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -458,14 +458,14 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
- prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2,
+ prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2,
placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
- negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2,
+ negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2,
placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
@@ -1198,6 +1198,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
+ new_hypernetwork_layer_structure = gr.Dropdown(label="Hypernetwork layer structure", choices=[(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)])
+ new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
with gr.Row():
with gr.Column(scale=3):
@@ -1280,6 +1282,8 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
+ new_hypernetwork_layer_structure,
+ new_hypernetwork_add_layer_norm,
],
outputs=[
train_hypernetwork_name,
diff --git a/webui.py b/webui.py
index c7260c7a..177bef74 100644
--- a/webui.py
+++ b/webui.py
@@ -85,9 +85,7 @@ def initialize():
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
- shared.opts.onchange("sd_hypernetwork_layer_structure", modules.hypernetworks.hypernetwork.apply_layer_structure)
- shared.opts.onchange("sd_hypernetwork_add_layer_norm", modules.hypernetworks.hypernetwork.apply_layer_norm)
-
+
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
@@ -142,7 +140,7 @@ def webui(launch_api=False):
create_api(app)
wait_on_server(demo)
-
+
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
@@ -160,4 +158,4 @@ if __name__ == "__main__":
if cmd_opts.nowebui:
api_only()
else:
- webui(cmd_opts.api)
\ No newline at end of file
+ webui(cmd_opts.api)
--
cgit v1.2.3
From 2ce52d32e41fb523d1494f45073fd18496e52d35 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 16:31:12 +0000
Subject: fix for #3086 failing to load any previous hypernet
---
modules/hypernetworks/hypernetwork.py | 60 ++++++++++++++++-------------------
1 file changed, 28 insertions(+), 32 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d519cd9..74300122 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -24,11 +24,10 @@ class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__()
- if layer_structure is not None:
- assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
- assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- else:
- layer_structure = parse_layer_structure(dim, state_dict)
+
+ assert layer_structure is not None, "layer_structure mut not be None"
+ assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
@@ -39,23 +38,30 @@ class HypernetworkModule(torch.nn.Module):
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
- try:
- self.load_state_dict(state_dict)
- except RuntimeError:
- self.try_load_previous(state_dict)
+ self.fix_old_state_dict(state_dict)
+ self.load_state_dict(state_dict)
else:
for layer in self.linear:
- layer.weight.data.normal_(mean = 0.0, std = 0.01)
+ layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
self.to(devices.device)
- def try_load_previous(self, state_dict):
- states = self.state_dict()
- states['linear.0.bias'].copy_(state_dict['linear1.bias'])
- states['linear.0.weight'].copy_(state_dict['linear1.weight'])
- states['linear.1.bias'].copy_(state_dict['linear2.bias'])
- states['linear.1.weight'].copy_(state_dict['linear2.weight'])
+ def fix_old_state_dict(self, state_dict):
+ changes = {
+ 'linear1.bias': 'linear.0.bias',
+ 'linear1.weight': 'linear.0.weight',
+ 'linear2.bias': 'linear.1.bias',
+ 'linear2.weight': 'linear.1.weight',
+ }
+
+ for fr, to in changes.items():
+ x = state_dict.get(fr, None)
+ if x is None:
+ continue
+
+ del state_dict[fr]
+ state_dict[to] = x
def forward(self, x):
return x + self.linear(x) * self.multiplier
@@ -71,18 +77,6 @@ def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
-def parse_layer_structure(dim, state_dict):
- i = 0
- layer_structure = [1]
-
- while (key := "linear.{}.weight".format(i)) in state_dict:
- weight = state_dict[key]
- layer_structure.append(len(weight) // dim)
- i += 1
-
- return layer_structure
-
-
class Hypernetwork:
filename = None
name = None
@@ -135,17 +129,18 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
+ self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]),
- HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
)
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
- self.layer_structure = state_dict.get('layer_structure', None)
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
@@ -244,6 +239,7 @@ def stack_conds(conds):
return torch.stack(conds)
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
--
cgit v1.2.3
From d6ea5841374a28f3f6deb73abc251c8f0bcb240f Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:07:57 +0100
Subject: change html output
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d519cd9..73c1cb80 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -380,7 +380,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
-Last saved embedding: {html.escape(last_saved_file)}
+Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
--
cgit v1.2.3
From 6f98e89486f55b0e4657e96ce640cf1c4675d187 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Thu, 20 Oct 2022 00:10:45 +0000
Subject: update
---
modules/hypernetworks/hypernetwork.py | 29 +++++++++++++++--------
modules/hypernetworks/ui.py | 3 ++-
modules/ui.py | 43 +++++++++++++++++++----------------
3 files changed, 44 insertions(+), 31 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 74300122..7d617680 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -22,16 +22,20 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()
- assert layer_structure is not None, "layer_structure mut not be None"
+ assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+ if activation_func == "relu":
+ linears.append(torch.nn.ReLU())
+ if activation_func == "leakyrelu":
+ linears.append(torch.nn.LeakyReLU())
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -42,8 +46,9 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- layer.weight.data.normal_(mean=0.0, std=0.01)
- layer.bias.data.zero_()
+ if not "ReLU" in layer.__str__():
+ layer.weight.data.normal_(mean=0.0, std=0.01)
+ layer.bias.data.zero_()
self.to(devices.device)
@@ -69,7 +74,8 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- layer_structure += [layer.weight, layer.bias]
+ if not "ReLU" in layer.__str__():
+ layer_structure += [layer.weight, layer.bias]
return layer_structure
@@ -81,7 +87,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
self.filename = None
self.name = name
self.layers = {}
@@ -90,11 +96,12 @@ class Hypernetwork:
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
+ self.activation_func = activation_func
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
)
def weights(self):
@@ -117,6 +124,7 @@ class Hypernetwork:
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['activation_func'] = self.activation_func
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -131,12 +139,13 @@ class Hypernetwork:
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ self.activation_func = state_dict.get('activation_func', None)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
- HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
)
self.name = state_dict.get('name', self.name)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 08f75f15..83f9547b 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -10,7 +10,7 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
+def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
@@ -22,6 +22,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
add_layer_norm=add_layer_norm,
+ activation_func=activation_func,
)
hypernet.save(fn)
diff --git a/modules/ui.py b/modules/ui.py
index d2e24880..8751fa9c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -5,43 +5,44 @@ import json
import math
import mimetypes
import os
+import platform
import random
+import subprocess as sp
import sys
import tempfile
import time
import traceback
-import platform
-import subprocess as sp
from functools import partial, reduce
+import gradio as gr
+import gradio.routes
+import gradio.utils
import numpy as np
+import piexif
import torch
from PIL import Image, PngImagePlugin
-import piexif
-import gradio as gr
-import gradio.utils
-import gradio.routes
-
-from modules import sd_hijack, sd_models, localization
+from modules import localization, sd_hijack, sd_models
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts
+from modules.shared import cmd_opts, opts, restricted_opts
+
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
-import modules.shared as shared
-from modules.sd_samplers import samplers, samplers_for_img2img
-from modules.sd_hijack import model_hijack
+
+import modules.codeformer_model
+import modules.generation_parameters_copypaste
+import modules.gfpgan_model
+import modules.hypernetworks.ui
+import modules.images_history as img_his
import modules.ldsr_model
import modules.scripts
-import modules.gfpgan_model
-import modules.codeformer_model
+import modules.shared as shared
import modules.styles
-import modules.generation_parameters_copypaste
+import modules.textual_inversion.ui
from modules import prompt_parser
from modules.images import save_image
-import modules.textual_inversion.ui
-import modules.hypernetworks.ui
-import modules.images_history as img_his
+from modules.sd_hijack import model_hijack
+from modules.sd_samplers import samplers, samplers_for_img2img
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
@@ -268,8 +269,8 @@ def calc_time_left(progress, threshold, label, force_display):
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
- if (eta_relative > threshold and progress > 0.02) or force_display:
- return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
+ if (eta_relative > threshold and progress > 0.02) or force_display:
+ return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
else:
return ""
@@ -1219,6 +1220,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
+ new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["relu", "leakyrelu"])
with gr.Row():
with gr.Column(scale=3):
@@ -1303,6 +1305,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
+ new_hypernetwork_activation_func,
],
outputs=[
train_hypernetwork_name,
--
cgit v1.2.3
From d8acd34f66ab35a91f10d66330bcc95a83bfcac6 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Thu, 20 Oct 2022 23:43:03 +0900
Subject: generalized some functions and option for ignoring first layer
---
modules/hypernetworks/hypernetwork.py | 23 +++++++++++++++--------
1 file changed, 15 insertions(+), 8 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d617680..3a44b377 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -21,21 +21,27 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
-
+ activation_dict = {"relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU,
+ "swish": torch.nn.Hardswish}
+
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
-
+
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- if activation_func == "relu":
- linears.append(torch.nn.ReLU())
- if activation_func == "leakyrelu":
- linears.append(torch.nn.LeakyReLU())
+ # if skip_first_layer because first parameters potentially contain negative values
+ if i < 1: continue
+ if activation_func in HypernetworkModule.activation_dict:
+ linears.append(HypernetworkModule.activation_dict[activation_func]())
+ else:
+ print("Invalid key {} encountered as activation function!".format(activation_func))
+ # if use_dropout:
+ linears.append(torch.nn.Dropout(p=0.3))
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if isinstance(layer, torch.nn.Linear):
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -298,7 +304,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
+ # if optimizer == "Adam": or else Adam / AdamW / etc...
+ optimizer = torch.optim.Adam(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
--
cgit v1.2.3
From a71e0212363979c7cbbb797c9fbd5f8cd03b29d3 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Thu, 20 Oct 2022 23:48:52 +0900
Subject: only linear
---
modules/hypernetworks/hypernetwork.py | 10 +++++-----
1 file changed, 5 insertions(+), 5 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3a44b377..905cbeef 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -35,13 +35,13 @@ class HypernetworkModule(torch.nn.Module):
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# if skip_first_layer because first parameters potentially contain negative values
- if i < 1: continue
+ # if i < 1: continue
if activation_func in HypernetworkModule.activation_dict:
linears.append(HypernetworkModule.activation_dict[activation_func]())
else:
print("Invalid key {} encountered as activation function!".format(activation_func))
# if use_dropout:
- linears.append(torch.nn.Dropout(p=0.3))
+ # linears.append(torch.nn.Dropout(p=0.3))
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -80,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if isinstance(layer, torch.nn.Linear):
layer_structure += [layer.weight, layer.bias]
return layer_structure
@@ -304,8 +304,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- # if optimizer == "Adam": or else Adam / AdamW / etc...
- optimizer = torch.optim.Adam(weights, lr=scheduler.learn_rate)
+ # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
+ optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
--
cgit v1.2.3
From 108be15500aac590b4e00420635d7b61fccfa530 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Fri, 21 Oct 2022 01:00:41 +0900
Subject: fix bugs and optimizations
---
modules/hypernetworks/hypernetwork.py | 105 +++++++++++++++++++---------------
1 file changed, 59 insertions(+), 46 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 905cbeef..893ba110 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# if skip_first_layer because first parameters potentially contain negative values
# if i < 1: continue
+ if add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
if activation_func in HypernetworkModule.activation_dict:
linears.append(HypernetworkModule.activation_dict[activation_func]())
else:
print("Invalid key {} encountered as activation function!".format(activation_func))
# if use_dropout:
# linears.append(torch.nn.Dropout(p=0.3))
- if add_layer_norm:
- linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
@@ -115,11 +115,24 @@ class Hypernetwork:
for k, layers in self.layers.items():
for layer in layers:
- layer.train()
res += layer.trainables()
return res
+ def eval(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.eval()
+ for items in self.weights():
+ items.requires_grad = False
+
+ def train(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.train()
+ for items in self.weights():
+ items.requires_grad = True
+
def save(self, filename):
state_dict = {}
@@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
losses = torch.zeros((32,))
last_saved_file = ""
@@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
+ optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
+ hypernetwork.train()
for i, entries in pbar:
hypernetwork.step = i + ititial_step
@@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
losses[hypernetwork.step % losses.shape[0]] = loss.item()
- optimizer.zero_grad()
+ optimizer.zero_grad(set_to_none=True)
loss.backward()
+ del loss
optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss):
@@ -346,44 +356,47 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
+ torch.cuda.empty_cache()
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ with torch.no_grad():
+ hypernetwork.eval()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
-
- preview_text = p.prompt
-
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
-
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- if image is not None:
- shared.state.current_image = image
- image.save(last_saved_image)
- last_saved_image += f", prompt: {preview_text}"
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+
+ preview_text = p.prompt
+
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
+
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
+ if image is not None:
+ shared.state.current_image = image
+ image.save(last_saved_image)
+ last_saved_image += f", prompt: {preview_text}"
+
+ hypernetwork.train()
shared.state.job_no = hypernetwork.step
--
cgit v1.2.3
From f89829ec3a0baceb445451ad98d4fb4323e922aa Mon Sep 17 00:00:00 2001
From: aria1th <35677394+aria1th@users.noreply.github.com>
Date: Fri, 21 Oct 2022 01:37:11 +0900
Subject: Revert "fix bugs and optimizations"
This reverts commit 108be15500aac590b4e00420635d7b61fccfa530.
---
modules/hypernetworks/hypernetwork.py | 105 +++++++++++++++-------------------
1 file changed, 46 insertions(+), 59 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 893ba110..905cbeef 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# if skip_first_layer because first parameters potentially contain negative values
# if i < 1: continue
- if add_layer_norm:
- linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
if activation_func in HypernetworkModule.activation_dict:
linears.append(HypernetworkModule.activation_dict[activation_func]())
else:
print("Invalid key {} encountered as activation function!".format(activation_func))
# if use_dropout:
# linears.append(torch.nn.Dropout(p=0.3))
+ if add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
@@ -115,24 +115,11 @@ class Hypernetwork:
for k, layers in self.layers.items():
for layer in layers:
+ layer.train()
res += layer.trainables()
return res
- def eval(self):
- for k, layers in self.layers.items():
- for layer in layers:
- layer.eval()
- for items in self.weights():
- items.requires_grad = False
-
- def train(self):
- for k, layers in self.layers.items():
- for layer in layers:
- layer.train()
- for items in self.weights():
- items.requires_grad = True
-
def save(self, filename):
state_dict = {}
@@ -303,6 +290,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork = shared.loaded_hypernetwork
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
+
losses = torch.zeros((32,))
last_saved_file = ""
@@ -313,10 +304,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate)
+ # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
+ optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- hypernetwork.train()
for i, entries in pbar:
hypernetwork.step = i + ititial_step
@@ -337,9 +328,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
losses[hypernetwork.step % losses.shape[0]] = loss.item()
- optimizer.zero_grad(set_to_none=True)
+ optimizer.zero_grad()
loss.backward()
- del loss
optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss):
@@ -356,47 +346,44 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- torch.cuda.empty_cache()
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
- with torch.no_grad():
- hypernetwork.eval()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
-
- preview_text = p.prompt
-
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
-
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- if image is not None:
- shared.state.current_image = image
- image.save(last_saved_image)
- last_saved_image += f", prompt: {preview_text}"
-
- hypernetwork.train()
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
+
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+
+ preview_text = p.prompt
+
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
+
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
+ if image is not None:
+ shared.state.current_image = image
+ image.save(last_saved_image)
+ last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
--
cgit v1.2.3
From c23f666dba2b484d521d2dc4be91cf9e09312647 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 09:47:43 +0300
Subject: a more strict check for activation type and a more reasonable check
for type of layer in hypernets
---
modules/hypernetworks/hypernetwork.py | 12 +++++++++---
1 file changed, 9 insertions(+), 3 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d617680..84e7e350 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -32,10 +32,16 @@ class HypernetworkModule(torch.nn.Module):
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+
if activation_func == "relu":
linears.append(torch.nn.ReLU())
- if activation_func == "leakyrelu":
+ elif activation_func == "leakyrelu":
linears.append(torch.nn.LeakyReLU())
+ elif activation_func == 'linear' or activation_func is None:
+ pass
+ else:
+ raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -74,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer_structure += [layer.weight, layer.bias]
return layer_structure
--
cgit v1.2.3
From 5245c7a4935f67b677da0f5a1fc2b74c074aa0e2 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:21:32 -0700
Subject: Issue #2921-Give PNG info to Hypernet previews.
---
modules/hypernetworks/hypernetwork.py | 9 +++++++--
1 file changed, 7 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 84e7e350..68c8f26d 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,6 +256,9 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ from modules import images
+
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -298,6 +301,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
last_saved_file = ""
last_saved_image = ""
+ forced_filename = ""
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -345,7 +349,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@@ -381,7 +386,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- image.save(last_saved_image)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
--
cgit v1.2.3
From 4ff274e1e35bb642687253ce744d2cfa738ab293 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:32:22 -0700
Subject: Revise comments.
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/images.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 68c8f26d..3f96361c 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,7 +256,7 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
assert hypernetwork_name, 'hypernetwork not selected'
diff --git a/modules/images.py b/modules/images.py
index 550e53ae..b8834e3c 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -419,7 +419,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
try:
os.makedirs(path, exist_ok=True)
except FileExistsError:
- # If the file already exists, continue and allow said file to be overwritten.
+ # If the file already exists, allow said file to be overwritten.
pass
if forced_filename is None:
--
cgit v1.2.3
From 03a1e288c4973dd2dff57a97469b40f146b6fccf Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 10:13:24 +0300
Subject: turns out LayerNorm also has weight and bias and needs to be
pre-multiplied and trained for hypernets
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3274a802..b1a5d0c7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -52,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -80,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
--
cgit v1.2.3
From 19818f023cfafc472c6c241cab0b72896a168481 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:14:02 -0700
Subject: Match hypernet name with filename in all cases.
---
modules/hypernetworks/hypernetwork.py | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b1a5d0c7..6d392be4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -340,7 +340,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
+ temp = hypernetwork.name
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
@@ -405,6 +408,9 @@ Last saved image: {html.escape(last_saved_image)}
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
+ hypernetwork.name = hypernetwork_name
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(filename)
return hypernetwork, filename
--
cgit v1.2.3
From 272fa527bbe93143668ffc16838107b7dca35b40 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:41:55 -0700
Subject: Remove unused variable.
---
modules/hypernetworks/hypernetwork.py | 1 -
1 file changed, 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6d392be4..47d91ea5 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -340,7 +340,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- temp = hypernetwork.name
# Before saving, change name to match current checkpoint.
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
--
cgit v1.2.3
From 0e8ca8e7af05be22d7d2c07a47c3c7febe0f0ab6 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Sat, 22 Oct 2022 11:07:00 +0000
Subject: add dropout
---
modules/hypernetworks/hypernetwork.py | 68 +++++++++++++++++++++--------------
modules/hypernetworks/ui.py | 10 +++---
modules/ui.py | 43 +++++++++++-----------
3 files changed, 70 insertions(+), 51 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 905cbeef..e493f366 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,47 +1,60 @@
+import csv
import datetime
import glob
import html
import os
import sys
import traceback
-import tqdm
-import csv
+import modules.textual_inversion.dataset
import torch
-
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
-import torch
-from torch import einsum
+import tqdm
from einops import rearrange, repeat
-import modules.textual_inversion.dataset
+from ldm.util import default
+from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
+from torch import einsum
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- activation_dict = {"relu": torch.nn.ReLU, "leakyrelu": torch.nn.LeakyReLU, "elu": torch.nn.ELU,
- "swish": torch.nn.Hardswish}
-
- def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ activation_dict = {
+ "relu": torch.nn.ReLU,
+ "leakyrelu": torch.nn.LeakyReLU,
+ "elu": torch.nn.ELU,
+ "swish": torch.nn.Hardswish,
+ }
+
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
-
+ assert activation_func not in self.activation_dict.keys() + "linear", f"Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'"
+
linears = []
for i in range(len(layer_structure) - 1):
+
+ # Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- # if skip_first_layer because first parameters potentially contain negative values
- # if i < 1: continue
- if activation_func in HypernetworkModule.activation_dict:
- linears.append(HypernetworkModule.activation_dict[activation_func]())
+
+ # Add an activation func
+ if activation_func == "linear":
+ pass
+ elif activation_func in self.activation_dict:
+ linears.append(self.activation_dict[activation_func]())
else:
- print("Invalid key {} encountered as activation function!".format(activation_func))
- # if use_dropout:
- # linears.append(torch.nn.Dropout(p=0.3))
+ raise NotImplementedError(
+ "Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'"
+ )
+
+ # Add dropout
+ if use_dropout:
+ linears.append(torch.nn.Dropout(p=0.3))
+
+ # Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -93,7 +106,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
self.filename = None
self.name = name
self.layers = {}
@@ -101,13 +114,14 @@ class Hypernetwork:
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
- self.add_layer_norm = add_layer_norm
self.activation_func = activation_func
+ self.add_layer_norm = add_layer_norm
+ self.use_dropout = use_dropout
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
)
def weights(self):
@@ -129,8 +143,9 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
- state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['activation_func'] = self.activation_func
+ state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -144,8 +159,9 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.activation_func = state_dict.get('activation_func', None)
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ self.use_dropout = state_dict.get('use_dropout', False)
for size, sd in state_dict.items():
if type(size) == int:
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 1a5a27d8..5f6f17b6 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -3,14 +3,13 @@ import os
import re
import gradio as gr
-
-import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
-from modules import sd_hijack, shared, devices
+import modules.textual_inversion.textual_inversion
+from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None):
+def create_hypernetwork(name, enable_sizes, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
@@ -21,8 +20,9 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
- add_layer_norm=add_layer_norm,
activation_func=activation_func,
+ add_layer_norm=add_layer_norm,
+ use_dropout=use_dropout,
)
hypernet.save(fn)
diff --git a/modules/ui.py b/modules/ui.py
index 716f14b8..d4b32c05 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -5,43 +5,44 @@ import json
import math
import mimetypes
import os
+import platform
import random
+import subprocess as sp
import sys
import tempfile
import time
import traceback
-import platform
-import subprocess as sp
from functools import partial, reduce
+import gradio as gr
+import gradio.routes
+import gradio.utils
import numpy as np
+import piexif
import torch
from PIL import Image, PngImagePlugin
-import piexif
-import gradio as gr
-import gradio.utils
-import gradio.routes
-
-from modules import sd_hijack, sd_models, localization
+from modules import localization, sd_hijack, sd_models
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts
+from modules.shared import cmd_opts, opts, restricted_opts
+
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
-import modules.shared as shared
-from modules.sd_samplers import samplers, samplers_for_img2img
-from modules.sd_hijack import model_hijack
+
+import modules.codeformer_model
+import modules.generation_parameters_copypaste
+import modules.gfpgan_model
+import modules.hypernetworks.ui
+import modules.images_history as img_his
import modules.ldsr_model
import modules.scripts
-import modules.gfpgan_model
-import modules.codeformer_model
+import modules.shared as shared
import modules.styles
-import modules.generation_parameters_copypaste
+import modules.textual_inversion.ui
from modules import prompt_parser
from modules.images import save_image
-import modules.textual_inversion.ui
-import modules.hypernetworks.ui
-import modules.images_history as img_his
+from modules.sd_hijack import model_hijack
+from modules.sd_samplers import samplers, samplers_for_img2img
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
@@ -1223,8 +1224,9 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
+ new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu", "elu", "swish"])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
- new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"])
+ new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
with gr.Row():
with gr.Column(scale=3):
@@ -1308,8 +1310,9 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_name,
new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
- new_hypernetwork_add_layer_norm,
new_hypernetwork_activation_func,
+ new_hypernetwork_add_layer_norm,
+ new_hypernetwork_use_dropout
],
outputs=[
train_hypernetwork_name,
--
cgit v1.2.3
From 7fd90128eb6d1820045bfe2c2c1269661023a712 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 22 Oct 2022 14:48:43 +0300
Subject: added a guard for hypernet training that will stop early if weights
are getting no gradients
---
modules/hypernetworks/hypernetwork.py | 11 +++++++++++
1 file changed, 11 insertions(+)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 47d91ea5..46039a49 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -310,6 +310,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
+ steps_without_grad = 0
+
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
@@ -332,8 +334,17 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
losses[hypernetwork.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
+ weights[0].grad = None
loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
+ else:
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+
optimizer.step()
+
mean_loss = losses.mean()
if torch.isnan(mean_loss):
raise RuntimeError("Loss diverged.")
--
cgit v1.2.3
From fccba4729db341a299db3343e3264fecd9459a07 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Sat, 22 Oct 2022 12:02:41 +0000
Subject: add an option to avoid dying relu
---
modules/hypernetworks/hypernetwork.py | 12 ++++++------
1 file changed, 6 insertions(+), 6 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b7a04038..3132a56c 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -32,7 +32,6 @@ class HypernetworkModule(torch.nn.Module):
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- assert activation_func not in self.activation_dict.keys() + "linear", f"Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'"
linears = []
for i in range(len(layer_structure) - 1):
@@ -43,12 +42,13 @@ class HypernetworkModule(torch.nn.Module):
# Add an activation func
if activation_func == "linear" or activation_func is None:
pass
+ # If ReLU, Skip adding it to the first layer to avoid dying ReLU
+ elif activation_func == "relu" and i < 1:
+ pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
- raise RuntimeError(
- "Valid activation funcs: 'linear', 'relu', 'leakyrelu', 'elu', 'swish'"
- )
+ raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
# Add dropout
if use_dropout:
@@ -166,8 +166,8 @@ class Hypernetwork:
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
- HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
)
self.name = state_dict.get('name', self.name)
--
cgit v1.2.3
From 7912acef725832debef58c4c7bf8ec22fb446c0b Mon Sep 17 00:00:00 2001
From: discus0434
Date: Sat, 22 Oct 2022 13:00:44 +0000
Subject: small fix
---
modules/hypernetworks/hypernetwork.py | 12 +++++-------
modules/ui.py | 1 -
2 files changed, 5 insertions(+), 8 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3132a56c..7d12e0ff 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -42,22 +42,20 @@ class HypernetworkModule(torch.nn.Module):
# Add an activation func
if activation_func == "linear" or activation_func is None:
pass
- # If ReLU, Skip adding it to the first layer to avoid dying ReLU
- elif activation_func == "relu" and i < 1:
- pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
- # Add dropout
- if use_dropout:
- linears.append(torch.nn.Dropout(p=0.3))
-
# Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
+ # Add dropout
+ if use_dropout:
+ p = 0.5 if 0 <= i <= len(layer_structure) - 3 else 0.2
+ linears.append(torch.nn.Dropout(p=p))
+
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
diff --git a/modules/ui.py b/modules/ui.py
index cd118552..eca887ca 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1244,7 +1244,6 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
- new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu"])
with gr.Row():
with gr.Column(scale=3):
--
cgit v1.2.3
From 6a4fa73a38935a18779ce1809892730fd1572bee Mon Sep 17 00:00:00 2001
From: discus0434
Date: Sat, 22 Oct 2022 13:44:39 +0000
Subject: small fix
---
modules/hypernetworks/hypernetwork.py | 7 +++----
1 file changed, 3 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3372aae2..3bc71ee5 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -51,10 +51,9 @@ class HypernetworkModule(torch.nn.Module):
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- # Add dropout
- if use_dropout:
- p = 0.5 if 0 <= i <= len(layer_structure) - 3 else 0.2
- linears.append(torch.nn.Dropout(p=p))
+ # Add dropout expect last layer
+ if use_dropout and i < len(layer_structure) - 3:
+ linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
--
cgit v1.2.3
From 24694e5983d0944b901892cb101878e6dec89a20 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 01:57:58 +0900
Subject: Update hypernetwork.py
---
modules/hypernetworks/hypernetwork.py | 55 ++++++++++++++++++++++++++++-------
1 file changed, 44 insertions(+), 11 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3bc71ee5..81132be4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -16,6 +16,7 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
+from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
@@ -268,6 +269,32 @@ def stack_conds(conds):
return torch.stack(conds)
+def log_statistics(loss_info:dict, key, value):
+ if key not in loss_info:
+ loss_info[key] = [value]
+ else:
+ loss_info[key].append(value)
+ if len(loss_info) > 1024:
+ loss_info.pop(0)
+
+
+def statistics(data):
+ total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})"
+ recent_data = data[-32:]
+ recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})"
+ return total_information, recent_information
+
+
+def report_statistics(loss_info:dict):
+ keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
+ for key in keys:
+ info, recent = statistics(loss_info[key])
+ print("Loss statistics for file " + key)
+ print(info)
+ print(recent)
+
+
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
@@ -310,7 +337,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
for weight in weights:
weight.requires_grad = True
- losses = torch.zeros((32,))
+ size = len(ds.indexes)
+ loss_dict = {}
+ losses = torch.zeros((size,))
+ previous_mean_loss = 0
+ print("Mean loss of {} elements".format(size))
last_saved_file = ""
last_saved_image = ""
@@ -329,7 +360,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
-
+ if loss_dict and i % size == 0:
+ previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict)
+
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
@@ -346,7 +379,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
-
+ for entry in entries:
+ log_statistics(loss_dict, entry.filename, loss.item())
+
optimizer.zero_grad()
weights[0].grad = None
loss.backward()
@@ -359,10 +394,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer.step()
- mean_loss = losses.mean()
- if torch.isnan(mean_loss):
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
- pbar.set_description(f"loss: {mean_loss:.7f}")
+ pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
@@ -371,7 +405,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{mean_loss:.7f}",
+ "loss": f"{previous_mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
@@ -420,14 +454,15 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"""
-Loss: {mean_loss:.7f}
+Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
+
+ report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash
@@ -438,5 +473,3 @@ Last saved image: {html.escape(last_saved_image)}
hypernetwork.save(filename)
return hypernetwork, filename
-
-
--
cgit v1.2.3
From 48dbf99e84045ee7af55bc5b1b86492a240e631e Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 04:17:16 +0900
Subject: Allow tracking real-time loss
Someone had 6000 images in their dataset, and it was shown as 0, which was confusing.
This will allow tracking real time dataset-average loss for registered objects.
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 81132be4..99fd0f8f 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -360,7 +360,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
- if loss_dict and i % size == 0:
+ if len(loss_dict) > 0:
previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict)
scheduler.apply(optimizer, hypernetwork.step)
--
cgit v1.2.3
From 1fbfc052eb529d8cf8ce5baf578bcf93d0280c29 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Sun, 23 Oct 2022 05:43:34 +0100
Subject: Update hypernetwork.py
---
modules/hypernetworks/hypernetwork.py | 11 +++++++----
1 file changed, 7 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 99fd0f8f..98a7b62e 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -288,10 +288,13 @@ def statistics(data):
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
- info, recent = statistics(loss_info[key])
- print("Loss statistics for file " + key)
- print(info)
- print(recent)
+ try:
+ print("Loss statistics for file " + key)
+ info, recent = statistics(loss_info[key])
+ print(info)
+ print(recent)
+ except Exception as e:
+ print(e)
--
cgit v1.2.3
From b297cc3324979ec78d69b2d11dd18030dfad7bcc Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 20:06:42 +0900
Subject: Hypernetworks - fix KeyError in statistics caching
Statistics logging has changed to {filename : list[losses]}, so it has to use loss_info[key].pop()
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 98a7b62e..33827210 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -274,8 +274,8 @@ def log_statistics(loss_info:dict, key, value):
loss_info[key] = [value]
else:
loss_info[key].append(value)
- if len(loss_info) > 1024:
- loss_info.pop(0)
+ if len(loss_info[key]) > 1024:
+ loss_info[key].pop(0)
def statistics(data):
--
cgit v1.2.3
From 40b56c9289bf9458ae5ef3c1990ccea851c6c3e2 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 21:07:07 +0900
Subject: cleanup some code
---
modules/hypernetworks/hypernetwork.py | 14 +++-----------
1 file changed, 3 insertions(+), 11 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 33827210..4072bf54 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -16,6 +16,7 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
+from collections import defaultdict, deque
from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module):
@@ -269,15 +270,6 @@ def stack_conds(conds):
return torch.stack(conds)
-def log_statistics(loss_info:dict, key, value):
- if key not in loss_info:
- loss_info[key] = [value]
- else:
- loss_info[key].append(value)
- if len(loss_info[key]) > 1024:
- loss_info[key].pop(0)
-
-
def statistics(data):
total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})"
recent_data = data[-32:]
@@ -341,7 +333,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
weight.requires_grad = True
size = len(ds.indexes)
- loss_dict = {}
+ loss_dict = defaultdict(lambda : deque(maxlen = 1024))
losses = torch.zeros((size,))
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
@@ -383,7 +375,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
losses[hypernetwork.step % losses.shape[0]] = loss.item()
for entry in entries:
- log_statistics(loss_dict, entry.filename, loss.item())
+ loss_dict[entry.filename].append(loss.item())
optimizer.zero_grad()
weights[0].grad = None
--
cgit v1.2.3
From 348f89c8d40397c1875cff4a7331018785f9c3b8 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 21:29:53 +0900
Subject: statistics for pbar
---
modules/hypernetworks/hypernetwork.py | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4072bf54..48b56029 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -335,6 +335,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
size = len(ds.indexes)
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
losses = torch.zeros((size,))
+ previous_mean_losses = [0]
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
@@ -356,7 +357,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
for i, entries in pbar:
hypernetwork.step = i + ititial_step
if len(loss_dict) > 0:
- previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict)
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
@@ -391,7 +393,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
- pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
+ else:
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
--
cgit v1.2.3
From 0d2e1dac407a0e2f5b148d314715f0457b2525b7 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 21:41:39 +0900
Subject: convert deque -> list
I don't feel this being efficient
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 48b56029..fb510fa7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -282,7 +282,7 @@ def report_statistics(loss_info:dict):
for key in keys:
try:
print("Loss statistics for file " + key)
- info, recent = statistics(loss_info[key])
+ info, recent = statistics(list(loss_info[key]))
print(info)
print(recent)
except Exception as e:
--
cgit v1.2.3
From e9a410b5357612f63528015c5533c2185dcff92e Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Sun, 23 Oct 2022 21:47:39 +0900
Subject: check length for variance
---
modules/hypernetworks/hypernetwork.py | 12 ++++++++++--
1 file changed, 10 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index fb510fa7..d647ea55 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -271,9 +271,17 @@ def stack_conds(conds):
def statistics(data):
- total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})"
+ if len(data) < 2:
+ std = 0
+ else:
+ std = stdev(data)
+ total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
recent_data = data[-32:]
- recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})"
+ if len(recent_data) < 2:
+ std = 0
+ else:
+ std = stdev(recent_data)
+ recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
return total_information, recent_information
--
cgit v1.2.3
From 2f4c91894d4c0a055c1069b2fda0e4da8fcda188 Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 12:10:30 +0800
Subject: Remove activation from final layer of HNs
---
modules/hypernetworks/hypernetwork.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index d647ea55..54346b64 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -41,8 +41,8 @@ class HypernetworkModule(torch.nn.Module):
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- # Add an activation func
- if activation_func == "linear" or activation_func is None:
+ # Add an activation func except last layer
+ if activation_func == "linear" or activation_func is None or i >= len(layer_structure) - 3:
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
@@ -53,7 +53,7 @@ class HypernetworkModule(torch.nn.Module):
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- # Add dropout expect last layer
+ # Add dropout except last layer
if use_dropout and i < len(layer_structure) - 3:
linears.append(torch.nn.Dropout(p=0.3))
--
cgit v1.2.3
From c702d4d0df21790199d199818f25c449213ffe0f Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 13:43:04 +0800
Subject: Fix off-by-one
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 54346b64..3ce85bb5 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -42,7 +42,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func except last layer
- if activation_func == "linear" or activation_func is None or i >= len(layer_structure) - 3:
+ if activation_func == "linear" or activation_func is None or i >= len(layer_structure) - 2:
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
@@ -54,7 +54,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
- if use_dropout and i < len(layer_structure) - 3:
+ if use_dropout and i < len(layer_structure) - 2:
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
--
cgit v1.2.3
From de096d0ce752c96e45508dcc7b9e84f7dbe10cca Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Tue, 25 Oct 2022 14:48:49 +0900
Subject: Weight initialization and More activation func
add weight init
add weight init option in create_hypernetwork
fstringify hypernet info
save weight initialization info for further debugging
fill bias with zero for He/Xavier
initialize LayerNorm with Normal
fix loading weight_init
---
modules/hypernetworks/hypernetwork.py | 47 ++++++++++++++++++++++++++++-------
modules/hypernetworks/ui.py | 4 ++-
modules/ui.py | 4 ++-
3 files changed, 44 insertions(+), 11 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index d647ea55..afbcdff8 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -5,6 +5,7 @@ import html
import os
import sys
import traceback
+import inspect
import modules.textual_inversion.dataset
import torch
@@ -15,10 +16,12 @@ from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
+from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
from collections import defaultdict, deque
from statistics import stdev, mean
+
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
@@ -26,9 +29,12 @@ class HypernetworkModule(torch.nn.Module):
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
+ "tanh": torch.nn.Tanh,
+ "sigmoid": torch.nn.Sigmoid,
}
+ activation_dict.update({cls_name: cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
- def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -65,9 +71,24 @@ class HypernetworkModule(torch.nn.Module):
else:
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
- layer.weight.data.normal_(mean=0.0, std=0.01)
- layer.bias.data.zero_()
-
+ w, b = layer.weight.data, layer.bias.data
+ if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
+ normal_(w, mean=0.0, std=0.01)
+ normal_(b, mean=0.0, std=0.005)
+ elif weight_init == 'XavierUniform':
+ xavier_uniform_(w)
+ zeros_(b)
+ elif weight_init == 'XavierNormal':
+ xavier_normal_(w)
+ zeros_(b)
+ elif weight_init == 'KaimingUniform':
+ kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ elif weight_init == 'KaimingNormal':
+ kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
+ zeros_(b)
+ else:
+ raise KeyError(f"Key {weight_init} is not defined as initialization!")
self.to(devices.device)
def fix_old_state_dict(self, state_dict):
@@ -105,7 +126,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
self.filename = None
self.name = name
self.layers = {}
@@ -114,13 +135,14 @@ class Hypernetwork:
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.activation_func = activation_func
+ self.weight_init = weight_init
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
def weights(self):
@@ -144,6 +166,7 @@ class Hypernetwork:
state_dict['layer_structure'] = self.layer_structure
state_dict['activation_func'] = self.activation_func
state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['weight_initialization'] = self.weight_init
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -158,15 +181,21 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
+ print(self.layer_structure)
self.activation_func = state_dict.get('activation_func', None)
+ print(f"Activation function is {self.activation_func}")
+ self.weight_init = state_dict.get('weight_initialization', 'Normal')
+ print(f"Weight initialization is {self.weight_init}")
self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ print(f"Layer norm is set to {self.add_layer_norm}")
self.use_dropout = state_dict.get('use_dropout', False)
+ print(f"Dropout usage is set to {self.use_dropout}" )
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout),
)
self.name = state_dict.get('name', self.name)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 2b472d87..2c6c0470 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -8,8 +8,9 @@ import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack, shared
from modules.hypernetworks import hypernetwork
+keys = list(hypernetwork.HypernetworkModule.activation_dict.keys())
-def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
@@ -25,6 +26,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
activation_func=activation_func,
+ weight_init=weight_init,
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
diff --git a/modules/ui.py b/modules/ui.py
index 03528968..8e343258 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1238,7 +1238,8 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
- new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["linear", "relu", "leakyrelu", "elu", "swish"])
+ new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=modules.hypernetworks.ui.keys)
+ new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. relu-like - Kaiming, sigmoid-like - Xavier is recommended", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
@@ -1342,6 +1343,7 @@ def create_ui(wrap_gradio_gpu_call):
overwrite_old_hypernetwork,
new_hypernetwork_layer_structure,
new_hypernetwork_activation_func,
+ new_hypernetwork_initialization_option,
new_hypernetwork_add_layer_norm,
new_hypernetwork_use_dropout
],
--
cgit v1.2.3
From 7207e3bf49ed000464d288cd67e02f0ba8614dc3 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Tue, 25 Oct 2022 15:24:59 +0900
Subject: remove duplicate keys and lowercase
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index afbcdff8..842b6447 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -32,7 +32,7 @@ class HypernetworkModule(torch.nn.Module):
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
}
- activation_dict.update({cls_name: cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
+ activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False):
super().__init__()
--
cgit v1.2.3
From 877d94f97ca5491d8779440769b191e0dcd32c8e Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 14:50:58 +0800
Subject: Back compatibility
---
modules/hypernetworks/hypernetwork.py | 17 ++++++++++-------
1 file changed, 10 insertions(+), 7 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3ce85bb5..dd317085 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -28,7 +28,7 @@ class HypernetworkModule(torch.nn.Module):
"swish": torch.nn.Hardswish,
}
- def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False, activate_output=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -42,7 +42,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func except last layer
- if activation_func == "linear" or activation_func is None or i >= len(layer_structure) - 2:
+ if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
@@ -105,7 +105,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False, activate_output=False):
self.filename = None
self.name = name
self.layers = {}
@@ -116,11 +116,12 @@ class Hypernetwork:
self.activation_func = activation_func
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
+ self.activate_output = activate_output
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
)
def weights(self):
@@ -147,6 +148,7 @@ class Hypernetwork:
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
+ state_dict['activate_output'] = self.activate_output
torch.save(state_dict, filename)
@@ -161,12 +163,13 @@ class Hypernetwork:
self.activation_func = state_dict.get('activation_func', None)
self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.use_dropout = state_dict.get('use_dropout', False)
+ self.activate_output = state_dict.get('activate_output', True)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
- HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
)
self.name = state_dict.get('name', self.name)
--
cgit v1.2.3
From 91bb35b1e6842b30ce7553009c8ecea3643de8d2 Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 15:00:03 +0800
Subject: Merge fix
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index eab8b32f..bd171793 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -190,7 +190,7 @@ class Hypernetwork:
print(f"Weight initialization is {self.weight_init}")
self.add_layer_norm = state_dict.get('is_layer_norm', False)
print(f"Layer norm is set to {self.add_layer_norm}")
- self.use_dropout = state_dict.get('use_dropout', False
+ self.use_dropout = state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}" )
self.activate_output = state_dict.get('activate_output', True)
--
cgit v1.2.3
From a524d137d0a89bb19a6676dc9b8fbb5d1b580678 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Mon, 24 Oct 2022 23:48:05 -0700
Subject: patch bug (SeverianVoid's comment on 5245c7a)
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 842b6447..8113b35b 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -487,7 +487,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
--
cgit v1.2.3
From b6a8bb123bd519736306417399f6441e504f1e8b Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 15:15:19 +0800
Subject: Fix merge
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index bd171793..2997cead 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -60,7 +60,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
- if use_dropout and i < len(layer_structure) - 2:
+ if use_dropout and i < len(layer_structure) - 3:
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
@@ -126,7 +126,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False)
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False):
self.filename = None
self.name = name
self.layers = {}
--
cgit v1.2.3
From 85fcccc105aa50f1d78de559233eaa9f384608b5 Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Wed, 26 Oct 2022 22:24:33 +0900
Subject: Squashed commit of fixing dropout silently
fix dropouts for future hypernetworks
add kwargs for Hypernetwork class
hypernet UI for gradio input
add recommended options
remove as options
revert adding options in ui
---
modules/hypernetworks/hypernetwork.py | 25 +++++++++++++++++--------
modules/ui.py | 4 ++--
2 files changed, 19 insertions(+), 10 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 2997cead..dd921153 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -34,7 +34,8 @@ class HypernetworkModule(torch.nn.Module):
}
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
- def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', add_layer_norm=False, use_dropout=False, activate_output=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
+ add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -60,7 +61,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
- if use_dropout and i < len(layer_structure) - 3:
+ if 'last_layer_dropout' in kwargs and kwargs['last_layer_dropout'] and use_dropout and i < len(layer_structure) - 2:
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
@@ -126,7 +127,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
self.filename = None
self.name = name
self.layers = {}
@@ -139,11 +140,14 @@ class Hypernetwork:
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
self.activate_output = activate_output
+ self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout, self.activate_output),
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout, self.activate_output),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
+ HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
def weights(self):
@@ -172,7 +176,8 @@ class Hypernetwork:
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
state_dict['activate_output'] = self.activate_output
-
+ state_dict['last_layer_dropout'] = self.last_layer_dropout
+
torch.save(state_dict, filename)
def load(self, filename):
@@ -193,12 +198,16 @@ class Hypernetwork:
self.use_dropout = state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}" )
self.activate_output = state_dict.get('activate_output', True)
+ print(f"Activate last layer is set to {self.activate_output}")
+ self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout, self.activate_output),
- HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, self.add_layer_norm, self.use_dropout, self.activate_output),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
+ self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
self.name = state_dict.get('name', self.name)
diff --git a/modules/ui.py b/modules/ui.py
index 0a63e357..55cbe859 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1238,8 +1238,8 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
- new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=modules.hypernetworks.ui.keys)
- new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. relu-like - Kaiming, sigmoid-like - Xavier is recommended", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
+ new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys)
+ new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Normal is default, for experiments, relu-like - Kaiming, sigmoid-like - Xavier is recommended", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout")
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
--
cgit v1.2.3
From cc56df996e95c2c82295ab7b9928da2544791220 Mon Sep 17 00:00:00 2001
From: guaneec
Date: Wed, 26 Oct 2022 23:51:51 +0800
Subject: Fix dropout logic
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index dd921153..b17598fe 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -35,7 +35,7 @@ class HypernetworkModule(torch.nn.Module):
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
- add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
+ add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
@@ -61,7 +61,7 @@ class HypernetworkModule(torch.nn.Module):
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
- if 'last_layer_dropout' in kwargs and kwargs['last_layer_dropout'] and use_dropout and i < len(layer_structure) - 2:
+ if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
--
cgit v1.2.3
From 029d7c75436558f1e884bb127caed73caaecb83a Mon Sep 17 00:00:00 2001
From: AngelBottomless <35677394+aria1th@users.noreply.github.com>
Date: Thu, 27 Oct 2022 14:44:53 +0900
Subject: Revert unresolved changes in Bias initialization
it should be zeros_ or parameterized in future properly.
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b17598fe..25427a37 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -75,7 +75,7 @@ class HypernetworkModule(torch.nn.Module):
w, b = layer.weight.data, layer.bias.data
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
normal_(w, mean=0.0, std=0.01)
- normal_(b, mean=0.0, std=0.005)
+ normal_(b, mean=0.0, std=0)
elif weight_init == 'XavierUniform':
xavier_uniform_(w)
zeros_(b)
--
cgit v1.2.3
From b2a8b263b2f09bd772f75502c5a83656580f34ec Mon Sep 17 00:00:00 2001
From: benkyoujouzu
Date: Thu, 27 Oct 2022 13:00:47 +0800
Subject: Add missing support for linear activation in hypernetwork
---
modules/hypernetworks/hypernetwork.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8113b35b..87cf3cf3 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -25,6 +25,7 @@ from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
+ "linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
--
cgit v1.2.3
From db5a354c489bfd1c95e0bbf9af12ab8b5d6fe170 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 28 Oct 2022 01:41:57 -0700
Subject: Always ignore "None.pt" in the hypernet directory.
---
modules/hypernetworks/hypernetwork.py | 7 +++++--
1 file changed, 5 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8113b35b..cd920df5 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -208,13 +208,16 @@ def list_hypernetworks(path):
res = {}
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
+ # Prevent a hypothetical "None.pt" from being listed.
+ if name != "None":
+ res[name] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
- if path is not None:
+ # Prevent any file named "None.pt" from being loaded.
+ if path is not None and filename != "None":
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
--
cgit v1.2.3
From 9ceef81f77ecce89f0c8f412c4d849210d852e82 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Fri, 28 Oct 2022 20:48:08 +0700
Subject: Fix log off by 1
---
modules/hypernetworks/hypernetwork.py | 12 +++++++-----
modules/textual_inversion/learn_schedule.py | 2 +-
modules/textual_inversion/textual_inversion.py | 24 ++++++++++++------------
3 files changed, 20 insertions(+), 18 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8113b35b..a0297997 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -428,7 +428,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer.step()
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
+ steps_done = hypernetwork.step + 1
+
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
if len(previous_mean_losses) > 1:
@@ -438,9 +440,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
pbar.set_description(dataset_loss_info)
- if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
+ hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file)
@@ -449,8 +451,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
"learn_rate": scheduler.learn_rate
})
- if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py
index 2062726a..3a736065 100644
--- a/modules/textual_inversion/learn_schedule.py
+++ b/modules/textual_inversion/learn_schedule.py
@@ -52,7 +52,7 @@ class LearnRateScheduler:
self.finished = False
def apply(self, optimizer, step_number):
- if step_number <= self.end_step:
+ if step_number < self.end_step:
return
try:
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index ff002d3e..17dfb223 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -184,9 +184,8 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
- if step % shared.opts.training_write_csv_every != 0:
+ if (step + 1) % shared.opts.training_write_csv_every != 0:
return
-
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
@@ -196,11 +195,11 @@ def write_loss(log_directory, filename, step, epoch_len, values):
csv_writer.writeheader()
epoch = step // epoch_len
- epoch_step = step - epoch * epoch_len
+ epoch_step = step % epoch_len
csv_writer.writerow({
"step": step + 1,
- "epoch": epoch + 1,
+ "epoch": epoch,
"epoch_step": epoch_step + 1,
**values,
})
@@ -282,15 +281,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
loss.backward()
optimizer.step()
+ steps_done = embedding.step + 1
epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step - (epoch_num * len(ds)) + 1
+ epoch_step = embedding.step % len(ds)
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
- if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{embedding.step}'
+ embedding.name = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
embedding.save(last_saved_file)
embedding_yet_to_be_embedded = True
@@ -300,8 +300,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
"learn_rate": scheduler.learn_rate
})
- if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
- forced_filename = f'{embedding_name}-{embedding.step}'
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
@@ -334,7 +334,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
info = PngImagePlugin.PngInfo()
data = torch.load(last_saved_file)
@@ -350,7 +350,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
checkpoint = sd_models.select_checkpoint()
footer_left = checkpoint.model_name
footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, embedding.step)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
captioned_image = insert_image_data_embed(captioned_image, data)
--
cgit v1.2.3
From ab27c111d06ec920791c73eea25ad9a61671852e Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sat, 29 Oct 2022 18:09:17 +0700
Subject: Add input validations before loading dataset for training
---
modules/hypernetworks/hypernetwork.py | 38 +++++++++++---------
modules/textual_inversion/textual_inversion.py | 48 +++++++++++++++++++-------
2 files changed, 58 insertions(+), 28 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 2e84583b..38f35c58 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -332,7 +332,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
- assert hypernetwork_name, 'hypernetwork not selected'
+ save_hypernetwork_every = save_hypernetwork_every or 0
+ create_image_every = create_image_every or 0
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@@ -358,39 +360,43 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
images_dir = None
+ hypernetwork = shared.loaded_hypernetwork
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step > steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return hypernetwork, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
size = len(ds.indexes)
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
losses = torch.zeros((size,))
previous_mean_losses = [0]
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
-
- last_saved_file = ""
- last_saved_image = ""
- forced_filename = ""
-
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
steps_without_grad = 0
+ last_saved_file = ""
+ last_saved_image = ""
+ forced_filename = ""
+
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 17dfb223..44f06443 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -204,9 +204,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
**values,
})
+def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
+ assert model_name, f"{name} not selected"
+ assert learn_rate, "Learning rate is empty or 0"
+ assert isinstance(batch_size, int), "Batch size must be integer"
+ assert batch_size > 0, "Batch size must be positive"
+ assert data_root, "Dataset directory is empty"
+ assert os.path.isdir(data_root), "Dataset directory doesn't exist"
+ assert os.listdir(data_root), "Dataset directory is empty"
+ assert template_file, "Prompt template file is empty"
+ assert os.path.isfile(template_file), "Prompt template file doesn't exist"
+ assert steps, "Max steps is empty or 0"
+ assert isinstance(steps, int), "Max steps must be integer"
+ assert steps > 0 , "Max steps must be positive"
+ assert isinstance(save_model_every, int), "Save {name} must be integer"
+ assert save_model_every >= 0 , "Save {name} must be positive or 0"
+ assert isinstance(create_image_every, int), "Create image must be integer"
+ assert create_image_every >= 0 , "Create image must be positive or 0"
+ if save_model_every or create_image_every:
+ assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- assert embedding_name, 'embedding not selected'
+ save_embedding_every = save_embedding_every or 0
+ create_image_every = create_image_every or 0
+ validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -232,17 +253,27 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
-
+
cond_model = shared.sd_model.cond_stage_model
+ hijack = sd_hijack.model_hijack
+
+ embedding = hijack.embedding_db.word_embeddings[embedding_name]
+
+ ititial_step = embedding.step or 0
+ if ititial_step > steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return embedding, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
- hijack = sd_hijack.model_hijack
-
- embedding = hijack.embedding_db.word_embeddings[embedding_name]
embedding.vec.requires_grad = True
+ optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
losses = torch.zeros((32,))
@@ -251,13 +282,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
forced_filename = ""
embedding_yet_to_be_embedded = False
- ititial_step = embedding.step or 0
- if ititial_step > steps:
- return embedding, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
-
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entries in pbar:
embedding.step = i + ititial_step
--
cgit v1.2.3
From 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sat, 29 Oct 2022 19:43:21 +0700
Subject: Add cleanup after training
---
modules/hypernetworks/hypernetwork.py | 201 +++++++++++++------------
modules/textual_inversion/textual_inversion.py | 185 ++++++++++++-----------
2 files changed, 200 insertions(+), 186 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 38f35c58..170d5ea4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -398,110 +398,112 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
forced_filename = ""
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
-
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
- if weights[0].grad is None:
- steps_without_grad += 1
+ try:
+ for i, entries in pbar:
+ hypernetwork.step = i + ititial_step
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
+
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = stack_conds([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+ del c
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
+ optimizer.zero_grad()
+ weights[0].grad = None
+ loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
+ else:
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+
+ optimizer.step()
+
+ steps_done = hypernetwork.step + 1
+
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
+ raise RuntimeError("Loss diverged.")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
-
- optimizer.step()
-
- steps_done = hypernetwork.step + 1
-
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
-
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
- else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
-
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
-
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
-
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
+
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
+ hypernetwork.save(last_saved_file)
+
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
+ "loss": f"{previous_mean_loss:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
- preview_text = p.prompt
+ preview_text = p.prompt
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.job_no = hypernetwork.step
+ shared.state.job_no = hypernetwork.step
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -510,7 +512,14 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
+ finally:
+ if weights:
+ for weight in weights:
+ weight.requires_grad = False
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 44f06443..fd7f0897 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -283,111 +283,113 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
embedding_yet_to_be_embedded = False
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, entries in pbar:
- embedding.step = i + ititial_step
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
-
- losses[embedding.step % losses.shape[0]] = loss.item()
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- steps_done = embedding.step + 1
-
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
-
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
-
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
- embedding_yet_to_be_embedded = True
-
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
+ try:
+ for i, entries in pbar:
+ embedding.step = i + ititial_step
+
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = cond_model([entry.cond_text for entry in entries])
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+
+ losses[embedding.step % losses.shape[0]] = loss.item()
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ steps_done = embedding.step + 1
+
+ epoch_num = embedding.step // len(ds)
+ epoch_step = embedding.step % len(ds)
+
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
+
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding.name = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
+ embedding.save(last_saved_file)
+ embedding_yet_to_be_embedded = True
+
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
+
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- preview_text = p.prompt
+ preview_text = p.prompt
- processed = processing.process_images(p)
- image = processed.images[0]
+ processed = processing.process_images(p)
+ image = processed.images[0]
- shared.state.current_image = image
+ shared.state.current_image = image
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
- title = "<{}>".format(data.get('name', '???'))
+ title = "<{}>".format(data.get('name', '???'))
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.job_no = embedding.step
+ shared.state.job_no = embedding.step
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -396,6 +398,9 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
+ finally:
+ if embedding and embedding.vec is not None:
+ embedding.vec.requires_grad = False
checkpoint = sd_models.select_checkpoint()
--
cgit v1.2.3
From ab05a74ead9fabb45dd099990e34061c7eb02ca3 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:32:02 +0700
Subject: Revert "Add cleanup after training"
This reverts commit 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1.
---
modules/hypernetworks/hypernetwork.py | 201 ++++++++++++-------------
modules/textual_inversion/textual_inversion.py | 185 +++++++++++------------
2 files changed, 186 insertions(+), 200 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 170d5ea4..38f35c58 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -398,112 +398,110 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
forced_filename = ""
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
-
- try:
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
-
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
-
- if weights[0].grad is None:
- steps_without_grad += 1
- else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
-
- optimizer.step()
-
- steps_done = hypernetwork.step + 1
-
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
+ for i, entries in pbar:
+ hypernetwork.step = i + ititial_step
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = stack_conds([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+ del c
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
+ optimizer.zero_grad()
+ weights[0].grad = None
+ loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
-
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
-
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
-
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ optimizer.step()
- preview_text = p.prompt
+ steps_done = hypernetwork.step + 1
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
+ raise RuntimeError("Loss diverged.")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
+ else:
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
+
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
+ hypernetwork.save(last_saved_file)
+
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
+ "loss": f"{previous_mean_loss:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+
+ preview_text = p.prompt
+
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
+
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
- shared.state.job_no = hypernetwork.step
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.textinfo = f"""
+ shared.state.job_no = hypernetwork.step
+
+ shared.state.textinfo = f"""
Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -512,14 +510,7 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
- finally:
- if weights:
- for weight in weights:
- weight.requires_grad = False
- if unload:
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
+
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fd7f0897..44f06443 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -283,113 +283,111 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
embedding_yet_to_be_embedded = False
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+ for i, entries in pbar:
+ embedding.step = i + ititial_step
- try:
- for i, entries in pbar:
- embedding.step = i + ititial_step
-
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
-
- losses[embedding.step % losses.shape[0]] = loss.item()
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- steps_done = embedding.step + 1
-
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
-
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
-
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
- embedding_yet_to_be_embedded = True
-
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = cond_model([entry.cond_text for entry in entries])
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+
+ losses[embedding.step % losses.shape[0]] = loss.item()
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ steps_done = embedding.step + 1
+
+ epoch_num = embedding.step // len(ds)
+ epoch_step = embedding.step % len(ds)
+
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
+
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding.name = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
+ embedding.save(last_saved_file)
+ embedding_yet_to_be_embedded = True
+
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
+
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- preview_text = p.prompt
+ preview_text = p.prompt
- processed = processing.process_images(p)
- image = processed.images[0]
+ processed = processing.process_images(p)
+ image = processed.images[0]
- shared.state.current_image = image
+ shared.state.current_image = image
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
- title = "<{}>".format(data.get('name', '???'))
+ title = "<{}>".format(data.get('name', '???'))
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.job_no = embedding.step
+ shared.state.job_no = embedding.step
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -398,9 +396,6 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
- finally:
- if embedding and embedding.vec is not None:
- embedding.vec.requires_grad = False
checkpoint = sd_models.select_checkpoint()
--
cgit v1.2.3
From a07f054c86f33360ff620d6a3fffdee366ab2d99 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:49:29 +0700
Subject: Add missing info on hypernetwork/embedding model log
Mentioned here: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/1528#discussioncomment-3991513
Also group the saving into one
---
modules/hypernetworks/hypernetwork.py | 31 +++++++++++++-------
modules/textual_inversion/textual_inversion.py | 39 +++++++++++++++++---------
2 files changed, 47 insertions(+), 23 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 38f35c58..86daf825 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -361,6 +361,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
images_dir = None
hypernetwork = shared.loaded_hypernetwork
+ checkpoint = sd_models.select_checkpoint()
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -449,9 +450,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{previous_mean_loss:.7f}",
@@ -512,13 +513,23 @@ Last saved image: {html.escape(last_saved_image)}
"""
report_statistics(loss_dict)
- checkpoint = sd_models.select_checkpoint()
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
- hypernetwork.name = hypernetwork_name
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(filename)
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
return hypernetwork, filename
+
+def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
+ old_hypernetwork_name = hypernetwork.name
+ old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
+ old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
+ try:
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.name = hypernetwork_name
+ hypernetwork.save(filename)
+ except:
+ hypernetwork.sd_checkpoint = old_sd_checkpoint
+ hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
+ hypernetwork.name = old_hypernetwork_name
+ raise
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 44f06443..ee9917ce 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -119,7 +119,7 @@ class EmbeddingDatabase:
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
- embedding.sd_checkpoint = data.get('hash', None)
+ embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
self.register_embedding(embedding, shared.sd_model)
@@ -259,6 +259,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
+ checkpoint = sd_models.select_checkpoint()
ititial_step = embedding.step or 0
if ititial_step > steps:
@@ -314,9 +315,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
+ embedding_name_every = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
+ save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
@@ -397,14 +398,26 @@ Last saved image: {html.escape(last_saved_image)}
"""
- checkpoint = sd_models.select_checkpoint()
-
- embedding.sd_checkpoint = checkpoint.hash
- embedding.sd_checkpoint_name = checkpoint.model_name
- embedding.cached_checksum = None
- # Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention).
- embedding.name = embedding_name
- filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding.name}.pt')
- embedding.save(filename)
+ filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
+ save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
return embedding, filename
+
+def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+ old_embedding_name = embedding.name
+ old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
+ old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
+ old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
+ try:
+ embedding.sd_checkpoint = checkpoint.hash
+ embedding.sd_checkpoint_name = checkpoint.model_name
+ if remove_cached_checksum:
+ embedding.cached_checksum = None
+ embedding.name = embedding_name
+ embedding.save(filename)
+ except:
+ embedding.sd_checkpoint = old_sd_checkpoint
+ embedding.sd_checkpoint_name = old_sd_checkpoint_name
+ embedding.name = old_embedding_name
+ embedding.cached_checksum = old_cached_checksum
+ raise
--
cgit v1.2.3
From 3d58510f214c645ce5cdb261aa47df6573b239e9 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:54:59 +0700
Subject: Fix dataset still being loaded even when training will be skipped
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/textual_inversion/textual_inversion.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 86daf825..07acadc9 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -364,7 +364,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
checkpoint = sd_models.select_checkpoint()
ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
+ if ititial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return hypernetwork, filename
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index ee9917ce..e0babb46 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -262,7 +262,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
checkpoint = sd_models.select_checkpoint()
ititial_step = embedding.step or 0
- if ititial_step > steps:
+ if ititial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename
--
cgit v1.2.3
From 283249d2390f0f3a1c8a55d5d9aa551e3e9b2f9c Mon Sep 17 00:00:00 2001
From: aria1th <35677394+aria1th@users.noreply.github.com>
Date: Fri, 4 Nov 2022 15:57:17 +0900
Subject: apply
---
modules/hypernetworks/hypernetwork.py | 54 +++++++++++++++++++++++++++++++----
1 file changed, 49 insertions(+), 5 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6e1a10cf..de8688a9 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -22,6 +22,8 @@ from collections import defaultdict, deque
from statistics import stdev, mean
+optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
+
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
@@ -142,6 +144,8 @@ class Hypernetwork:
self.use_dropout = use_dropout
self.activate_output = activate_output
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
+ self.optimizer_name = None
+ self.optimizer_state_dict = None
for size in enable_sizes or []:
self.layers[size] = (
@@ -163,6 +167,7 @@ class Hypernetwork:
def save(self, filename):
state_dict = {}
+ optimizer_saved_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
@@ -178,8 +183,15 @@ class Hypernetwork:
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
state_dict['activate_output'] = self.activate_output
state_dict['last_layer_dropout'] = self.last_layer_dropout
-
+
+ if self.optimizer_name is not None:
+ optimizer_saved_dict['optimizer_name'] = self.optimizer_name
+
torch.save(state_dict, filename)
+ if self.optimizer_state_dict:
+ optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
+ optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
+ torch.save(optimizer_saved_dict, filename + '.optim')
def load(self, filename):
self.filename = filename
@@ -202,6 +214,18 @@ class Hypernetwork:
print(f"Activate last layer is set to {self.activate_output}")
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
+ optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
+ self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
+ print(f"Optimizer name is {self.optimizer_name}")
+ if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
+ self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
+ else:
+ self.optimizer_state_dict = None
+ if self.optimizer_state_dict:
+ print("Loaded existing optimizer from checkpoint")
+ else:
+ print("No saved optimizer exists in checkpoint")
+
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
@@ -223,7 +247,7 @@ def list_hypernetworks(path):
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
- res[name] = filename
+ res[name + f"({sd_models.model_hash(filename)})"] = filename
return res
@@ -369,6 +393,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
hypernetwork_dir = None
+ hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
@@ -404,8 +429,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
- # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
- optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
+ # Here we use optimizer from saved HN, or we can specify as UI option.
+ if (optimizer_name := hypernetwork.optimizer_name) in optimizer_dict:
+ optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
+ else:
+ print(f"Optimizer type {optimizer_name} is not defined!")
+ optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
+ optimizer_name = 'AdamW'
+ if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
+ try:
+ optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
+ except RuntimeError as e:
+ print("Cannot resume from saved optimizer!")
+ print(e)
steps_without_grad = 0
@@ -467,7 +503,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
# Before saving, change name to match current checkpoint.
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ hypernetwork.optimizer_name = optimizer_name
+ if shared.opts.save_optimizer_state:
+ hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
+ hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{previous_mean_loss:.7f}",
@@ -530,8 +570,12 @@ Last saved image: {html.escape(last_saved_image)}
report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+ hypernetwork.optimizer_name = optimizer_name
+ if shared.opts.save_optimizer_state:
+ hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
-
+ del optimizer
+ hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
return hypernetwork, filename
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
--
cgit v1.2.3
From f5d394214d6ee74a682d0a1016bcbebc4b43c13a Mon Sep 17 00:00:00 2001
From: aria1th <35677394+aria1th@users.noreply.github.com>
Date: Fri, 4 Nov 2022 16:04:03 +0900
Subject: split before declaring file name
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index de8688a9..9b6a3e62 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -382,6 +382,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
+ hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
@@ -393,7 +394,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
hypernetwork_dir = None
- hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
--
cgit v1.2.3
From 1ca0bcd3a7003dd2c1324de7d97fd2a6fc5ddc53 Mon Sep 17 00:00:00 2001
From: aria1th <35677394+aria1th@users.noreply.github.com>
Date: Fri, 4 Nov 2022 16:09:19 +0900
Subject: only save if option is enabled
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 9b6a3e62..b1f308e2 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -188,7 +188,7 @@ class Hypernetwork:
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
torch.save(state_dict, filename)
- if self.optimizer_state_dict:
+ if shared.opts.save_optimizer_state and self.optimizer_state_dict:
optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
torch.save(optimizer_saved_dict, filename + '.optim')
--
cgit v1.2.3
From 39541d7725bc42f456a604b07c50aba503a5a09a Mon Sep 17 00:00:00 2001
From: Fampai <>
Date: Fri, 4 Nov 2022 04:50:22 -0400
Subject: Fixes race condition in training when VAE is unloaded
set_current_image can attempt to use the VAE when it is unloaded to
the CPU while training
---
modules/hypernetworks/hypernetwork.py | 4 ++++
modules/textual_inversion/textual_inversion.py | 5 +++++
2 files changed, 9 insertions(+)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6e1a10cf..fcb96059 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -390,7 +390,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+ old_parallel_processing_allowed = shared.parallel_processing_allowed
+
if unload:
+ shared.parallel_processing_allowed = False
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
@@ -531,6 +534,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
+ shared.parallel_processing_allowed = old_parallel_processing_allowed
return hypernetwork, filename
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 0aeb0459..55892c57 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -273,7 +273,11 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
+
+ old_parallel_processing_allowed = shared.parallel_processing_allowed
+
if unload:
+ shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True
@@ -410,6 +414,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
shared.sd_model.first_stage_model.to(devices.device)
+ shared.parallel_processing_allowed = old_parallel_processing_allowed
return embedding, filename
--
cgit v1.2.3
From fd62727893f9face287b0a9620251afaa38a627d Mon Sep 17 00:00:00 2001
From: Isaac Poulton
Date: Fri, 4 Nov 2022 18:34:35 +0700
Subject: Sort hypernetworks
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6e1a10cf..f1f04a70 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -224,7 +224,7 @@ def list_hypernetworks(path):
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name] = filename
- return res
+ return dict(sorted(res.items()))
def load_hypernetwork(filename):
--
cgit v1.2.3
From 08feb4c364e8b2aed929fd7d22dfa21a93d78b2c Mon Sep 17 00:00:00 2001
From: Isaac Poulton
Date: Fri, 4 Nov 2022 20:53:11 +0700
Subject: Sort straight out of the glob
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index f1f04a70..a441ab10 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -219,12 +219,12 @@ class Hypernetwork:
def list_hypernetworks(path):
res = {}
- for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name] = filename
- return dict(sorted(res.items()))
+ return res
def load_hypernetwork(filename):
--
cgit v1.2.3
From 62e3d71aa778928d63cab81d9d8cde33e55bebb3 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 5 Nov 2022 17:09:42 +0300
Subject: rework the code to not use the walrus operator because colab's 3.7
does not support it
---
modules/hypernetworks/hypernetwork.py | 7 +++++--
1 file changed, 5 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 5ceed6ee..7f182712 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -429,13 +429,16 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
+
# Here we use optimizer from saved HN, or we can specify as UI option.
- if (optimizer_name := hypernetwork.optimizer_name) in optimizer_dict:
+ if hypernetwork.optimizer_name in optimizer_dict:
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
+ optimizer_name = hypernetwork.optimizer_name
else:
- print(f"Optimizer type {optimizer_name} is not defined!")
+ print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
optimizer_name = 'AdamW'
+
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
try:
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
--
cgit v1.2.3
From cdc8020d13c5eef099c609b0a911ccf3568afc0d Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 19 Nov 2022 12:01:51 +0300
Subject: change StableDiffusionProcessing to internally use sampler name
instead of sampler index
---
modules/api/api.py | 26 ++++++++---------------
modules/hypernetworks/hypernetwork.py | 4 ++--
modules/images.py | 2 +-
modules/img2img.py | 4 ++--
modules/processing.py | 29 +++++++++++---------------
modules/sd_samplers.py | 13 +++++++++---
modules/textual_inversion/textual_inversion.py | 4 ++--
modules/txt2img.py | 3 ++-
modules/ui.py | 2 +-
scripts/img2imgalt.py | 4 ++--
scripts/xy_grid.py | 12 +++++------
11 files changed, 49 insertions(+), 54 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 596a6616..0eccccbb 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -6,9 +6,9 @@ from threading import Lock
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, Depends, FastAPI, HTTPException
import modules.shared as shared
+from modules import sd_samplers
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
-from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
from PIL import PngImagePlugin
from modules.sd_models import checkpoints_list
@@ -25,8 +25,12 @@ def upscaler_to_index(name: str):
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
-sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
+def validate_sampler_name(name):
+ config = sd_samplers.all_samplers_map.get(name, None)
+ if config is None:
+ raise HTTPException(status_code=404, detail="Sampler not found")
+ return name
def setUpscalers(req: dict):
reqDict = vars(req)
@@ -82,14 +86,9 @@ class Api:
self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
- sampler_index = sampler_to_index(txt2imgreq.sampler_index)
-
- if sampler_index is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
-
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
- "sampler_index": sampler_index[0],
+ "sampler_name": validate_sampler_name(txt2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True
}
@@ -109,12 +108,6 @@ class Api:
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
- sampler_index = sampler_to_index(img2imgreq.sampler_index)
-
- if sampler_index is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
-
-
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
@@ -123,10 +116,9 @@ class Api:
if mask:
mask = decode_base64_to_image(mask)
-
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
- "sampler_index": sampler_index[0],
+ "sampler_name": validate_sampler_name(img2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
@@ -272,7 +264,7 @@ class Api:
return vars(shared.cmd_opts)
def get_samplers(self):
- return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
+ return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7f182712..fbb87dd1 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -12,7 +12,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
-from modules import devices, processing, sd_models, shared
+from modules import devices, processing, sd_models, shared, sd_samplers
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
- p.sampler_index = preview_sampler_index
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
diff --git a/modules/images.py b/modules/images.py
index ae705cbd..26d5b7a9 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -303,7 +303,7 @@ class FilenameGenerator:
'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
- 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
+ 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime]
diff --git a/modules/img2img.py b/modules/img2img.py
index be9f3653..9fc5b693 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -6,7 +6,7 @@ import traceback
import numpy as np
from PIL import Image, ImageOps, ImageChops
-from modules import devices
+from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
@@ -99,7 +99,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_index=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
diff --git a/modules/processing.py b/modules/processing.py
index 03c9143d..be2edf48 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -2,6 +2,7 @@ import json
import math
import os
import sys
+import warnings
import torch
import numpy as np
@@ -66,19 +67,15 @@ def apply_overlay(image, paste_loc, index, overlays):
return image
-def get_correct_sampler(p):
- if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
- return sd_samplers.samplers
- elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
- return sd_samplers.samplers_for_img2img
- elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
- return sd_samplers.samplers
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
+ if sampler_index is not None:
+ warnings.warn("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name")
+
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@@ -91,7 +88,7 @@ class StableDiffusionProcessing():
self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
- self.sampler_index: int = sampler_index
+ self.sampler_name: str = sampler_name
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
@@ -210,8 +207,7 @@ class Processed:
self.info = info
self.width = p.width
self.height = p.height
- self.sampler_index = p.sampler_index
- self.sampler = sd_samplers.samplers[p.sampler_index].name
+ self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@@ -256,8 +252,7 @@ class Processed:
"subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
- "sampler_index": self.sampler_index,
- "sampler": self.sampler,
+ "sampler_name": self.sampler_name,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
@@ -384,7 +379,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params = {
"Steps": p.steps,
- "Sampler": get_correct_sampler(p)[p.sampler_index].name,
+ "Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@@ -645,7 +640,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -706,7 +701,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -743,7 +738,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None
if self.image_mask is not None:
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 783992d2..4fe67854 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -46,16 +46,23 @@ all_samplers = [
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
+all_samplers_map = {x.name: x for x in all_samplers}
samplers = []
samplers_for_img2img = []
-def create_sampler_with_index(list_of_configs, index, model):
- config = list_of_configs[index]
+def create_sampler(name, model):
+ if name is not None:
+ config = all_samplers_map.get(name, None)
+ else:
+ config = all_samplers[0]
+
+ assert config is not None, f'bad sampler name: {name}'
+
sampler = config.constructor(model)
sampler.config = config
-
+
return sampler
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 0aeb0459..5e4d8688 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -10,7 +10,7 @@ import csv
from PIL import Image, PngImagePlugin
-from modules import shared, devices, sd_hijack, processing, sd_models, images
+from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@@ -345,7 +345,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
- p.sampler_index = preview_sampler_index
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 8e4e8677..c8f81176 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -1,4 +1,5 @@
import modules.scripts
+from modules import sd_samplers
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
@@ -21,7 +22,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
- sampler_index=sampler_index,
+ sampler_name=sd_samplers.samplers[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
diff --git a/modules/ui.py b/modules/ui.py
index 5dce7f3b..2d488741 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -142,7 +142,7 @@ def save_files(js_data, images, do_make_zip, index):
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
- writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
+ writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py
index 964b75c7..1229f61b 100644
--- a/scripts/img2imgalt.py
+++ b/scripts/img2imgalt.py
@@ -157,7 +157,7 @@ class Script(scripts.Script):
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
- p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
+ p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
@@ -191,7 +191,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
- sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
+ sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 417ed0d4..b0b9d84d 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -10,9 +10,9 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
-from modules import images
+from modules import images, sd_samplers
from modules.hypernetworks import hypernetwork
-from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
+from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
@@ -60,9 +60,9 @@ def apply_order(p, x, xs):
p.prompt = prompt_tmp + p.prompt
-def build_samplers_dict(p):
+def build_samplers_dict():
samplers_dict = {}
- for i, sampler in enumerate(get_correct_sampler(p)):
+ for i, sampler in enumerate(sd_samplers.all_samplers):
samplers_dict[sampler.name.lower()] = i
for alias in sampler.aliases:
samplers_dict[alias.lower()] = i
@@ -70,7 +70,7 @@ def build_samplers_dict(p):
def apply_sampler(p, x, xs):
- sampler_index = build_samplers_dict(p).get(x.lower(), None)
+ sampler_index = build_samplers_dict().get(x.lower(), None)
if sampler_index is None:
raise RuntimeError(f"Unknown sampler: {x}")
@@ -78,7 +78,7 @@ def apply_sampler(p, x, xs):
def confirm_samplers(p, xs):
- samplers_dict = build_samplers_dict(p)
+ samplers_dict = build_samplers_dict()
for x in xs:
if x.lower() not in samplers_dict.keys():
raise RuntimeError(f"Unknown sampler: {x}")
--
cgit v1.2.3
From bd68e35de3b7cf7547ed97d8bdf60147402133cc Mon Sep 17 00:00:00 2001
From: flamelaw
Date: Sun, 20 Nov 2022 12:35:26 +0900
Subject: Gradient accumulation, autocast fix, new latent sampling method, etc
---
modules/hypernetworks/hypernetwork.py | 269 +++++++++++----------
modules/sd_hijack.py | 9 +-
modules/sd_hijack_checkpoint.py | 10 +
modules/shared.py | 3 +-
modules/textual_inversion/dataset.py | 134 +++++++----
modules/textual_inversion/textual_inversion.py | 320 ++++++++++++++-----------
modules/ui.py | 16 +-
7 files changed, 448 insertions(+), 313 deletions(-)
create mode 100644 modules/sd_hijack_checkpoint.py
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index fbb87dd1..3d3301b0 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -367,13 +367,13 @@ def report_statistics(loss_info:dict):
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
- textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@@ -403,28 +403,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
hypernetwork = shared.loaded_hypernetwork
checkpoint = sd_models.select_checkpoint()
- ititial_step = hypernetwork.step or 0
- if ititial_step >= steps:
+ initial_step = hypernetwork.step or 0
+ if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return hypernetwork, filename
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
-
+ scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
+
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
+ pin_memory = shared.opts.pin_memory
+
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
-
- size = len(ds.indexes)
- loss_dict = defaultdict(lambda : deque(maxlen = 1024))
- losses = torch.zeros((size,))
- previous_mean_losses = [0]
- previous_mean_loss = 0
- print("Mean loss of {} elements".format(size))
weights = hypernetwork.weights()
for weight in weights:
@@ -436,8 +432,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer_name = hypernetwork.optimizer_name
else:
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
- optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
- optimizer_name = 'AdamW'
+ optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
+ optimizer_name = 'AdamW'
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
try:
@@ -446,131 +442,155 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
print("Cannot resume from saved optimizer!")
print(e)
+ scaler = torch.cuda.amp.GradScaler()
+
+ batch_size = ds.batch_size
+ gradient_step = ds.gradient_step
+ # n steps = batch_size * gradient_step * n image processed
+ steps_per_epoch = len(ds) // batch_size // gradient_step
+ max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
+ loss_step = 0
+ _loss_step = 0 #internal
+ # size = len(ds.indexes)
+ # loss_dict = defaultdict(lambda : deque(maxlen = 1024))
+ # losses = torch.zeros((size,))
+ # previous_mean_losses = [0]
+ # previous_mean_loss = 0
+ # print("Mean loss of {} elements".format(size))
+
steps_without_grad = 0
last_saved_file = ""
last_saved_image = ""
forced_filename = ""
- pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
+ pbar = tqdm.tqdm(total=steps - initial_step)
+ try:
+ for i in range((steps-initial_step) * gradient_step):
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+ for j, batch in enumerate(dl):
+ # works as a drop_last=True for gradient accumulation
+ if j == max_steps_per_epoch:
+ break
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ if tag_drop_out != 0 or shuffle_tags:
+ shared.sd_model.cond_stage_model.to(devices.device)
+ c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ else:
+ c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
+ loss = shared.sd_model(x, c)[0] / gradient_step
+ del x
+ del c
+
+ _loss_step += loss.item()
+ scaler.scale(loss).backward()
+ # go back until we reach gradient accumulation steps
+ if (j + 1) % gradient_step != 0:
+ continue
+ # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
+ # scaler.unscale_(optimizer)
+ # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
+ # torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
+ # print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
+ scaler.step(optimizer)
+ scaler.update()
+ hypernetwork.step += 1
+ pbar.update()
+ optimizer.zero_grad(set_to_none=True)
+ loss_step = _loss_step
+ _loss_step = 0
+
+ steps_done = hypernetwork.step + 1
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
-
- if weights[0].grad is None:
- steps_without_grad += 1
- else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
-
- optimizer.step()
-
- steps_done = hypernetwork.step + 1
-
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
-
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
- else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
-
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
- hypernetwork.optimizer_name = optimizer_name
- if shared.opts.save_optimizer_state:
- hypernetwork.optimizer_state_dict = optimizer.state_dict()
- save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
- hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
-
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
-
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ epoch_num = hypernetwork.step // steps_per_epoch
+ epoch_step = hypernetwork.step % steps_per_epoch
+
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ hypernetwork.optimizer_name = optimizer_name
+ if shared.opts.save_optimizer_state:
+ hypernetwork.optimizer_state_dict = optimizer.state_dict()
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
+ hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
+
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
+ "loss": f"{loss_step:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
+
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = batch.cond_text[0]
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- preview_text = p.prompt
+ preview_text = p.prompt
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images) > 0 else None
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.job_no = hypernetwork.step
+ shared.state.job_no = hypernetwork.step
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
-Loss: {previous_mean_loss:.7f}
+Loss: {loss_step:.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(entries[0].cond_text)}
+Last prompt: {html.escape(batch.cond_text[0])}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
- report_statistics(loss_dict)
+ except Exception:
+ print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ pbar.leave = False
+ pbar.close()
+ #report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
hypernetwork.optimizer_name = optimizer_name
@@ -579,6 +599,9 @@ Last saved image: {html.escape(last_saved_image)}
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
del optimizer
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
return hypernetwork, filename
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index eaedac13..29c8b561 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -8,7 +8,7 @@ from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
-from modules import prompt_parser, devices, sd_hijack_optimizations, shared
+from modules import prompt_parser, devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.shared import opts, device, cmd_opts
from modules.sd_hijack_optimizations import invokeAI_mps_available
@@ -59,6 +59,10 @@ def undo_optimizations():
def get_target_prompt_token_count(token_count):
return math.ceil(max(token_count, 1) / 75) * 75
+def fix_checkpoint():
+ ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
+ ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
+ ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
class StableDiffusionModelHijack:
fixes = None
@@ -78,6 +82,7 @@ class StableDiffusionModelHijack:
self.clip = m.cond_stage_model
apply_optimizations()
+ fix_checkpoint()
def flatten(el):
flattened = [flatten(children) for children in el.children()]
@@ -303,7 +308,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
else:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
-
+
self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0:
diff --git a/modules/sd_hijack_checkpoint.py b/modules/sd_hijack_checkpoint.py
new file mode 100644
index 00000000..5712972f
--- /dev/null
+++ b/modules/sd_hijack_checkpoint.py
@@ -0,0 +1,10 @@
+from torch.utils.checkpoint import checkpoint
+
+def BasicTransformerBlock_forward(self, x, context=None):
+ return checkpoint(self._forward, x, context)
+
+def AttentionBlock_forward(self, x):
+ return checkpoint(self._forward, x)
+
+def ResBlock_forward(self, x, emb):
+ return checkpoint(self._forward, x, emb)
\ No newline at end of file
diff --git a/modules/shared.py b/modules/shared.py
index a4457305..3704ce23 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -322,8 +322,7 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
- "shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."),
- "tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}),
+ "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index eb75c376..d594b49d 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -3,7 +3,7 @@ import numpy as np
import PIL
import torch
from PIL import Image
-from torch.utils.data import Dataset
+from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import random
@@ -11,25 +11,28 @@ import tqdm
from modules import devices, shared
import re
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry:
- def __init__(self, filename=None, latent=None, filename_text=None):
+ def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
self.filename = filename
- self.latent = latent
self.filename_text = filename_text
- self.cond = None
- self.cond_text = None
+ self.latent_dist = latent_dist
+ self.latent_sample = latent_sample
+ self.cond = cond
+ self.cond_text = cond_text
+ self.pixel_values = pixel_values
class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
+ def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
-
+
self.placeholder_token = placeholder_token
- self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
@@ -45,11 +48,16 @@ class PersonalizedBase(Dataset):
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
- cond_model = shared.sd_model.cond_stage_model
-
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
+
+
+ self.shuffle_tags = shuffle_tags
+ self.tag_drop_out = tag_drop_out
+
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
+ if shared.state.interrupted:
+ raise Exception("inturrupted")
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
except Exception:
@@ -71,37 +79,58 @@ class PersonalizedBase(Dataset):
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
- torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
- torchdata = torch.moveaxis(torchdata, 2, 0)
-
- init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
- init_latent = init_latent.to(devices.cpu)
-
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
-
- if include_cond:
+ torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
+ latent_sample = None
+
+ with torch.autocast("cuda"):
+ latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
+
+ if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
+ latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
+ latent_sampling_method = "once"
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
+ elif latent_sampling_method == "deterministic":
+ # Works only for DiagonalGaussianDistribution
+ latent_dist.std = 0
+ latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
+ elif latent_sampling_method == "random":
+ entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
+
+ if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
- entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
- self.dataset.append(entry)
-
- assert len(self.dataset) > 0, "No images have been found in the dataset."
- self.length = len(self.dataset) * repeats // batch_size
+ if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
+ with torch.autocast("cuda"):
+ entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
+ # elif not include_cond:
+ # _, _, _, _, hijack_fixes, token_count = cond_model.process_text([entry.cond_text])
+ # max_n = token_count // 75
+ # index_list = [ [] for _ in range(max_n + 1) ]
+ # for n, (z, _) in hijack_fixes[0]:
+ # index_list[n].append(z)
+ # with torch.autocast("cuda"):
+ # entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
+ # entry.emb_index = index_list
- self.dataset_length = len(self.dataset)
- self.indexes = None
- self.shuffle()
+ self.dataset.append(entry)
+ del torchdata
+ del latent_dist
+ del latent_sample
- def shuffle(self):
- self.indexes = np.random.permutation(self.dataset_length)
+ self.length = len(self.dataset)
+ assert self.length > 0, "No images have been found in the dataset."
+ self.batch_size = min(batch_size, self.length)
+ self.gradient_step = min(gradient_step, self.length // self.batch_size)
+ self.latent_sampling_method = latent_sampling_method
def create_text(self, filename_text):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
tags = filename_text.split(',')
- if shared.opts.tag_drop_out != 0:
- tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
- if shared.opts.shuffle_tags:
+ if self.tag_drop_out != 0:
+ tags = [t for t in tags if random.random() > self.tag_drop_out]
+ if self.shuffle_tags:
random.shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
return text
@@ -110,19 +139,28 @@ class PersonalizedBase(Dataset):
return self.length
def __getitem__(self, i):
- res = []
-
- for j in range(self.batch_size):
- position = i * self.batch_size + j
- if position % len(self.indexes) == 0:
- self.shuffle()
-
- index = self.indexes[position % len(self.indexes)]
- entry = self.dataset[index]
-
- if entry.cond is None:
- entry.cond_text = self.create_text(entry.filename_text)
-
- res.append(entry)
-
- return res
+ entry = self.dataset[i]
+ if self.tag_drop_out != 0 or self.shuffle_tags:
+ entry.cond_text = self.create_text(entry.filename_text)
+ if self.latent_sampling_method == "random":
+ entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist)
+ return entry
+
+class PersonalizedDataLoader(DataLoader):
+ def __init__(self, *args, **kwargs):
+ super(PersonalizedDataLoader, self).__init__(shuffle=True, drop_last=True, *args, **kwargs)
+ self.collate_fn = collate_wrapper
+
+
+class BatchLoader:
+ def __init__(self, data):
+ self.cond_text = [entry.cond_text for entry in data]
+ self.cond = [entry.cond for entry in data]
+ self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
+
+ def pin_memory(self):
+ self.latent_sample = self.latent_sample.pin_memory()
+ return self
+
+def collate_wrapper(batch):
+ return BatchLoader(batch)
\ No newline at end of file
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 5e4d8688..1d5e3a32 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -184,7 +184,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
- if (step + 1) % shared.opts.training_write_csv_every != 0:
+ if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
@@ -194,21 +194,23 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if write_csv_header:
csv_writer.writeheader()
- epoch = step // epoch_len
- epoch_step = step % epoch_len
+ epoch = (step - 1) // epoch_len
+ epoch_step = (step - 1) % epoch_len
csv_writer.writerow({
- "step": step + 1,
+ "step": step,
"epoch": epoch,
- "epoch_step": epoch_step + 1,
+ "epoch_step": epoch_step,
**values,
})
-def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
+def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
+ assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
+ assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
@@ -224,10 +226,10 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
-def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
- validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
+ validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -255,161 +257,205 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
else:
images_embeds_dir = None
- cond_model = shared.sd_model.cond_stage_model
-
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
checkpoint = sd_models.select_checkpoint()
- ititial_step = embedding.step or 0
- if ititial_step >= steps:
+ initial_step = embedding.step or 0
+ if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename
+ scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
-
- # dataset loading may take a while, so input validations and early returns should be done before this
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
+
+ pin_memory = shared.opts.pin_memory
+
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
+
+ latent_sampling_method = ds.latent_sampling_method
+
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=False)
+
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
+ scaler = torch.cuda.amp.GradScaler()
- losses = torch.zeros((32,))
+ batch_size = ds.batch_size
+ gradient_step = ds.gradient_step
+ # n steps = batch_size * gradient_step * n image processed
+ steps_per_epoch = len(ds) // batch_size // gradient_step
+ max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
+ loss_step = 0
+ _loss_step = 0 #internal
+
last_saved_file = ""
last_saved_image = ""
forced_filename = ""
embedding_yet_to_be_embedded = False
-
- pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, entries in pbar:
- embedding.step = i + ititial_step
-
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
-
- losses[embedding.step % losses.shape[0]] = loss.item()
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- steps_done = embedding.step + 1
-
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
-
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
-
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding_name_every = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
- save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
- embedding_yet_to_be_embedded = True
-
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
-
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
-
- shared.sd_model.first_stage_model.to(devices.device)
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
-
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
-
- preview_text = p.prompt
-
- processed = processing.process_images(p)
- image = processed.images[0]
-
- if unload:
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- shared.state.current_image = image
-
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
-
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
-
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
-
- title = "<{}>".format(data.get('name', '???'))
-
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
-
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
-
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
-
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
-
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
-
- shared.state.job_no = embedding.step
-
- shared.state.textinfo = f"""
+
+ pbar = tqdm.tqdm(total=steps - initial_step)
+ try:
+ for i in range((steps-initial_step) * gradient_step):
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+ for j, batch in enumerate(dl):
+ # works as a drop_last=True for gradient accumulation
+ if j == max_steps_per_epoch:
+ break
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ # c = stack_conds(batch.cond).to(devices.device)
+ # mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
+ # print(mask)
+ # c[:, 1:1+embedding.vec.shape[0]] = embedding.vec.to(devices.device, non_blocking=pin_memory)
+ x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
+ c = shared.sd_model.cond_stage_model(batch.cond_text)
+ loss = shared.sd_model(x, c)[0] / gradient_step
+ del x
+
+ _loss_step += loss.item()
+ scaler.scale(loss).backward()
+
+ # go back until we reach gradient accumulation steps
+ if (j + 1) % gradient_step != 0:
+ continue
+ #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
+ #scaler.unscale_(optimizer)
+ #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
+ #torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=1.0)
+ #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
+ scaler.step(optimizer)
+ scaler.update()
+ embedding.step += 1
+ pbar.update()
+ optimizer.zero_grad(set_to_none=True)
+ loss_step = _loss_step
+ _loss_step = 0
+
+ steps_done = embedding.step + 1
+
+ epoch_num = embedding.step // steps_per_epoch
+ epoch_step = embedding.step % steps_per_epoch
+
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding_name_every = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
+ #if shared.opts.save_optimizer_state:
+ #embedding.optimizer_state_dict = optimizer.state_dict()
+ save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
+ embedding_yet_to_be_embedded = True
+
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
+ "loss": f"{loss_step:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
+
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+
+ shared.sd_model.first_stage_model.to(devices.device)
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
+
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = batch.cond_text[0]
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
+
+ preview_text = p.prompt
+
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images) > 0 else None
+
+ if unload:
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
+
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
+
+ title = "<{}>".format(data.get('name', '???'))
+
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
+
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
+
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
+
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
+
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
+
+ shared.state.job_no = embedding.step
+
+ shared.state.textinfo = f"""
-Loss: {losses.mean():.7f}
+Loss: {loss_step:.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entries[0].cond_text)}
+Last prompt: {html.escape(batch.cond_text[0])}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
- filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
- save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
- shared.sd_model.first_stage_model.to(devices.device)
+ filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
+ save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
+ except Exception:
+ print(traceback.format_exc(), file=sys.stderr)
+ pass
+ finally:
+ pbar.leave = False
+ pbar.close()
+ shared.sd_model.first_stage_model.to(devices.device)
return embedding, filename
diff --git a/modules/ui.py b/modules/ui.py
index a5953fce..9d2a1cbf 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1262,7 +1262,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
with gr.Row():
interrupt_preprocessing = gr.Button("Interrupt")
- run_preprocess = gr.Button(value="Preprocess", variant='primary')
+ run_preprocess = gr.Button(value="Preprocess", variant='primary')
process_split.change(
fn=lambda show: gr_show(show),
@@ -1289,6 +1289,7 @@ def create_ui(wrap_gradio_gpu_call):
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
batch_size = gr.Number(label='Batch size', value=1, precision=0)
+ gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@@ -1299,6 +1300,11 @@ def create_ui(wrap_gradio_gpu_call):
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
+ with gr.Row():
+ shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
+ tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0)
+ with gr.Row():
+ latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'])
with gr.Row():
interrupt_training = gr.Button(value="Interrupt")
@@ -1387,11 +1393,15 @@ def create_ui(wrap_gradio_gpu_call):
train_embedding_name,
embedding_learn_rate,
batch_size,
+ gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
+ shuffle_tags,
+ tag_drop_out,
+ latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
@@ -1412,11 +1422,15 @@ def create_ui(wrap_gradio_gpu_call):
train_hypernetwork_name,
hypernetwork_learn_rate,
batch_size,
+ gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
+ shuffle_tags,
+ tag_drop_out,
+ latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
--
cgit v1.2.3
From 5b57f61ba47f8b11d19a5b46e7fb5a52458abae5 Mon Sep 17 00:00:00 2001
From: flamelaw
Date: Mon, 21 Nov 2022 10:15:46 +0900
Subject: fix pin_memory with different latent sampling method
---
modules/hypernetworks/hypernetwork.py | 5 ++++-
modules/textual_inversion/dataset.py | 23 +++++++++++++++++++----
modules/textual_inversion/textual_inversion.py | 7 +------
3 files changed, 24 insertions(+), 11 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3d3301b0..0128419b 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -416,7 +416,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
- dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=pin_memory)
+
+ latent_sampling_method = ds.latent_sampling_method
+
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 110c0e09..f470324a 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -138,9 +138,12 @@ class PersonalizedBase(Dataset):
return entry
class PersonalizedDataLoader(DataLoader):
- def __init__(self, *args, **kwargs):
- super(PersonalizedDataLoader, self).__init__(shuffle=True, drop_last=True, *args, **kwargs)
- self.collate_fn = collate_wrapper
+ def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
+ super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
+ if latent_sampling_method == "random":
+ self.collate_fn = collate_wrapper_random
+ else:
+ self.collate_fn = collate_wrapper
class BatchLoader:
@@ -148,10 +151,22 @@ class BatchLoader:
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
+ #self.emb_index = [entry.emb_index for entry in data]
+ #print(self.latent_sample.device)
def pin_memory(self):
self.latent_sample = self.latent_sample.pin_memory()
return self
def collate_wrapper(batch):
- return BatchLoader(batch)
\ No newline at end of file
+ return BatchLoader(batch)
+
+class BatchLoaderRandom(BatchLoader):
+ def __init__(self, data):
+ super().__init__(data)
+
+ def pin_memory(self):
+ return self
+
+def collate_wrapper_random(batch):
+ return BatchLoaderRandom(batch)
\ No newline at end of file
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 1d5e3a32..3036e48a 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -277,7 +277,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
latent_sampling_method = ds.latent_sampling_method
- dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=False)
+ dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
@@ -333,11 +333,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
- #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
- #scaler.unscale_(optimizer)
- #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
- #torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=1.0)
- #print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
scaler.step(optimizer)
scaler.update()
embedding.step += 1
--
cgit v1.2.3
From 89d8ecff09b426ddc89eb5b432825f8f4c218051 Mon Sep 17 00:00:00 2001
From: flamelaw
Date: Wed, 23 Nov 2022 02:49:01 +0900
Subject: small fixes
---
modules/hypernetworks/hypernetwork.py | 6 +++---
modules/textual_inversion/textual_inversion.py | 2 +-
2 files changed, 4 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 0128419b..4541af18 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -435,8 +435,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
optimizer_name = hypernetwork.optimizer_name
else:
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
- optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
- optimizer_name = 'AdamW'
+ optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
+ optimizer_name = 'AdamW'
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
try:
@@ -582,7 +582,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared.state.textinfo = f"""
Loss: {loss_step:.7f}
-Step: {hypernetwork.step}
+Step: {steps_done}
Last prompt: {html.escape(batch.cond_text[0])}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 3036e48a..fee08e33 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -436,7 +436,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
shared.state.textinfo = f"""
Loss: {loss_step:.7f}
-Step: {embedding.step}
+Step: {steps_done}
Last prompt: {html.escape(batch.cond_text[0])}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
--
cgit v1.2.3
From d2c97fc3fe5857d6fba9ad1695ed3ac6ec455ca9 Mon Sep 17 00:00:00 2001
From: flamelaw
Date: Wed, 23 Nov 2022 20:00:00 +0900
Subject: fix dropout, implement train/eval mode
---
modules/hypernetworks/hypernetwork.py | 24 ++++++++++++++++++------
1 file changed, 18 insertions(+), 6 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4541af18..9388959f 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -154,16 +154,28 @@ class Hypernetwork:
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
+ self.eval_mode()
def weights(self):
res = []
+ for k, layers in self.layers.items():
+ for layer in layers:
+ res += layer.parameters()
+ return res
+ def train_mode(self):
for k, layers in self.layers.items():
for layer in layers:
layer.train()
- res += layer.trainables()
+ for param in layer.parameters():
+ param.requires_grad = True
- return res
+ def eval_mode(self):
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.eval()
+ for param in layer.parameters():
+ param.requires_grad = False
def save(self, filename):
state_dict = {}
@@ -426,8 +438,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared.sd_model.first_stage_model.to(devices.cpu)
weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
+ hypernetwork.train_mode()
# Here we use optimizer from saved HN, or we can specify as UI option.
if hypernetwork.optimizer_name in optimizer_dict:
@@ -538,7 +549,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if images_dir is not None and steps_done % create_image_every == 0:
forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
-
+ hypernetwork.eval_mode()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
@@ -571,7 +582,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
-
+ hypernetwork.train_mode()
if image is not None:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
@@ -593,6 +604,7 @@ Last saved image: {html.escape(last_saved_image)}
finally:
pbar.leave = False
pbar.close()
+ hypernetwork.eval_mode()
#report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
--
cgit v1.2.3
From 1bd57cc9791e2e742f72a3d74d589f2c289e8e92 Mon Sep 17 00:00:00 2001
From: flamelaw
Date: Wed, 23 Nov 2022 20:21:52 +0900
Subject: last_layer_dropout default to False
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 9388959f..8466887f 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -38,7 +38,7 @@ class HypernetworkModule(torch.nn.Module):
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
- add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=True):
+ add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
--
cgit v1.2.3
From 4d5f1691dda971ec7b461dd880426300fd54ccee Mon Sep 17 00:00:00 2001
From: brkirch
Date: Mon, 28 Nov 2022 21:36:35 -0500
Subject: Use devices.autocast instead of torch.autocast
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/interrogate.py | 3 +--
modules/swinir_model.py | 6 +-----
modules/textual_inversion/dataset.py | 4 ++--
modules/textual_inversion/textual_inversion.py | 2 +-
5 files changed, 6 insertions(+), 11 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8466887f..eb5ae372 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -495,7 +495,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if shared.state.interrupted:
break
- with torch.autocast("cuda"):
+ with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 9769aa34..40c6b082 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -148,8 +148,7 @@ class InterrogateModels:
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
- precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
- with torch.no_grad(), precision_scope("cuda"):
+ with torch.no_grad(), devices.autocast():
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True)
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
index facd262d..483eabd4 100644
--- a/modules/swinir_model.py
+++ b/modules/swinir_model.py
@@ -13,10 +13,6 @@ from modules.swinir_model_arch import SwinIR as net
from modules.swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
-precision_scope = (
- torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
-)
-
class UpscalerSwinIR(Upscaler):
def __init__(self, dirname):
@@ -112,7 +108,7 @@ def upscale(
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(devices.device_swinir)
- with torch.no_grad(), precision_scope("cuda"):
+ with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index e5725f33..2dc64c3c 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -82,7 +82,7 @@ class PersonalizedBase(Dataset):
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
latent_sample = None
- with torch.autocast("cuda"):
+ with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
@@ -101,7 +101,7 @@ class PersonalizedBase(Dataset):
entry.cond_text = self.create_text(filename_text)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
- with torch.autocast("cuda"):
+ with devices.autocast():
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 4eb75cb5..daf8d1b8 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -316,7 +316,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
if shared.state.interrupted:
break
- with torch.autocast("cuda"):
+ with devices.autocast():
# c = stack_conds(batch.cond).to(devices.device)
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# print(mask)
--
cgit v1.2.3
From 3bf5591efe9a9f219c6088be322a87adc4f48f95 Mon Sep 17 00:00:00 2001
From: Yuval Aboulafia
Date: Sat, 24 Dec 2022 21:35:29 +0200
Subject: fix F541 f-string without any placeholders
---
extensions-builtin/LDSR/ldsr_model_arch.py | 2 +-
modules/codeformer/vqgan_arch.py | 4 ++--
modules/hypernetworks/hypernetwork.py | 4 ++--
modules/images.py | 2 +-
modules/interrogate.py | 2 +-
modules/safe.py | 8 ++++----
modules/sd_models.py | 8 ++++----
modules/sd_vae.py | 2 +-
modules/textual_inversion/textual_inversion.py | 2 +-
scripts/prompts_from_file.py | 2 +-
10 files changed, 18 insertions(+), 18 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py
index f5bd8ae4..0ad49f4e 100644
--- a/extensions-builtin/LDSR/ldsr_model_arch.py
+++ b/extensions-builtin/LDSR/ldsr_model_arch.py
@@ -26,7 +26,7 @@ class LDSR:
global cached_ldsr_model
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
- print(f"Loading model from cache")
+ print("Loading model from cache")
model: torch.nn.Module = cached_ldsr_model
else:
print(f"Loading model from {self.modelPath}")
diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py
index c06c590c..e7293683 100644
--- a/modules/codeformer/vqgan_arch.py
+++ b/modules/codeformer/vqgan_arch.py
@@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]')
else:
- raise ValueError(f'Wrong params!')
+ raise ValueError('Wrong params!')
def forward(self, x):
@@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
else:
- raise ValueError(f'Wrong params!')
+ raise ValueError('Wrong params!')
def forward(self, x):
return self.main(x)
\ No newline at end of file
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index c406ffb3..9d3034ae 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -277,7 +277,7 @@ def load_hypernetwork(filename):
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
+ print("Unloading hypernetwork")
shared.loaded_hypernetwork = None
@@ -417,7 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
initial_step = hypernetwork.step or 0
if initial_step >= steps:
- shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ shared.state.textinfo = "Model has already been trained beyond specified max steps"
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
diff --git a/modules/images.py b/modules/images.py
index 809ad9f7..31d4528d 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -599,7 +599,7 @@ def read_info_from_image(image):
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
- print(f"Error parsing NovelAI image generation parameters:", file=sys.stderr)
+ print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return geninfo, items
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 0068b81c..46935210 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -172,7 +172,7 @@ class InterrogateModels:
res += ", " + match
except Exception:
- print(f"Error interrogating", file=sys.stderr)
+ print("Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
res += ""
diff --git a/modules/safe.py b/modules/safe.py
index 479c8b86..1d4c20b9 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -137,15 +137,15 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs):
except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
- print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
+ print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
+ print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
return None
except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
- print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
+ print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
+ print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
return None
return unsafe_torch_load(filename, *args, **kwargs)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 6ca06211..ecdd91c5 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -117,13 +117,13 @@ def select_checkpoint():
return checkpoint_info
if len(checkpoints_list) == 0:
- print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
+ print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
- print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
+ print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
@@ -324,7 +324,7 @@ def load_model(checkpoint_info=None):
script_callbacks.model_loaded_callback(sd_model)
- print(f"Model loaded.")
+ print("Model loaded.")
return sd_model
@@ -359,5 +359,5 @@ def reload_model_weights(sd_model=None, info=None):
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
- print(f"Weights loaded.")
+ print("Weights loaded.")
return sd_model
diff --git a/modules/sd_vae.py b/modules/sd_vae.py
index 25638a83..3856418e 100644
--- a/modules/sd_vae.py
+++ b/modules/sd_vae.py
@@ -208,5 +208,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"):
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
- print(f"VAE Weights loaded.")
+ print("VAE Weights loaded.")
return sd_model
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index daf3997b..f6112578 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -263,7 +263,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
initial_step = embedding.step or 0
if initial_step >= steps:
- shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ shared.state.textinfo = "Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py
index 6e118ddb..e8386ed2 100644
--- a/scripts/prompts_from_file.py
+++ b/scripts/prompts_from_file.py
@@ -140,7 +140,7 @@ class Script(scripts.Script):
try:
args = cmdargs(line)
except Exception:
- print(f"Error parsing line [line] as commandline:", file=sys.stderr)
+ print(f"Error parsing line {line} as commandline:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
args = {"prompt": line}
else:
--
cgit v1.2.3
From 5f1dfbbc959855fd90ba80c0c76301d2063772fa Mon Sep 17 00:00:00 2001
From: Vladimir Mandic
Date: Sat, 24 Dec 2022 18:02:22 -0500
Subject: implement train api
---
modules/api/api.py | 94 ++++++++++++++++++++++++++++++++++-
modules/api/models.py | 9 ++++
modules/hypernetworks/hypernetwork.py | 26 ++++++++++
modules/hypernetworks/ui.py | 31 ++----------
4 files changed, 132 insertions(+), 28 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index b43dd16b..1ceba75d 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -10,13 +10,17 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
-from modules import sd_samplers, deepbooru
+from modules import sd_samplers, deepbooru, sd_hijack
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras, run_pnginfo
+from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
+from modules.textual_inversion.preprocess import preprocess
+from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list
from modules.realesrgan_model import get_realesrgan_models
+from modules import devices
from typing import List
def upscaler_to_index(name: str):
@@ -97,6 +101,11 @@ class Api:
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
+ self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
+ self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
+ self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
+ self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
+ self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
@@ -326,6 +335,89 @@ class Api:
def refresh_checkpoints(self):
shared.refresh_checkpoints()
+ def create_embedding(self, args: dict):
+ try:
+ shared.state.begin()
+ filename = create_embedding(**args) # create empty embedding
+ sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
+ shared.state.end()
+ return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
+ except AssertionError as e:
+ shared.state.end()
+ return TrainResponse(info = "create embedding error: {error}".format(error = e))
+
+ def create_hypernetwork(self, args: dict):
+ try:
+ shared.state.begin()
+ filename = create_hypernetwork(**args) # create empty embedding
+ shared.state.end()
+ return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
+ except AssertionError as e:
+ shared.state.end()
+ return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
+
+ def preprocess(self, args: dict):
+ try:
+ shared.state.begin()
+ preprocess(**args) # quick operation unless blip/booru interrogation is enabled
+ shared.state.end()
+ return PreprocessResponse(info = 'preprocess complete')
+ except KeyError as e:
+ shared.state.end()
+ return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
+ except AssertionError as e:
+ shared.state.end()
+ return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
+ except FileNotFoundError as e:
+ shared.state.end()
+ return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
+
+ def train_embedding(self, args: dict):
+ try:
+ shared.state.begin()
+ apply_optimizations = shared.opts.training_xattention_optimizations
+ error = None
+ filename = ''
+ if not apply_optimizations:
+ sd_hijack.undo_optimizations()
+ try:
+ embedding, filename = train_embedding(**args) # can take a long time to complete
+ except Exception as e:
+ error = e
+ finally:
+ if not apply_optimizations:
+ sd_hijack.apply_optimizations()
+ shared.state.end()
+ return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
+ except AssertionError as msg:
+ shared.state.end()
+ return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
+
+ def train_hypernetwork(self, args: dict):
+ try:
+ shared.state.begin()
+ initial_hypernetwork = shared.loaded_hypernetwork
+ apply_optimizations = shared.opts.training_xattention_optimizations
+ error = None
+ filename = ''
+ if not apply_optimizations:
+ sd_hijack.undo_optimizations()
+ try:
+ hypernetwork, filename = train_hypernetwork(*args)
+ except Exception as e:
+ error = e
+ finally:
+ shared.loaded_hypernetwork = initial_hypernetwork
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+ if not apply_optimizations:
+ sd_hijack.apply_optimizations()
+ shared.state.end()
+ return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
+ except AssertionError as msg:
+ shared.state.end()
+ return TrainResponse(info = "train embedding error: {error}".format(error = error))
+
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)
diff --git a/modules/api/models.py b/modules/api/models.py
index a22bc6b3..c446ce7a 100644
--- a/modules/api/models.py
+++ b/modules/api/models.py
@@ -175,6 +175,15 @@ class InterrogateRequest(BaseModel):
class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
+class TrainResponse(BaseModel):
+ info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
+
+class CreateResponse(BaseModel):
+ info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
+
+class PreprocessResponse(BaseModel):
+ info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
+
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index c406ffb3..3182ff03 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -378,6 +378,32 @@ def report_statistics(loss_info:dict):
print(e)
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
+ # Remove illegal characters from name.
+ name = "".join( x for x in name if (x.isalnum() or x in "._- "))
+
+ fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
+ if not overwrite_old:
+ assert not os.path.exists(fn), f"file {fn} already exists"
+
+ if type(layer_structure) == str:
+ layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
+
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
+ name=name,
+ enable_sizes=[int(x) for x in enable_sizes],
+ layer_structure=layer_structure,
+ activation_func=activation_func,
+ weight_init=weight_init,
+ add_layer_norm=add_layer_norm,
+ use_dropout=use_dropout,
+ )
+ hypernet.save(fn)
+
+ shared.reload_hypernetworks()
+
+ return fn
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index c2d4b51c..e7f9e593 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -3,39 +3,16 @@ import os
import re
import gradio as gr
-import modules.textual_inversion.preprocess
-import modules.textual_inversion.textual_inversion
+import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
-from modules.hypernetworks import hypernetwork
not_available = ["hardswish", "multiheadattention"]
-keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
+keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
- # Remove illegal characters from name.
- name = "".join( x for x in name if (x.isalnum() or x in "._- "))
+ filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
- fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- if not overwrite_old:
- assert not os.path.exists(fn), f"file {fn} already exists"
-
- if type(layer_structure) == str:
- layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
-
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
- name=name,
- enable_sizes=[int(x) for x in enable_sizes],
- layer_structure=layer_structure,
- activation_func=activation_func,
- weight_init=weight_init,
- add_layer_norm=add_layer_norm,
- use_dropout=use_dropout,
- )
- hypernet.save(fn)
-
- shared.reload_hypernetworks()
-
- return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
+ return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
def train_hypernetwork(*args):
--
cgit v1.2.3
From 192ddc04d6de0d780f73aa5fbaa8c66cd4642e1c Mon Sep 17 00:00:00 2001
From: Vladimir Mandic
Date: Tue, 3 Jan 2023 10:34:51 -0500
Subject: add job info to modules
---
modules/extras.py | 17 +++++++++++++----
modules/hypernetworks/hypernetwork.py | 1 +
modules/textual_inversion/preprocess.py | 1 +
modules/textual_inversion/textual_inversion.py | 1 +
4 files changed, 16 insertions(+), 4 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/extras.py b/modules/extras.py
index 7e222313..d665440a 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -58,6 +58,9 @@ cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
+ shared.state.begin()
+ shared.state.job = 'extras'
+
imageArr = []
# Also keep track of original file names
imageNameArr = []
@@ -94,6 +97,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
@@ -104,6 +108,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
+ shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
@@ -114,6 +119,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
+ shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
@@ -180,6 +186,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
+
+ shared.state.textinfo = f'Processing image {image_name}'
+
existing_pnginfo = image.info or {}
image = image.convert("RGB")
@@ -193,6 +202,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
else:
basename = ''
+ if opts.enable_pnginfo: # append info before save
+ image.info = existing_pnginfo
+ image.info["extras"] = info
+
if save_output:
# Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
@@ -203,10 +216,6 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
- if opts.enable_pnginfo:
- image.info = existing_pnginfo
- image.info["extras"] = info
-
if extras_mode != 2 or show_extras_results :
outputs.append(image)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 109e8078..450fecac 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -417,6 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
+ shared.state.job = "train-hypernetwork"
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 56b9b2eb..feb876c6 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -124,6 +124,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
files = listfiles(src)
+ shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fd253477..2c1251d6 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -245,6 +245,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
+ shared.state.job = "train-embedding"
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
--
cgit v1.2.3