From 873efeed49bb5197a42da18272115b326c5d68f3 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 15:51:22 +0300 Subject: rename hypernetwork dir to hypernetworks to prevent clash with an old filename that people who use zip instead of git clone will have --- modules/hypernetworks/hypernetwork.py | 283 ++++++++++++++++++++++++++++++++++ modules/hypernetworks/ui.py | 43 ++++++ 2 files changed, 326 insertions(+) create mode 100644 modules/hypernetworks/hypernetwork.py create mode 100644 modules/hypernetworks/ui.py (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py new file mode 100644 index 00000000..aa701bda --- /dev/null +++ b/modules/hypernetworks/hypernetwork.py @@ -0,0 +1,283 @@ +import datetime +import glob +import html +import os +import sys +import traceback +import tqdm + +import torch + +from ldm.util import default +from modules import devices, shared, processing, sd_models +import torch +from torch import einsum +from einops import rearrange, repeat +import modules.textual_inversion.dataset + + +class HypernetworkModule(torch.nn.Module): + def __init__(self, dim, state_dict=None): + super().__init__() + + self.linear1 = torch.nn.Linear(dim, dim * 2) + self.linear2 = torch.nn.Linear(dim * 2, dim) + + if state_dict is not None: + self.load_state_dict(state_dict, strict=True) + else: + + self.linear1.weight.data.normal_(mean=0.0, std=0.01) + self.linear1.bias.data.zero_() + self.linear2.weight.data.normal_(mean=0.0, std=0.01) + self.linear2.bias.data.zero_() + + self.to(devices.device) + + def forward(self, x): + return x + (self.linear2(self.linear1(x))) + + +class Hypernetwork: + filename = None + name = None + + def __init__(self, name=None): + self.filename = None + self.name = name + self.layers = {} + self.step = 0 + self.sd_checkpoint = None + self.sd_checkpoint_name = None + + for size in [320, 640, 768, 1280]: + self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) + + def weights(self): + res = [] + + for k, layers in self.layers.items(): + for layer in layers: + layer.train() + res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias] + + return res + + def save(self, filename): + state_dict = {} + + for k, v in self.layers.items(): + state_dict[k] = (v[0].state_dict(), v[1].state_dict()) + + state_dict['step'] = self.step + state_dict['name'] = self.name + state_dict['sd_checkpoint'] = self.sd_checkpoint + state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name + + torch.save(state_dict, filename) + + def load(self, filename): + self.filename = filename + if self.name is None: + self.name = os.path.splitext(os.path.basename(filename))[0] + + state_dict = torch.load(filename, map_location='cpu') + + for size, sd in state_dict.items(): + if type(size) == int: + self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) + + self.name = state_dict.get('name', self.name) + self.step = state_dict.get('step', 0) + self.sd_checkpoint = state_dict.get('sd_checkpoint', None) + self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) + + +def list_hypernetworks(path): + res = {} + for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): + name = os.path.splitext(os.path.basename(filename))[0] + res[name] = filename + return res + + +def load_hypernetwork(filename): + path = shared.hypernetworks.get(filename, None) + if path is not None: + print(f"Loading hypernetwork {filename}") + try: + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + + except Exception: + print(f"Error loading hypernetwork {path}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + if shared.loaded_hypernetwork is not None: + print(f"Unloading hypernetwork") + + shared.loaded_hypernetwork = None + + +def apply_hypernetwork(hypernetwork, context, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is None: + return context, context + + if layer is not None: + layer.hyper_k = hypernetwork_layers[0] + layer.hyper_v = hypernetwork_layers[1] + + context_k = hypernetwork_layers[0](context) + context_v = hypernetwork_layers[1](context) + return context_k, context_v + + +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) + k = self.to_k(context_k) + v = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): + assert hypernetwork_name, 'embedding not selected' + + path = shared.hypernetworks.get(hypernetwork_name, None) + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + + shared.state.textinfo = "Initializing hypernetwork training..." + shared.state.job_count = steps + + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + + log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + + if save_hypernetwork_every > 0: + hypernetwork_dir = os.path.join(log_directory, "hypernetworks") + os.makedirs(hypernetwork_dir, exist_ok=True) + else: + hypernetwork_dir = None + + if create_image_every > 0: + images_dir = os.path.join(log_directory, "images") + os.makedirs(images_dir, exist_ok=True) + else: + images_dir = None + + cond_model = shared.sd_model.cond_stage_model + + shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." + with torch.autocast("cuda"): + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + + hypernetwork = shared.loaded_hypernetwork + weights = hypernetwork.weights() + for weight in weights: + weight.requires_grad = True + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + + losses = torch.zeros((32,)) + + last_saved_file = "" + last_saved_image = "" + + ititial_step = hypernetwork.step or 0 + if ititial_step > steps: + return hypernetwork, filename + + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) + for i, (x, text) in pbar: + hypernetwork.step = i + ititial_step + + if hypernetwork.step > steps: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([text]) + + x = x.to(devices.device) + loss = shared.sd_model(x.unsqueeze(0), c)[0] + del x + + losses[hypernetwork.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + pbar.set_description(f"loss: {losses.mean():.7f}") + + if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') + hypernetwork.save(last_saved_file) + + if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: + last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') + + preview_text = text if preview_image_prompt == "" else preview_image_prompt + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + prompt=preview_text, + steps=20, + do_not_save_grid=True, + do_not_save_samples=True, + ) + + processed = processing.process_images(p) + image = processed.images[0] + + shared.state.current_image = image + image.save(last_saved_image) + + last_saved_image += f", prompt: {preview_text}" + + shared.state.job_no = hypernetwork.step + + shared.state.textinfo = f""" +

+Loss: {losses.mean():.7f}
+Step: {hypernetwork.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+

+""" + + checkpoint = sd_models.select_checkpoint() + + hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint_name = checkpoint.model_name + hypernetwork.save(filename) + + return hypernetwork, filename + + diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py new file mode 100644 index 00000000..811bc31e --- /dev/null +++ b/modules/hypernetworks/ui.py @@ -0,0 +1,43 @@ +import html +import os + +import gradio as gr + +import modules.textual_inversion.textual_inversion +import modules.textual_inversion.preprocess +from modules import sd_hijack, shared +from modules.hypernetworks import hypernetwork + + +def create_hypernetwork(name): + fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") + assert not os.path.exists(fn), f"file {fn} already exists" + + hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet.save(fn) + + shared.reload_hypernetworks() + + return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" + + +def train_hypernetwork(*args): + + initial_hypernetwork = shared.loaded_hypernetwork + + try: + sd_hijack.undo_optimizations() + + hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) + + res = f""" +Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. +Hypernetwork saved to {html.escape(filename)} +""" + return res, "" + except Exception: + raise + finally: + shared.loaded_hypernetwork = initial_hypernetwork + sd_hijack.apply_optimizations() + -- cgit v1.2.3 From b0583be0884cd17dafb408fd79b52b2a0a972563 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 15:54:34 +0300 Subject: more renames --- modules/hypernetworks/ui.py | 4 ++-- modules/ui.py | 4 ++-- webui.py | 2 +- 3 files changed, 5 insertions(+), 5 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 811bc31e..e7540f41 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -13,7 +13,7 @@ def create_hypernetwork(name): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name) hypernet.save(fn) shared.reload_hypernetworks() @@ -28,7 +28,7 @@ def train_hypernetwork(*args): try: sd_hijack.undo_optimizations() - hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args) + hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args) res = f""" Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. diff --git a/modules/ui.py b/modules/ui.py index 42e5d866..ee333c3b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1111,7 +1111,7 @@ def create_ui(wrap_gradio_gpu_call): ) create_hypernetwork.click( - fn=modules.hypernetwork.ui.create_hypernetwork, + fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ new_hypernetwork_name, ], @@ -1164,7 +1164,7 @@ def create_ui(wrap_gradio_gpu_call): ) train_hypernetwork.click( - fn=wrap_gradio_gpu_call(modules.hypernetwork.ui.train_hypernetwork, extra_outputs=[gr.update()]), + fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), _js="start_training_textual_inversion", inputs=[ train_hypernetwork_name, diff --git a/webui.py b/webui.py index faa38a0d..338f58e1 100644 --- a/webui.py +++ b/webui.py @@ -83,7 +83,7 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts")) shared.sd_model = modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) -shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) +shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) def webui(): -- cgit v1.2.3 From d682444ecc99319fbd2b142a12727501e2884ba7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 18:04:47 +0300 Subject: add option to select hypernetwork modules when creating --- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/hypernetworks/ui.py | 4 ++-- modules/ui.py | 2 ++ 3 files changed, 6 insertions(+), 4 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index aa701bda..b081f14e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -42,7 +42,7 @@ class Hypernetwork: filename = None name = None - def __init__(self, name=None): + def __init__(self, name=None, enable_sizes=None): self.filename = None self.name = name self.layers = {} @@ -50,7 +50,7 @@ class Hypernetwork: self.sd_checkpoint = None self.sd_checkpoint_name = None - for size in [320, 640, 768, 1280]: + for size in enable_sizes or [320, 640, 768, 1280]: self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) def weights(self): diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index e7540f41..cdddcce1 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -9,11 +9,11 @@ from modules import sd_hijack, shared from modules.hypernetworks import hypernetwork -def create_hypernetwork(name): +def create_hypernetwork(name, enable_sizes): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name) + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes]) hypernet.save(fn) shared.reload_hypernetworks() diff --git a/modules/ui.py b/modules/ui.py index f2d16b12..14b87b92 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1037,6 +1037,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="

Create a new hypernetwork

") new_hypernetwork_name = gr.Textbox(label="Name") + new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) with gr.Row(): with gr.Column(scale=3): @@ -1114,6 +1115,7 @@ def create_ui(wrap_gradio_gpu_call): fn=modules.hypernetworks.ui.create_hypernetwork, inputs=[ new_hypernetwork_name, + new_hypernetwork_sizes, ], outputs=[ train_hypernetwork_name, -- cgit v1.2.3 From 6d09b8d1df3a96e1380bb1650f5961781630af96 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 18:33:57 +0300 Subject: produce error when training with medvram/lowvram enabled --- modules/hypernetworks/ui.py | 2 ++ modules/textual_inversion/ui.py | 3 +++ 2 files changed, 5 insertions(+) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index cdddcce1..3541a388 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -25,6 +25,8 @@ def train_hypernetwork(*args): initial_hypernetwork = shared.loaded_hypernetwork + assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + try: sd_hijack.undo_optimizations() diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index c57de1f9..70f47343 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -22,6 +22,9 @@ def preprocess(*args): def train_embedding(*args): + + assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + try: sd_hijack.undo_optimizations() -- cgit v1.2.3 From d4ea5f4d8631f778d11efcde397e4a5b8801d43b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 19:03:08 +0300 Subject: add an option to unload models during hypernetwork training to save VRAM --- modules/hypernetworks/hypernetwork.py | 25 +++++++++++++++------- modules/hypernetworks/ui.py | 4 +++- modules/shared.py | 4 ++++ modules/textual_inversion/dataset.py | 29 ++++++++++++++++++-------- modules/textual_inversion/textual_inversion.py | 2 +- 5 files changed, 46 insertions(+), 18 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index b081f14e..4700e1ec 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -175,6 +175,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + unload = shared.opts.unload_models_when_training if save_hypernetwork_every > 0: hypernetwork_dir = os.path.join(log_directory, "hypernetworks") @@ -188,11 +189,13 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, else: images_dir = None - cond_model = shared.sd_model.cond_stage_model - shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) hypernetwork = shared.loaded_hypernetwork weights = hypernetwork.weights() @@ -211,7 +214,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, return hypernetwork, filename pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, (x, text) in pbar: + for i, (x, text, cond) in pbar: hypernetwork.step = i + ititial_step if hypernetwork.step > steps: @@ -221,11 +224,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, break with torch.autocast("cuda"): - c = cond_model([text]) - + cond = cond.to(devices.device) x = x.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] + loss = shared.sd_model(x.unsqueeze(0), cond)[0] del x + del cond losses[hypernetwork.step % losses.shape[0]] = loss.item() @@ -244,6 +247,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, preview_text = text if preview_image_prompt == "" else preview_image_prompt + optimizer.zero_grad() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, prompt=preview_text, @@ -255,6 +262,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, processed = processing.process_images(p) image = processed.images[0] + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) + shared.state.current_image = image image.save(last_saved_image) diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 3541a388..c67facbb 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -5,7 +5,7 @@ import gradio as gr import modules.textual_inversion.textual_inversion import modules.textual_inversion.preprocess -from modules import sd_hijack, shared +from modules import sd_hijack, shared, devices from modules.hypernetworks import hypernetwork @@ -41,5 +41,7 @@ Hypernetwork saved to {html.escape(filename)} raise finally: shared.loaded_hypernetwork = initial_hypernetwork + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) sd_hijack.apply_optimizations() diff --git a/modules/shared.py b/modules/shared.py index 20b45f23..c1092ff7 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -228,6 +228,10 @@ options_templates.update(options_section(('system', "System"), { "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), })) +options_templates.update(options_section(('training', "Training"), { + "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP form VRAM when training"), +})) + options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True), "sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}), diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 4d006366..f61f40d3 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -8,14 +8,14 @@ from torchvision import transforms import random import tqdm -from modules import devices +from modules import devices, shared import re re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): self.placeholder_token = placeholder_token @@ -32,6 +32,8 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' + cond_model = shared.sd_model.cond_stage_model + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): @@ -53,7 +55,13 @@ class PersonalizedBase(Dataset): init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = init_latent.to(devices.cpu) - self.dataset.append((init_latent, filename_tokens)) + if include_cond: + text = self.create_text(filename_tokens) + cond = cond_model([text]).to(devices.cpu) + else: + cond = None + + self.dataset.append((init_latent, filename_tokens, cond)) self.length = len(self.dataset) * repeats @@ -64,6 +72,12 @@ class PersonalizedBase(Dataset): def shuffle(self): self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] + def create_text(self, filename_tokens): + text = random.choice(self.lines) + text = text.replace("[name]", self.placeholder_token) + text = text.replace("[filewords]", ' '.join(filename_tokens)) + return text + def __len__(self): return self.length @@ -72,10 +86,7 @@ class PersonalizedBase(Dataset): self.shuffle() index = self.indexes[i % len(self.indexes)] - x, filename_tokens = self.dataset[index] - - text = random.choice(self.lines) - text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", ' '.join(filename_tokens)) + x, filename_tokens, cond = self.dataset[index] - return x, text + text = self.create_text(filename_tokens) + return x, text, cond diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index bb05cdc6..35f4bd9e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -201,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini return embedding, filename pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, (x, text) in pbar: + for i, (x, text, _) in pbar: embedding.step = i + ititial_step if embedding.step > steps: -- cgit v1.2.3 From 6a9ea5b41cf92cd9e980349bb5034439f4e7a58b Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 19:22:30 +0300 Subject: prevent extra modules from being saved/loaded with hypernet --- modules/hypernetworks/hypernetwork.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 4700e1ec..5608e799 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -50,7 +50,7 @@ class Hypernetwork: self.sd_checkpoint = None self.sd_checkpoint_name = None - for size in enable_sizes or [320, 640, 768, 1280]: + for size in enable_sizes or []: self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) def weights(self): -- cgit v1.2.3 From d6fcc6b87bc00fcdecea276fe5b7c7945f7a8b14 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 22:03:05 +0300 Subject: apply lr schedule to hypernets --- modules/hypernetworks/hypernetwork.py | 19 ++++++++--- modules/textual_inversion/learn_schedule.py | 34 ++++++++++++++++++++ modules/textual_inversion/textual_inversion.py | 44 +++----------------------- modules/ui.py | 2 +- 4 files changed, 54 insertions(+), 45 deletions(-) create mode 100644 modules/textual_inversion/learn_schedule.py (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 5608e799..470659df 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -14,6 +14,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class HypernetworkModule(torch.nn.Module): @@ -202,8 +203,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, for weight in weights: weight.requires_grad = True - optimizer = torch.optim.AdamW(weights, lr=learn_rate) - losses = torch.zeros((32,)) last_saved_file = "" @@ -213,12 +212,24 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) + print(f'Training at rate of {learn_rate} until step {end_step}') + + optimizer = torch.optim.AdamW(weights, lr=learn_rate) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, (x, text, cond) in pbar: hypernetwork.step = i + ititial_step - if hypernetwork.step > steps: - break + if hypernetwork.step > end_step: + try: + (learn_rate, end_step) = next(schedules) + except Exception: + break + tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') + for pg in optimizer.param_groups: + pg['lr'] = learn_rate if shared.state.interrupted: break diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py new file mode 100644 index 00000000..db720271 --- /dev/null +++ b/modules/textual_inversion/learn_schedule.py @@ -0,0 +1,34 @@ + +class LearnSchedule: + def __init__(self, learn_rate, max_steps, cur_step=0): + pairs = learn_rate.split(',') + self.rates = [] + self.it = 0 + self.maxit = 0 + for i, pair in enumerate(pairs): + tmp = pair.split(':') + if len(tmp) == 2: + step = int(tmp[1]) + if step > cur_step: + self.rates.append((float(tmp[0]), min(step, max_steps))) + self.maxit += 1 + if step > max_steps: + return + elif step == -1: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + else: + self.rates.append((float(tmp[0]), max_steps)) + self.maxit += 1 + return + + def __iter__(self): + return self + + def __next__(self): + if self.it < self.maxit: + self.it += 1 + return self.rates[self.it - 1] + else: + raise StopIteration diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 47a27faf..7717837d 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -10,6 +10,7 @@ import datetime from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset +from modules.textual_inversion.learn_schedule import LearnSchedule class Embedding: @@ -198,11 +199,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) - epoch_len = (tr_img_len * num_repeats) + tr_img_len - - scheduleIter = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(scheduleIter) + schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) + (learn_rate, end_step) = next(schedules) print(f'Training at rate of {learn_rate} until step {end_step}') optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) @@ -213,7 +211,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > end_step: try: - (learn_rate, end_step) = next(scheduleIter) + (learn_rate, end_step) = next(schedules) except: break tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') @@ -288,37 +286,3 @@ Last saved image: {html.escape(last_saved_image)}
embedding.save(filename) return embedding, filename - -class LearnSchedule: - def __init__(self, learn_rate, max_steps, cur_step=0): - pairs = learn_rate.split(',') - self.rates = [] - self.it = 0 - self.maxit = 0 - for i, pair in enumerate(pairs): - tmp = pair.split(':') - if len(tmp) == 2: - step = int(tmp[1]) - if step > cur_step: - self.rates.append((float(tmp[0]), min(step, max_steps))) - self.maxit += 1 - if step > max_steps: - return - elif step == -1: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - else: - self.rates.append((float(tmp[0]), max_steps)) - self.maxit += 1 - return - - def __iter__(self): - return self - - def __next__(self): - if self.it < self.maxit: - self.it += 1 - return self.rates[self.it - 1] - else: - raise StopIteration diff --git a/modules/ui.py b/modules/ui.py index 2b688e32..1204eef7 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1070,7 +1070,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) - learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value = "5.0e-03") + learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) -- cgit v1.2.3 From 6be32b31d181e42c639dad3451229aa7b9cfd1cf Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 11 Oct 2022 23:07:09 +0300 Subject: reports that training with medvram is possible. --- modules/hypernetworks/ui.py | 2 +- modules/textual_inversion/ui.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index c67facbb..dfa599af 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -25,7 +25,7 @@ def train_hypernetwork(*args): initial_hypernetwork = shared.loaded_hypernetwork - assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' try: sd_hijack.undo_optimizations() diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index 70f47343..36881e7a 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -23,7 +23,7 @@ def preprocess(*args): def train_embedding(*args): - assert not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram, 'Training models with lowvram or medvram is not possible' + assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible' try: sd_hijack.undo_optimizations() -- cgit v1.2.3 From 2d006ce16cd95d587533656c3ac4991495e96f23 Mon Sep 17 00:00:00 2001 From: Milly Date: Mon, 10 Oct 2022 00:56:36 +0900 Subject: xy_grid: Find hypernetwork by closest name --- modules/hypernetworks/hypernetwork.py | 11 +++++++++++ scripts/xy_grid.py | 6 +++++- 2 files changed, 16 insertions(+), 1 deletion(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 470659df..8f2192e2 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -120,6 +120,17 @@ def load_hypernetwork(filename): shared.loaded_hypernetwork = None +def find_closest_hypernetwork_name(search: str): + if not search: + return None + search = search.lower() + applicable = [name for name in shared.hypernetworks if search in name.lower()] + if not applicable: + return None + applicable = sorted(applicable, key=lambda name: len(name)) + return applicable[0] + + def apply_hypernetwork(hypernetwork, context, layer=None): hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index ef431105..6f4217ec 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -84,7 +84,11 @@ def apply_checkpoint(p, x, xs): def apply_hypernetwork(p, x, xs): - hypernetwork.load_hypernetwork(x) + if x.lower() in ["", "none"]: + name = None + else: + name = hypernetwork.find_closest_hypernetwork_name(x) + hypernetwork.load_hypernetwork(name) def apply_clip_skip(p, x, xs): -- cgit v1.2.3 From ee015a1af66a94a75c914659fa0d321e702a0a87 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 11:05:57 +0300 Subject: change textual inversion tab to train remake train interface to use tabs --- modules/hypernetworks/hypernetwork.py | 2 +- modules/ui.py | 22 +++++++++------------- 2 files changed, 10 insertions(+), 14 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 8f2192e2..8314450a 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -175,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): - assert hypernetwork_name, 'embedding not selected' + assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) shared.loaded_hypernetwork = Hypernetwork() diff --git a/modules/ui.py b/modules/ui.py index 4bfdd275..86a2da6c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1035,14 +1035,14 @@ def create_ui(wrap_gradio_gpu_call): sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() - with gr.Blocks() as textual_inversion_interface: + with gr.Blocks() as train_interface: with gr.Row().style(equal_height=False): - with gr.Column(): - with gr.Group(): - gr.HTML(value="

See wiki for detailed explanation.

") + gr.HTML(value="

See wiki for detailed explanation.

") - gr.HTML(value="

Create a new embedding

") + with gr.Row().style(equal_height=False): + with gr.Tabs(elem_id="train_tabs"): + with gr.Tab(label="Create embedding"): new_embedding_name = gr.Textbox(label="Name") initialization_text = gr.Textbox(label="Initialization text", value="*") nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1) @@ -1054,9 +1054,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column(): create_embedding = gr.Button(value="Create embedding", variant='primary') - with gr.Group(): - gr.HTML(value="

Create a new hypernetwork

") - + with gr.Tab(label="Create hypernetwork"): new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) @@ -1067,9 +1065,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column(): create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary') - with gr.Group(): - gr.HTML(value="

Preprocess images

") - + with gr.Tab(label="Preprocess images"): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) @@ -1091,7 +1087,7 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column(): run_preprocess = gr.Button(value="Preprocess", variant='primary') - with gr.Group(): + with gr.Tab(label="Train"): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) @@ -1388,7 +1384,7 @@ Requested path was: {f} (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), - (textual_inversion_interface, "Textual inversion", "ti"), + (train_interface, "Train", "ti"), (settings_interface, "Settings", "settings"), ] -- cgit v1.2.3 From c3c8eef9fd5a0c8b26319e32ca4a19b56204e6df Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 20:49:47 +0300 Subject: train: change filename processing to be more simple and configurable train: make it possible to make text files with prompts train: rework scheduler so that there's less repeating code in textual inversion and hypernets train: move epochs setting to options --- javascript/hints.js | 3 ++ modules/hypernetworks/hypernetwork.py | 40 +++++++++------------- modules/shared.py | 3 ++ modules/textual_inversion/dataset.py | 47 +++++++++++++++++++------- modules/textual_inversion/learn_schedule.py | 37 +++++++++++++++++++- modules/textual_inversion/textual_inversion.py | 35 +++++++------------ modules/ui.py | 2 -- 7 files changed, 105 insertions(+), 62 deletions(-) (limited to 'modules/hypernetworks') diff --git a/javascript/hints.js b/javascript/hints.js index b81c181b..d51ee14c 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -81,6 +81,9 @@ titles = { "Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", "Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", + + "Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.", + "Filename join string": "This string will be used to hoin split words into a single line if the option above is enabled.", } diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 8314450a..b6c06d49 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -14,7 +14,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset -from modules.textual_inversion.learn_schedule import LearnSchedule +from modules.textual_inversion.learn_schedule import LearnRateScheduler class HypernetworkModule(torch.nn.Module): @@ -223,31 +223,23 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename - schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(schedules) - print(f'Training at rate of {learn_rate} until step {end_step}') - - optimizer = torch.optim.AdamW(weights, lr=learn_rate) + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, (x, text, cond) in pbar: + for i, entry in pbar: hypernetwork.step = i + ititial_step - if hypernetwork.step > end_step: - try: - (learn_rate, end_step) = next(schedules) - except Exception: - break - tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') - for pg in optimizer.param_groups: - pg['lr'] = learn_rate + scheduler.apply(optimizer, hypernetwork.step) + if scheduler.finished: + break if shared.state.interrupted: break with torch.autocast("cuda"): - cond = cond.to(devices.device) - x = x.to(devices.device) + cond = entry.cond.to(devices.device) + x = entry.latent.to(devices.device) loss = shared.sd_model(x.unsqueeze(0), cond)[0] del x del cond @@ -267,7 +259,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') - preview_text = text if preview_image_prompt == "" else preview_image_prompt + preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt optimizer.zero_grad() shared.sd_model.cond_stage_model.to(devices.device) @@ -282,16 +274,16 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, ) processed = processing.process_images(p) - image = processed.images[0] + image = processed.images[0] if len(processed.images)>0 else None if unload: shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu) - shared.state.current_image = image - image.save(last_saved_image) - - last_saved_image += f", prompt: {preview_text}" + if image is not None: + shared.state.current_image = image + image.save(last_saved_image) + last_saved_image += f", prompt: {preview_text}" shared.state.job_no = hypernetwork.step @@ -299,7 +291,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,

Loss: {losses.mean():.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(text)}
+Last prompt: {html.escape(entry.cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/shared.py b/modules/shared.py index 42e99741..e64e69fc 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -231,6 +231,9 @@ options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"), + "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), + "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), + "training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index f61f40d3..67e90afe 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -11,11 +11,21 @@ import tqdm from modules import devices, shared import re -re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") +re_numbers_at_start = re.compile(r"^[-\d]+\s*") + + +class DatasetEntry: + def __init__(self, filename=None, latent=None, filename_text=None): + self.filename = filename + self.latent = latent + self.filename_text = filename_text + self.cond = None + self.cond_text = None class PersonalizedBase(Dataset): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): + re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None self.placeholder_token = placeholder_token @@ -42,9 +52,18 @@ class PersonalizedBase(Dataset): except Exception: continue + text_filename = os.path.splitext(path)[0] + ".txt" filename = os.path.basename(path) - filename_tokens = os.path.splitext(filename)[0] - filename_tokens = re_tag.findall(filename_tokens) + + if os.path.exists(text_filename): + with open(text_filename, "r", encoding="utf8") as file: + filename_text = file.read() + else: + filename_text = os.path.splitext(filename)[0] + filename_text = re.sub(re_numbers_at_start, '', filename_text) + if re_word: + tokens = re_word.findall(filename_text) + filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens) npimage = np.array(image).astype(np.uint8) npimage = (npimage / 127.5 - 1.0).astype(np.float32) @@ -55,13 +74,13 @@ class PersonalizedBase(Dataset): init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() init_latent = init_latent.to(devices.cpu) + entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent) + if include_cond: - text = self.create_text(filename_tokens) - cond = cond_model([text]).to(devices.cpu) - else: - cond = None + entry.cond_text = self.create_text(filename_text) + entry.cond = cond_model([entry.cond_text]).to(devices.cpu) - self.dataset.append((init_latent, filename_tokens, cond)) + self.dataset.append(entry) self.length = len(self.dataset) * repeats @@ -72,10 +91,10 @@ class PersonalizedBase(Dataset): def shuffle(self): self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] - def create_text(self, filename_tokens): + def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", ' '.join(filename_tokens)) + text = text.replace("[filewords]", filename_text) return text def __len__(self): @@ -86,7 +105,9 @@ class PersonalizedBase(Dataset): self.shuffle() index = self.indexes[i % len(self.indexes)] - x, filename_tokens, cond = self.dataset[index] + entry = self.dataset[index] + + if entry.cond is None: + entry.cond_text = self.create_text(entry.filename_text) - text = self.create_text(filename_tokens) - return x, text, cond + return entry diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index db720271..2062726a 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -1,6 +1,12 @@ +import tqdm -class LearnSchedule: + +class LearnScheduleIterator: def __init__(self, learn_rate, max_steps, cur_step=0): + """ + specify learn_rate as "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, 1e-5:10000 until 10000 + """ + pairs = learn_rate.split(',') self.rates = [] self.it = 0 @@ -32,3 +38,32 @@ class LearnSchedule: return self.rates[self.it - 1] else: raise StopIteration + + +class LearnRateScheduler: + def __init__(self, learn_rate, max_steps, cur_step=0, verbose=True): + self.schedules = LearnScheduleIterator(learn_rate, max_steps, cur_step) + (self.learn_rate, self.end_step) = next(self.schedules) + self.verbose = verbose + + if self.verbose: + print(f'Training at rate of {self.learn_rate} until step {self.end_step}') + + self.finished = False + + def apply(self, optimizer, step_number): + if step_number <= self.end_step: + return + + try: + (self.learn_rate, self.end_step) = next(self.schedules) + except Exception: + self.finished = True + return + + if self.verbose: + tqdm.tqdm.write(f'Training at rate of {self.learn_rate} until step {self.end_step}') + + for pg in optimizer.param_groups: + pg['lr'] = self.learn_rate + diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c5153e4a..fa0e33a2 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -11,7 +11,7 @@ from PIL import Image, PngImagePlugin from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset -from modules.textual_inversion.learn_schedule import LearnSchedule +from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, @@ -172,8 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn - -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -205,7 +204,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -221,32 +220,24 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - schedules = iter(LearnSchedule(learn_rate, steps, ititial_step)) - (learn_rate, end_step) = next(schedules) - print(f'Training at rate of {learn_rate} until step {end_step}') - - optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, (x, text, _) in pbar: + for i, entry in pbar: embedding.step = i + ititial_step - if embedding.step > end_step: - try: - (learn_rate, end_step) = next(schedules) - except: - break - tqdm.tqdm.write(f'Training at rate of {learn_rate} until step {end_step}') - for pg in optimizer.param_groups: - pg['lr'] = learn_rate + scheduler.apply(optimizer, embedding.step) + if scheduler.finished: + break if shared.state.interrupted: break with torch.autocast("cuda"): - c = cond_model([text]) + c = cond_model([entry.cond_text]) - x = x.to(devices.device) + x = entry.latent.to(devices.device) loss = shared.sd_model(x.unsqueeze(0), c)[0] del x @@ -268,7 +259,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') - preview_text = text if preview_image_prompt == "" else preview_image_prompt + preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, @@ -314,7 +305,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini

Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(text)}
+Last prompt: {html.escape(entry.cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/ui.py b/modules/ui.py index 2b332267..c42535c8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1098,7 +1098,6 @@ def create_ui(wrap_gradio_gpu_call): training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) - num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) @@ -1176,7 +1175,6 @@ def create_ui(wrap_gradio_gpu_call): training_width, training_height, steps, - num_repeats, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 1cfc2a18981ee56bdb69a2de7b463a11ad05e329 Mon Sep 17 00:00:00 2001 From: Melan Date: Wed, 12 Oct 2022 23:36:29 +0200 Subject: Save a csv containing the loss while training --- modules/hypernetworks/hypernetwork.py | 17 ++++++++++++++++- modules/textual_inversion/textual_inversion.py | 17 ++++++++++++++++- modules/ui.py | 3 +++ 3 files changed, 35 insertions(+), 2 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index b6c06d49..6522078f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -5,6 +5,7 @@ import os import sys import traceback import tqdm +import csv import torch @@ -174,7 +175,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): return self.to_out(out) -def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): +def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, write_csv_every, template_file, preview_image_prompt): assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) @@ -256,6 +257,20 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) + print(f"{write_csv_every} > {hypernetwork.step % write_csv_every == 0}, {write_csv_every}") + if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0: + write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True + + with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout: + + csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss"]) + + if write_csv_header: + csv_writer.writeheader() + + csv_writer.writerow({"step": hypernetwork.step, + "loss": f"{losses.mean():.7f}"}) + if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fa0e33a2..25038a89 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import csv from PIL import Image, PngImagePlugin @@ -172,7 +173,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, write_csv_every, template_file, save_image_with_stored_embedding, preview_image_prompt): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -256,6 +257,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) + if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0: + write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True + + with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout: + + csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss"]) + + if write_csv_header: + csv_writer.writeheader() + + csv_writer.writerow({"epoch": epoch_num + 1, + "epoch_step": epoch_step - 1, + "loss": f"{losses.mean():.7f}"}) + if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') diff --git a/modules/ui.py b/modules/ui.py index e07ee0e1..1195c2f1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1096,6 +1096,7 @@ def create_ui(wrap_gradio_gpu_call): training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) + write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_image_prompt = gr.Textbox(label='Preview prompt', value="") @@ -1174,6 +1175,7 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, + write_csv_every, template_file, save_image_with_stored_embedding, preview_image_prompt, @@ -1195,6 +1197,7 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, + write_csv_every, template_file, preview_image_prompt, ], -- cgit v1.2.3 From 8636b50aea83f9c743f005722d9f3f8ee9303e00 Mon Sep 17 00:00:00 2001 From: Melan Date: Thu, 13 Oct 2022 12:37:58 +0200 Subject: Add learn_rate to csv and removed a left-over debug statement --- modules/hypernetworks/hypernetwork.py | 6 +++--- modules/textual_inversion/textual_inversion.py | 5 +++-- 2 files changed, 6 insertions(+), 5 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6522078f..2751a8c8 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -257,19 +257,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) - print(f"{write_csv_every} > {hypernetwork.step % write_csv_every == 0}, {write_csv_every}") if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0: write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout: - csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss"]) + csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"]) if write_csv_header: csv_writer.writeheader() csv_writer.writerow({"step": hypernetwork.step, - "loss": f"{losses.mean():.7f}"}) + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate}) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 25038a89..b83df079 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -262,14 +262,15 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout: - csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss"]) + csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"]) if write_csv_header: csv_writer.writeheader() csv_writer.writerow({"epoch": epoch_num + 1, "epoch_step": epoch_step - 1, - "loss": f"{losses.mean():.7f}"}) + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate}) if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') -- cgit v1.2.3 From 354ef0da3b1f0fa5c113d04b6c79e3908c848d23 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 13 Oct 2022 20:12:37 +0300 Subject: add hypernetwork multipliers --- modules/hypernetworks/hypernetwork.py | 8 +++++++- modules/shared.py | 5 ++++- modules/ui.py | 5 ++++- scripts/xy_grid.py | 9 ++++++++- style.css | 3 +++ webui.py | 2 +- 6 files changed, 27 insertions(+), 5 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index b6c06d49..f1248bb7 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -18,6 +18,8 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler class HypernetworkModule(torch.nn.Module): + multiplier = 1.0 + def __init__(self, dim, state_dict=None): super().__init__() @@ -36,7 +38,11 @@ class HypernetworkModule(torch.nn.Module): self.to(devices.device) def forward(self, x): - return x + (self.linear2(self.linear1(x))) + return x + (self.linear2(self.linear1(x))) * self.multiplier + + +def apply_strength(value=None): + HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength class Hypernetwork: diff --git a/modules/shared.py b/modules/shared.py index d8e3a286..5901e605 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -238,7 +238,8 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), - "sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), + "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), + "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), @@ -348,6 +349,8 @@ class Options: item = self.data_labels.get(key) item.onchange = func + func() + def dumpjson(self): d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()} return json.dumps(d) diff --git a/modules/ui.py b/modules/ui.py index 0a58f6be..673014f2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1244,7 +1244,10 @@ def create_ui(wrap_gradio_gpu_call): def refresh(): info.refresh() refreshed_args = info.component_args() if callable(info.component_args) else info.component_args - res.choices = refreshed_args["choices"] + + for k, v in refreshed_args.items(): + setattr(res, k, v) + return gr.update(**(refreshed_args or {})) refresh_button.click( diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 02931ae6..efb63af5 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -107,6 +107,10 @@ def apply_hypernetwork(p, x, xs): hypernetwork.load_hypernetwork(name) +def apply_hypernetwork_strength(p, x, xs): + hypernetwork.apply_strength(x) + + def confirm_hypernetworks(p, xs): for x in xs: if x.lower() in ["", "none"]: @@ -165,6 +169,7 @@ axis_options = [ AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers), AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints), AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks), + AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None), AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None), AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None), AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None), @@ -250,7 +255,7 @@ class Script(scripts.Script): y_values = gr.Textbox(label="Y values", visible=False, lines=1) draw_legend = gr.Checkbox(label='Draw legend', value=True) - include_lone_images = gr.Checkbox(label='Include Separate Images', value=True) + include_lone_images = gr.Checkbox(label='Include Separate Images', value=False) no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False) return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds] @@ -377,6 +382,8 @@ class Script(scripts.Script): modules.sd_models.reload_model_weights(shared.sd_model) hypernetwork.load_hypernetwork(opts.sd_hypernetwork) + hypernetwork.apply_strength() + opts.data["CLIP_stop_at_last_layers"] = CLIP_stop_at_last_layers diff --git a/style.css b/style.css index ad2a52cc..aa3d379c 100644 --- a/style.css +++ b/style.css @@ -522,6 +522,9 @@ canvas[key="mask"] { z-index: 200; width: 8em; } +#quicksettings .gr-box > div > div > input.gr-text-input { + top: -1.12em; +} .row.gr-compact{ overflow: visible; diff --git a/webui.py b/webui.py index 33ba7905..fe0ce321 100644 --- a/webui.py +++ b/webui.py @@ -72,7 +72,6 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) - def initialize(): modelloader.cleanup_models() modules.sd_models.setup_model() @@ -86,6 +85,7 @@ def initialize(): shared.sd_model = modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) + shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) def webui(): -- cgit v1.2.3 From c344ba3b325459abbf9b0df2c1b18f7bf99805b2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 14 Oct 2022 20:31:49 +0300 Subject: add option to read generation params for learning previews from txt2img --- modules/hypernetworks/hypernetwork.py | 21 ++++++++++++++++----- modules/textual_inversion/textual_inversion.py | 25 ++++++++++++++++++------- modules/ui.py | 20 +++++++++++++++++--- 3 files changed, 51 insertions(+), 15 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index f1248bb7..e5cb1817 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -180,7 +180,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): return self.to_out(out) -def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): +def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) @@ -265,20 +265,31 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') - preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt - optimizer.zero_grad() shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device) p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, - prompt=preview_text, - steps=20, do_not_save_grid=True, do_not_save_samples=True, ) + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entry.cond_text + p.steps = 20 + + preview_text = p.prompt + processed = processing.process_images(p) image = processed.images[0] if len(processed.images)>0 else None diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fa0e33a2..3d835358 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -172,7 +172,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -259,18 +259,29 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') - preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt - p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, - prompt=preview_text, - steps=20, - height=training_height, - width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entry.cond_text + p.steps = 20 + p.width = training_width + p.height = training_height + + preview_text = p.prompt + processed = processing.process_images(p) image = processed.images[0] diff --git a/modules/ui.py b/modules/ui.py index 828bfeea..4a04c2cc 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -711,6 +711,18 @@ def create_ui(wrap_gradio_gpu_call): (firstphase_width, "First pass size-1"), (firstphase_height, "First pass size-2"), ] + + txt2img_preview_params = [ + txt2img_prompt, + txt2img_negative_prompt, + steps, + sampler_index, + cfg_scale, + seed, + width, + height, + ] + token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter]) with gr.Blocks(analytics_enabled=False) as img2img_interface: @@ -1162,7 +1174,7 @@ def create_ui(wrap_gradio_gpu_call): create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) - preview_image_prompt = gr.Textbox(label='Preview prompt', value="") + preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) with gr.Row(): interrupt_training = gr.Button(value="Interrupt") @@ -1240,7 +1252,8 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every, template_file, save_image_with_stored_embedding, - preview_image_prompt, + preview_from_txt2img, + *txt2img_preview_params, ], outputs=[ ti_output, @@ -1260,7 +1273,8 @@ def create_ui(wrap_gradio_gpu_call): create_image_every, save_embedding_every, template_file, - preview_image_prompt, + preview_from_txt2img, + *txt2img_preview_params, ], outputs=[ ti_output, -- cgit v1.2.3 From 03d62538aebeff51713619fe808c953bdb70193d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 14 Oct 2022 22:43:55 +0300 Subject: remove duplicate code for log loss, add step, make it read from options rather than gradio input --- modules/hypernetworks/hypernetwork.py | 20 ++++-------- modules/shared.py | 3 +- modules/textual_inversion/textual_inversion.py | 44 ++++++++++++++++++-------- modules/ui.py | 3 -- 4 files changed, 38 insertions(+), 32 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index edb8cba1..59c7ac6e 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -15,6 +15,7 @@ import torch from torch import einsum from einops import rearrange, repeat import modules.textual_inversion.dataset +from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler @@ -210,7 +211,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) @@ -263,19 +264,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) - if write_csv_every > 0 and hypernetwork_dir is not None and hypernetwork.step % write_csv_every == 0: - write_csv_header = False if os.path.exists(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv")) else True - - with open(os.path.join(hypernetwork_dir, "hypernetwork_loss.csv"), "a+") as fout: - - csv_writer = csv.DictWriter(fout, fieldnames=["step", "loss", "learn_rate"]) - - if write_csv_header: - csv_writer.writeheader() - - csv_writer.writerow({"step": hypernetwork.step, - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate}) + textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') diff --git a/modules/shared.py b/modules/shared.py index 695d29b6..d41a7ab3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -236,7 +236,8 @@ options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), - "training_image_repeats_per_epoch": OptionInfo(100, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), + "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), + "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 1f5ace6f..da0d77a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -173,6 +173,32 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn +def write_loss(log_directory, filename, step, epoch_len, values): + if shared.opts.training_write_csv_every == 0: + return + + if step % shared.opts.training_write_csv_every != 0: + return + + write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True + + with open(os.path.join(log_directory, filename), "a+", newline='') as fout: + csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())]) + + if write_csv_header: + csv_writer.writeheader() + + epoch = step // epoch_len + epoch_step = step - epoch * epoch_len + + csv_writer.writerow({ + "step": step + 1, + "epoch": epoch + 1, + "epoch_step": epoch_step + 1, + **values, + }) + + def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' @@ -257,20 +283,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') embedding.save(last_saved_file) - if write_csv_every > 0 and log_directory is not None and embedding.step % write_csv_every == 0: - write_csv_header = False if os.path.exists(os.path.join(log_directory, "textual_inversion_loss.csv")) else True - - with open(os.path.join(log_directory, "textual_inversion_loss.csv"), "a+") as fout: - - csv_writer = csv.DictWriter(fout, fieldnames=["epoch", "epoch_step", "loss", "learn_rate"]) - - if write_csv_header: - csv_writer.writeheader() - - csv_writer.writerow({"epoch": epoch_num + 1, - "epoch_step": epoch_step - 1, - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate}) + write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') diff --git a/modules/ui.py b/modules/ui.py index be4a43a7..a08ffc9b 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1172,7 +1172,6 @@ def create_ui(wrap_gradio_gpu_call): training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) - write_csv_every = gr.Number(label='Save an csv containing the loss to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) @@ -1251,7 +1250,6 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, - write_csv_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, @@ -1274,7 +1272,6 @@ def create_ui(wrap_gradio_gpu_call): steps, create_image_every, save_embedding_every, - write_csv_every, template_file, preview_from_txt2img, *txt2img_preview_params, -- cgit v1.2.3 From c7a86f7fe9c0b8967a87e8d709f507d2f44400d8 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 15 Oct 2022 09:24:59 +0300 Subject: add option to use batch size for training --- modules/hypernetworks/hypernetwork.py | 33 +++++++++++++++++++------- modules/textual_inversion/dataset.py | 31 ++++++++++++++---------- modules/textual_inversion/textual_inversion.py | 17 +++++++------ modules/ui.py | 3 +++ 4 files changed, 54 insertions(+), 30 deletions(-) (limited to 'modules/hypernetworks') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 59c7ac6e..a2b3bc0a 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -182,7 +182,21 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): return self.to_out(out) -def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def stack_conds(conds): + if len(conds) == 1: + return torch.stack(conds) + + # same as in reconstruct_multicond_batch + token_count = max([x.shape[0] for x in conds]) + for i in range(len(conds)): + if conds[i].shape[0] != token_count: + last_vector = conds[i][-1:] + last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1]) + conds[i] = torch.vstack([conds[i], last_vector_repeated]) + + return torch.stack(conds) + +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) @@ -211,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) @@ -235,7 +249,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, entry in pbar: + for i, entries in pbar: hypernetwork.step = i + ititial_step scheduler.apply(optimizer, hypernetwork.step) @@ -246,11 +260,12 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, break with torch.autocast("cuda"): - cond = entry.cond.to(devices.device) - x = entry.latent.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), cond)[0] + c = stack_conds([entry.cond for entry in entries]).to(devices.device) +# c = torch.vstack([entry.cond for entry in entries]).to(devices.device) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] del x - del cond + del c losses[hypernetwork.step % losses.shape[0]] = loss.item() @@ -292,7 +307,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, p.width = preview_width p.height = preview_height else: - p.prompt = entry.cond_text + p.prompt = entries[0].cond_text p.steps = 20 preview_text = p.prompt @@ -315,7 +330,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,

Loss: {losses.mean():.7f}
Step: {hypernetwork.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 67e90afe..bd99c0cb 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -24,11 +24,12 @@ class DatasetEntry: class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False): - re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex)>0 else None + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): + re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token + self.batch_size = batch_size self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) @@ -78,13 +79,13 @@ class PersonalizedBase(Dataset): if include_cond: entry.cond_text = self.create_text(filename_text) - entry.cond = cond_model([entry.cond_text]).to(devices.cpu) + entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0) self.dataset.append(entry) - self.length = len(self.dataset) * repeats + self.length = len(self.dataset) * repeats // batch_size - self.initial_indexes = np.arange(self.length) % len(self.dataset) + self.initial_indexes = np.arange(len(self.dataset)) self.indexes = None self.shuffle() @@ -101,13 +102,19 @@ class PersonalizedBase(Dataset): return self.length def __getitem__(self, i): - if i % len(self.dataset) == 0: - self.shuffle() + res = [] - index = self.indexes[i % len(self.indexes)] - entry = self.dataset[index] + for j in range(self.batch_size): + position = i * self.batch_size + j + if position % len(self.indexes) == 0: + self.shuffle() - if entry.cond is None: - entry.cond_text = self.create_text(entry.filename_text) + index = self.indexes[position % len(self.indexes)] + entry = self.dataset[index] - return entry + if entry.cond is None: + entry.cond_text = self.create_text(entry.filename_text) + + res.append(entry) + + return res diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index da0d77a0..e754747e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -199,7 +199,7 @@ def write_loss(log_directory, filename, step, epoch_len, values): }) -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -231,7 +231,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) hijack = sd_hijack.model_hijack @@ -251,7 +251,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, entry in pbar: + for i, entries in pbar: embedding.step = i + ititial_step scheduler.apply(optimizer, embedding.step) @@ -262,10 +262,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini break with torch.autocast("cuda"): - c = cond_model([entry.cond_text]) - - x = entry.latent.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] + c = cond_model([entry.cond_text for entry in entries]) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] del x losses[embedding.step % losses.shape[0]] = loss.item() @@ -307,7 +306,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini p.width = preview_width p.height = preview_height else: - p.prompt = entry.cond_text + p.prompt = entries[0].cond_text p.steps = 20 p.width = training_width p.height = training_height @@ -348,7 +347,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini

Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entries[0].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

diff --git a/modules/ui.py b/modules/ui.py index 1bc919c7..45550ea8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1166,6 +1166,7 @@ def create_ui(wrap_gradio_gpu_call): train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") + batch_size = gr.Number(label='Batch size', value=1, precision=0) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) @@ -1244,6 +1245,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ train_embedding_name, learn_rate, + batch_size, dataset_directory, log_directory, training_width, @@ -1268,6 +1270,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ train_hypernetwork_name, learn_rate, + batch_size, dataset_directory, log_directory, steps, -- cgit v1.2.3