From 6021f7a75f7b5208a2be15cda5526028152f922d Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 00:51:36 +0900
Subject: add options to custom hypernetwork layer structure
---
modules/hypernetworks/hypernetwork.py | 88 ++++++++++++++++++++++++++---------
1 file changed, 67 insertions(+), 21 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..cadb9911 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,52 +1,98 @@
+import csv
import datetime
import glob
import html
import os
import sys
import traceback
-import tqdm
-import csv
+import modules.textual_inversion.dataset
import torch
-
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
-import torch
-from torch import einsum
+import tqdm
from einops import rearrange, repeat
-import modules.textual_inversion.dataset
+from ldm.util import default
+from modules import devices, processing, sd_models, shared
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
+from torch import einsum
+
+
+def parse_layer_structure(dim, state_dict):
+ i = 0
+ res = [1]
+ while (key := "linear.{}.weight".format(i)) in state_dict:
+ weight = state_dict[key]
+ res.append(len(weight) // dim)
+ i += 1
+ return res
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
+ layer_structure = None
+ add_layer_norm = False
def __init__(self, dim, state_dict=None):
super().__init__()
+ if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None:
+ layer_structure = (1, 2, 1)
+ else:
+ if self.layer_structure is not None:
+ assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
+ layer_structure = self.layer_structure
+ else:
+ layer_structure = parse_layer_structure(dim, state_dict)
+
+ linears = []
+ for i in range(len(layer_structure) - 1):
+ linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+ if self.add_layer_norm:
+ linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
+ self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
- self.load_state_dict(state_dict, strict=True)
+ try:
+ self.load_state_dict(state_dict)
+ except RuntimeError:
+ self.try_load_previous(state_dict)
else:
-
- self.linear1.weight.data.normal_(mean=0.0, std=0.01)
- self.linear1.bias.data.zero_()
- self.linear2.weight.data.normal_(mean=0.0, std=0.01)
- self.linear2.bias.data.zero_()
+ for layer in self.linear:
+ layer.weight.data.normal_(mean = 0.0, std = 0.01)
+ layer.bias.data.zero_()
self.to(devices.device)
+ def try_load_previous(self, state_dict):
+ states = self.state_dict()
+ states['linear.0.bias'].copy_(state_dict['linear1.bias'])
+ states['linear.0.weight'].copy_(state_dict['linear1.weight'])
+ states['linear.1.bias'].copy_(state_dict['linear2.bias'])
+ states['linear.1.weight'].copy_(state_dict['linear2.weight'])
+
def forward(self, x):
- return x + (self.linear2(self.linear1(x))) * self.multiplier
+ return x + self.linear(x) * self.multiplier
+
+ def trainables(self):
+ res = []
+ for layer in self.linear:
+ res += [layer.weight, layer.bias]
+ return res
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
+def apply_layer_structure(value=None):
+ HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure
+
+
+def apply_layer_norm(value=None):
+ HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm
+
+
class Hypernetwork:
filename = None
name = None
@@ -68,7 +114,7 @@ class Hypernetwork:
for k, layers in self.layers.items():
for layer in layers:
layer.train()
- res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+ res += layer.trainables()
return res
@@ -226,7 +272,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
-
+ assert ds.length > 1, "Dataset should contain more than 1 images"
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
@@ -261,7 +307,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
-# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
@@ -283,7 +329,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
+ "learn_rate": f"{scheduler.learn_rate:.7f}"
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
--
cgit v1.2.3
From a5611ea5026bd8e12d8e84023384c369d0511dda Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 01:00:01 +0900
Subject: update
---
.gitignore | 1 -
modules/hypernetworks/hypernetwork.py | 14 ++++++++------
2 files changed, 8 insertions(+), 7 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/.gitignore b/.gitignore
index 4794865c..69785b3e 100644
--- a/.gitignore
+++ b/.gitignore
@@ -27,4 +27,3 @@ __pycache__
notification.mp3
/SwinIR
/textual_inversion
-/hypernetwork
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index cadb9911..c5835bce 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -1,20 +1,22 @@
-import csv
import datetime
import glob
import html
import os
import sys
import traceback
+import tqdm
+import csv
-import modules.textual_inversion.dataset
import torch
-import tqdm
-from einops import rearrange, repeat
+
from ldm.util import default
-from modules import devices, processing, sd_models, shared
+from modules import devices, shared, processing, sd_models
+import torch
+from torch import einsum
+from einops import rearrange, repeat
+import modules.textual_inversion.dataset
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
-from torch import einsum
def parse_layer_structure(dim, state_dict):
--
cgit v1.2.3
From e40ba281f1b419cf99552962ea01d87d699840a5 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 01:03:58 +0900
Subject: update
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index c5835bce..082165f4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -309,7 +309,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
@@ -331,7 +331,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
- "learn_rate": f"{scheduler.learn_rate:.7f}"
+ "learn_rate": scheduler.learn_rate
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
--
cgit v1.2.3
From da72becb13e4b750fbcb3d158c3f843311ef9938 Mon Sep 17 00:00:00 2001
From: Silent <16026653+s-ilent@users.noreply.github.com>
Date: Wed, 19 Oct 2022 16:14:33 +1030
Subject: Use training width/height when training hypernetworks.
---
modules/hypernetworks/hypernetwork.py | 4 ++--
modules/ui.py | 2 ++
2 files changed, 4 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 4905710e..b8695fc1 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -196,7 +196,7 @@ def stack_conds(conds):
return torch.stack(conds)
-def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -225,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
diff --git a/modules/ui.py b/modules/ui.py
index fb6eb5a0..ca46343f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1341,6 +1341,8 @@ def create_ui(wrap_gradio_gpu_call):
batch_size,
dataset_directory,
log_directory,
+ training_width,
+ training_height,
steps,
create_image_every,
save_embedding_every,
--
cgit v1.2.3
From 42fbda83bb9830af18187fddb50c1bedd01da502 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 14:30:33 +0000
Subject: layer options moves into create hnet ui
---
modules/hypernetworks/hypernetwork.py | 64 +++++++++++++++++------------------
modules/hypernetworks/ui.py | 9 +++--
modules/shared.py | 2 --
modules/ui.py | 8 +++--
webui.py | 8 ++---
5 files changed, 48 insertions(+), 43 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 583ada31..7d519cd9 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -19,37 +19,21 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
-def parse_layer_structure(dim, state_dict):
- i = 0
- res = [1]
- while (key := "linear.{}.weight".format(i)) in state_dict:
- weight = state_dict[key]
- res.append(len(weight) // dim)
- i += 1
- return res
-
-
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- layer_structure = None
- add_layer_norm = False
- def __init__(self, dim, state_dict=None):
+ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__()
- if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None:
- layer_structure = (1, 2, 1)
+ if layer_structure is not None:
+ assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
else:
- if self.layer_structure is not None:
- assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
- assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- layer_structure = self.layer_structure
- else:
- layer_structure = parse_layer_structure(dim, state_dict)
+ layer_structure = parse_layer_structure(dim, state_dict)
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- if self.add_layer_norm:
+ if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears)
@@ -77,38 +61,47 @@ class HypernetworkModule(torch.nn.Module):
return x + self.linear(x) * self.multiplier
def trainables(self):
- res = []
+ layer_structure = []
for layer in self.linear:
- res += [layer.weight, layer.bias]
- return res
+ layer_structure += [layer.weight, layer.bias]
+ return layer_structure
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
-def apply_layer_structure(value=None):
- HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure
+def parse_layer_structure(dim, state_dict):
+ i = 0
+ layer_structure = [1]
+ while (key := "linear.{}.weight".format(i)) in state_dict:
+ weight = state_dict[key]
+ layer_structure.append(len(weight) // dim)
+ i += 1
-def apply_layer_norm(value=None):
- HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm
+ return layer_structure
class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.layer_structure = layer_structure
+ self.add_layer_norm = add_layer_norm
for size in enable_sizes or []:
- self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+ self.layers[size] = (
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ )
def weights(self):
res = []
@@ -128,6 +121,8 @@ class Hypernetwork:
state_dict['step'] = self.step
state_dict['name'] = self.name
+ state_dict['layer_structure'] = self.layer_structure
+ state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -142,10 +137,15 @@ class Hypernetwork:
for size, sd in state_dict.items():
if type(size) == int:
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+ self.layers[size] = (
+ HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ )
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
+ self.layer_structure = state_dict.get('layer_structure', None)
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index dfa599af..7e8ea95e 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -9,11 +9,16 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes):
+def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes])
+ hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
+ name=name,
+ enable_sizes=[int(x) for x in enable_sizes],
+ layer_structure=layer_structure,
+ add_layer_norm=add_layer_norm,
+ )
hypernet.save(fn)
shared.reload_hypernetworks()
diff --git a/modules/shared.py b/modules/shared.py
index 0540cae9..faede821 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -260,8 +260,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
- "sd_hypernetwork_layer_structure": OptionInfo(None, "Hypernetwork layer structure Default: (1,2,1).", gr.Dropdown, lambda: {"choices": [(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]}),
- "sd_hypernetwork_add_layer_norm": OptionInfo(False, "Add layer normalization to hypernetwork architecture."),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
diff --git a/modules/ui.py b/modules/ui.py
index ca46343f..d9ee462f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -458,14 +458,14 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
- prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2,
+ prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2,
placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
- negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2,
+ negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2,
placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)"
)
@@ -1198,6 +1198,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
+ new_hypernetwork_layer_structure = gr.Dropdown(label="Hypernetwork layer structure", choices=[(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)])
+ new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
with gr.Row():
with gr.Column(scale=3):
@@ -1280,6 +1282,8 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
+ new_hypernetwork_layer_structure,
+ new_hypernetwork_add_layer_norm,
],
outputs=[
train_hypernetwork_name,
diff --git a/webui.py b/webui.py
index c7260c7a..177bef74 100644
--- a/webui.py
+++ b/webui.py
@@ -85,9 +85,7 @@ def initialize():
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
- shared.opts.onchange("sd_hypernetwork_layer_structure", modules.hypernetworks.hypernetwork.apply_layer_structure)
- shared.opts.onchange("sd_hypernetwork_add_layer_norm", modules.hypernetworks.hypernetwork.apply_layer_norm)
-
+
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
@@ -142,7 +140,7 @@ def webui(launch_api=False):
create_api(app)
wait_on_server(demo)
-
+
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
@@ -160,4 +158,4 @@ if __name__ == "__main__":
if cmd_opts.nowebui:
api_only()
else:
- webui(cmd_opts.api)
\ No newline at end of file
+ webui(cmd_opts.api)
--
cgit v1.2.3
From 2ce52d32e41fb523d1494f45073fd18496e52d35 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Wed, 19 Oct 2022 16:31:12 +0000
Subject: fix for #3086 failing to load any previous hypernet
---
modules/hypernetworks/hypernetwork.py | 60 ++++++++++++++++-------------------
1 file changed, 28 insertions(+), 32 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d519cd9..74300122 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -24,11 +24,10 @@ class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__()
- if layer_structure is not None:
- assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
- assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- else:
- layer_structure = parse_layer_structure(dim, state_dict)
+
+ assert layer_structure is not None, "layer_structure mut not be None"
+ assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
+ assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
@@ -39,23 +38,30 @@ class HypernetworkModule(torch.nn.Module):
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
- try:
- self.load_state_dict(state_dict)
- except RuntimeError:
- self.try_load_previous(state_dict)
+ self.fix_old_state_dict(state_dict)
+ self.load_state_dict(state_dict)
else:
for layer in self.linear:
- layer.weight.data.normal_(mean = 0.0, std = 0.01)
+ layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
self.to(devices.device)
- def try_load_previous(self, state_dict):
- states = self.state_dict()
- states['linear.0.bias'].copy_(state_dict['linear1.bias'])
- states['linear.0.weight'].copy_(state_dict['linear1.weight'])
- states['linear.1.bias'].copy_(state_dict['linear2.bias'])
- states['linear.1.weight'].copy_(state_dict['linear2.weight'])
+ def fix_old_state_dict(self, state_dict):
+ changes = {
+ 'linear1.bias': 'linear.0.bias',
+ 'linear1.weight': 'linear.0.weight',
+ 'linear2.bias': 'linear.1.bias',
+ 'linear2.weight': 'linear.1.weight',
+ }
+
+ for fr, to in changes.items():
+ x = state_dict.get(fr, None)
+ if x is None:
+ continue
+
+ del state_dict[fr]
+ state_dict[to] = x
def forward(self, x):
return x + self.linear(x) * self.multiplier
@@ -71,18 +77,6 @@ def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
-def parse_layer_structure(dim, state_dict):
- i = 0
- layer_structure = [1]
-
- while (key := "linear.{}.weight".format(i)) in state_dict:
- weight = state_dict[key]
- layer_structure.append(len(weight) // dim)
- i += 1
-
- return layer_structure
-
-
class Hypernetwork:
filename = None
name = None
@@ -135,17 +129,18 @@ class Hypernetwork:
state_dict = torch.load(filename, map_location='cpu')
+ self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
+ self.add_layer_norm = state_dict.get('is_layer_norm', False)
+
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]),
- HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
)
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
- self.layer_structure = state_dict.get('layer_structure', None)
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
@@ -244,6 +239,7 @@ def stack_conds(conds):
return torch.stack(conds)
+
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
assert hypernetwork_name, 'hypernetwork not selected'
--
cgit v1.2.3
From d6ea5841374a28f3f6deb73abc251c8f0bcb240f Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:07:57 +0100
Subject: change html output
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d519cd9..73c1cb80 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -380,7 +380,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
-Last saved embedding: {html.escape(last_saved_file)}
+Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
--
cgit v1.2.3
From 6f98e89486f55b0e4657e96ce640cf1c4675d187 Mon Sep 17 00:00:00 2001
From: discus0434
Date: Thu, 20 Oct 2022 00:10:45 +0000
Subject: update
---
modules/hypernetworks/hypernetwork.py | 29 +++++++++++++++--------
modules/hypernetworks/ui.py | 3 ++-
modules/ui.py | 43 +++++++++++++++++++----------------
3 files changed, 44 insertions(+), 31 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 74300122..7d617680 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -22,16 +22,20 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
- def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
+ def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False, activation_func=None):
super().__init__()
- assert layer_structure is not None, "layer_structure mut not be None"
+ assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+ if activation_func == "relu":
+ linears.append(torch.nn.ReLU())
+ if activation_func == "leakyrelu":
+ linears.append(torch.nn.LeakyReLU())
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -42,8 +46,9 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- layer.weight.data.normal_(mean=0.0, std=0.01)
- layer.bias.data.zero_()
+ if not "ReLU" in layer.__str__():
+ layer.weight.data.normal_(mean=0.0, std=0.01)
+ layer.bias.data.zero_()
self.to(devices.device)
@@ -69,7 +74,8 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- layer_structure += [layer.weight, layer.bias]
+ if not "ReLU" in layer.__str__():
+ layer_structure += [layer.weight, layer.bias]
return layer_structure
@@ -81,7 +87,7 @@ class Hypernetwork:
filename = None
name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
+ def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False, activation_func=None):
self.filename = None
self.name = name
self.layers = {}
@@ -90,11 +96,12 @@ class Hypernetwork:
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
+ self.activation_func = activation_func
for size in enable_sizes or []:
self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
- HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm, self.activation_func),
)
def weights(self):
@@ -117,6 +124,7 @@ class Hypernetwork:
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
+ state_dict['activation_func'] = self.activation_func
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@@ -131,12 +139,13 @@ class Hypernetwork:
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
self.add_layer_norm = state_dict.get('is_layer_norm', False)
+ self.activation_func = state_dict.get('activation_func', None)
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm),
- HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm),
+ HypernetworkModule(size, sd[0], self.layer_structure, self.add_layer_norm, self.activation_func),
+ HypernetworkModule(size, sd[1], self.layer_structure, self.add_layer_norm, self.activation_func),
)
self.name = state_dict.get('name', self.name)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 08f75f15..83f9547b 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -10,7 +10,7 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
+def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False, activation_func=None):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
@@ -22,6 +22,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
add_layer_norm=add_layer_norm,
+ activation_func=activation_func,
)
hypernet.save(fn)
diff --git a/modules/ui.py b/modules/ui.py
index d2e24880..8751fa9c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -5,43 +5,44 @@ import json
import math
import mimetypes
import os
+import platform
import random
+import subprocess as sp
import sys
import tempfile
import time
import traceback
-import platform
-import subprocess as sp
from functools import partial, reduce
+import gradio as gr
+import gradio.routes
+import gradio.utils
import numpy as np
+import piexif
import torch
from PIL import Image, PngImagePlugin
-import piexif
-import gradio as gr
-import gradio.utils
-import gradio.routes
-
-from modules import sd_hijack, sd_models, localization
+from modules import localization, sd_hijack, sd_models
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts
+from modules.shared import cmd_opts, opts, restricted_opts
+
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
-import modules.shared as shared
-from modules.sd_samplers import samplers, samplers_for_img2img
-from modules.sd_hijack import model_hijack
+
+import modules.codeformer_model
+import modules.generation_parameters_copypaste
+import modules.gfpgan_model
+import modules.hypernetworks.ui
+import modules.images_history as img_his
import modules.ldsr_model
import modules.scripts
-import modules.gfpgan_model
-import modules.codeformer_model
+import modules.shared as shared
import modules.styles
-import modules.generation_parameters_copypaste
+import modules.textual_inversion.ui
from modules import prompt_parser
from modules.images import save_image
-import modules.textual_inversion.ui
-import modules.hypernetworks.ui
-import modules.images_history as img_his
+from modules.sd_hijack import model_hijack
+from modules.sd_samplers import samplers, samplers_for_img2img
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
@@ -268,8 +269,8 @@ def calc_time_left(progress, threshold, label, force_display):
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
- if (eta_relative > threshold and progress > 0.02) or force_display:
- return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
+ if (eta_relative > threshold and progress > 0.02) or force_display:
+ return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative))
else:
return ""
@@ -1219,6 +1220,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
+ new_hypernetwork_activation_func = gr.Dropdown(value="relu", label="Select activation function of hypernetwork", choices=["relu", "leakyrelu"])
with gr.Row():
with gr.Column(scale=3):
@@ -1303,6 +1305,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
+ new_hypernetwork_activation_func,
],
outputs=[
train_hypernetwork_name,
--
cgit v1.2.3
From c23f666dba2b484d521d2dc4be91cf9e09312647 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 09:47:43 +0300
Subject: a more strict check for activation type and a more reasonable check
for type of layer in hypernets
---
modules/hypernetworks/hypernetwork.py | 12 +++++++++---
1 file changed, 9 insertions(+), 3 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d617680..84e7e350 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -32,10 +32,16 @@ class HypernetworkModule(torch.nn.Module):
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+
if activation_func == "relu":
linears.append(torch.nn.ReLU())
- if activation_func == "leakyrelu":
+ elif activation_func == "leakyrelu":
linears.append(torch.nn.LeakyReLU())
+ elif activation_func == 'linear' or activation_func is None:
+ pass
+ else:
+ raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -74,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer_structure += [layer.weight, layer.bias]
return layer_structure
--
cgit v1.2.3
From 5245c7a4935f67b677da0f5a1fc2b74c074aa0e2 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:21:32 -0700
Subject: Issue #2921-Give PNG info to Hypernet previews.
---
modules/hypernetworks/hypernetwork.py | 9 +++++++--
1 file changed, 7 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 84e7e350..68c8f26d 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,6 +256,9 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ from modules import images
+
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -298,6 +301,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
last_saved_file = ""
last_saved_image = ""
+ forced_filename = ""
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -345,7 +349,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@@ -381,7 +386,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- image.save(last_saved_image)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
--
cgit v1.2.3
From 4ff274e1e35bb642687253ce744d2cfa738ab293 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:32:22 -0700
Subject: Revise comments.
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/images.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 68c8f26d..3f96361c 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,7 +256,7 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
assert hypernetwork_name, 'hypernetwork not selected'
diff --git a/modules/images.py b/modules/images.py
index 550e53ae..b8834e3c 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -419,7 +419,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
try:
os.makedirs(path, exist_ok=True)
except FileExistsError:
- # If the file already exists, continue and allow said file to be overwritten.
+ # If the file already exists, allow said file to be overwritten.
pass
if forced_filename is None:
--
cgit v1.2.3
From 03a1e288c4973dd2dff57a97469b40f146b6fccf Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 10:13:24 +0300
Subject: turns out LayerNorm also has weight and bias and needs to be
pre-multiplied and trained for hypernets
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
(limited to 'modules/hypernetworks/hypernetwork.py')
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3274a802..b1a5d0c7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -52,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -80,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
--
cgit v1.2.3