From 762265eab58cdb8f2d6398769bab43d8b8db0075 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 07:52:45 +0300 Subject: autofixes from ruff --- modules/images.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/images.py') diff --git a/modules/images.py b/modules/images.py index a41965ab..3d5d76cc 100644 --- a/modules/images.py +++ b/modules/images.py @@ -409,13 +409,13 @@ class FilenameGenerator: time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format try: time_zone = pytz.timezone(args[1]) if len(args) > 1 else None - except pytz.exceptions.UnknownTimeZoneError as _: + except pytz.exceptions.UnknownTimeZoneError: time_zone = None time_zone_time = time_datetime.astimezone(time_zone) try: formatted_time = time_zone_time.strftime(time_format) - except (ValueError, TypeError) as _: + except (ValueError, TypeError): formatted_time = time_zone_time.strftime(self.default_time_format) return sanitize_filename_part(formatted_time, replace_spaces=False) -- cgit v1.2.3 From 96d6ca4199e7c5eee8d451618de5161cea317c40 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:25:25 +0300 Subject: manual fixes for ruff --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- extensions-builtin/LDSR/scripts/ldsr_model.py | 3 +- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 26 ++--- extensions-builtin/ScuNET/scunet_model_arch.py | 9 +- extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +- modules/api/api.py | 129 +++++++++++----------- modules/api/models.py | 5 +- modules/codeformer/codeformer_arch.py | 2 +- modules/esrgan_model_arch.py | 2 + modules/extra_networks_hypernet.py | 2 +- modules/images.py | 4 +- modules/img2img.py | 1 - modules/interrogate.py | 1 - modules/modelloader.py | 6 +- modules/models/diffusion/ddpm_edit.py | 26 ++--- modules/models/diffusion/uni_pc/sampler.py | 3 +- modules/processing.py | 2 +- modules/prompt_parser.py | 11 +- modules/textual_inversion/autocrop.py | 2 +- modules/ui.py | 8 +- modules/upscaler.py | 2 +- 22 files changed, 129 insertions(+), 129 deletions(-) (limited to 'modules/images.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 2339de7f..a5fb8907 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -243,7 +243,7 @@ def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) log["sample_noquant"] = x_sample_noquant log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) - except: + except Exception: pass log["sample"] = x_sample diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py index da19cff1..e8dc083c 100644 --- a/extensions-builtin/LDSR/scripts/ldsr_model.py +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -7,7 +7,8 @@ from basicsr.utils.download_util import load_file_from_url from modules.upscaler import Upscaler, UpscalerData from ldsr_model_arch import LDSR from modules import shared, script_callbacks -import sd_hijack_autoencoder, sd_hijack_ddpm_v1 +import sd_hijack_autoencoder +import sd_hijack_ddpm_v1 class UpscalerLDSR(Upscaler): diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index db2231dd..6303fed5 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -1,16 +1,21 @@ # The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo # The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo # As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder - +import numpy as np import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager + +from torch.optim.lr_scheduler import LambdaLR + +from ldm.modules.ema import LitEma from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.util import instantiate_from_config import ldm.models.autoencoder +from packaging import version class VQModel(pl.LightningModule): def __init__(self, @@ -249,7 +254,8 @@ class VQModel(pl.LightningModule): if plot_ema: with self.ema_scope(): xrec_ema, _ = self(x) - if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) + if x.shape[1] > 3: + xrec_ema = self.to_rgb(xrec_ema) log["reconstructions_ema"] = xrec_ema return log diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 5c0488e5..4d3f6c56 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -450,7 +450,7 @@ class LatentDiffusionV1(DDPMV1): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -877,16 +877,6 @@ class LatentDiffusionV1(DDPMV1): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1157,8 +1147,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1205,8 +1197,10 @@ class LatentDiffusionV1(DDPMV1): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1322,7 +1316,7 @@ class LatentDiffusionV1(DDPMV1): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 43ca8d36..8028918a 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -61,7 +61,9 @@ class WMSA(nn.Module): Returns: output: tensor shape [b h w c] """ - if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + if self.type != 'W': + x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) h_windows = x.size(1) w_windows = x.size(2) @@ -85,8 +87,9 @@ class WMSA(nn.Module): output = self.linear(output) output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) - if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), - dims=(1, 2)) + if self.type != 'W': + output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2)) + return output def relative_embedding(self): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index e8783bca..d77c3a92 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -45,7 +45,7 @@ class UpscalerSwinIR(Upscaler): img = upscale(img, model) try: torch.cuda.empty_cache() - except: + except Exception: pass return img diff --git a/modules/api/api.py b/modules/api/api.py index d47c39fc..f52d371b 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,7 +15,8 @@ from secrets import compare_digest import modules.shared as shared from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing -from modules.api.models import * +from modules.api import models +from modules.shared import opts from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.textual_inversion.textual_inversion import create_embedding, train_embedding from modules.textual_inversion.preprocess import preprocess @@ -25,20 +26,21 @@ from modules.sd_models import checkpoints_list, unload_model_weights, reload_mod from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices -from typing import List +from typing import Dict, List, Any import piexif import piexif.helper + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") + except Exception: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except: + except Exception: raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): @@ -99,7 +101,7 @@ def api_middleware(app: FastAPI): import starlette # importing just so it can be placed on silent list from rich.console import Console console = Console() - except: + except Exception: import traceback rich_available = False @@ -166,36 +168,36 @@ class Api: self.app = app self.queue_lock = queue_lock api_middleware(self.app) - self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) - self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) - self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) - self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) - self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) - self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse) self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) - self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel) self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) - self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) - self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) - self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) - self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) - self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) - self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) - self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) - self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem]) - self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem]) + self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse) self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) - self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse) - self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) - self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) - self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) + self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse) + self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse) + self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse) self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"]) self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"]) - self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=ScriptsList) + self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList) self.default_script_arg_txt2img = [] self.default_script_arg_img2img = [] @@ -224,7 +226,7 @@ class Api: t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] - return ScriptsList(txt2img = t2ilist, img2img = i2ilist) + return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist) def get_script(self, script_name, script_runner): if script_name is None or script_name == "": @@ -276,7 +278,7 @@ class Api: script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx] return script_args - def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI): script_runner = scripts.scripts_txt2img if not script_runner.scripts: script_runner.initialize_scripts(False) @@ -320,9 +322,9 @@ class Api: b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else [] - return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) - def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI): init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -381,9 +383,9 @@ class Api: img2imgreq.init_images = None img2imgreq.mask = None - return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) - def extras_single_image_api(self, req: ExtrasSingleImageRequest): + def extras_single_image_api(self, req: models.ExtrasSingleImageRequest): reqDict = setUpscalers(req) reqDict['image'] = decode_base64_to_image(reqDict['image']) @@ -391,9 +393,9 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) - def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest): reqDict = setUpscalers(req) image_list = reqDict.pop('imageList', []) @@ -402,15 +404,15 @@ class Api: with self.queue_lock: result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict) - return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) - def pnginfoapi(self, req: PNGInfoRequest): + def pnginfoapi(self, req: models.PNGInfoRequest): if(not req.image.strip()): - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") image = decode_base64_to_image(req.image.strip()) if image is None: - return PNGInfoResponse(info="") + return models.PNGInfoResponse(info="") geninfo, items = images.read_info_from_image(image) if geninfo is None: @@ -418,13 +420,13 @@ class Api: items = {**{'parameters': geninfo}, **items} - return PNGInfoResponse(info=geninfo, items=items) + return models.PNGInfoResponse(info=geninfo, items=items) - def progressapi(self, req: ProgressRequest = Depends()): + def progressapi(self, req: models.ProgressRequest = Depends()): # copy from check_progress_call of ui.py if shared.state.job_count == 0: - return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) # avoid dividing zero progress = 0.01 @@ -446,9 +448,9 @@ class Api: if shared.state.current_image and not req.skip_current_image: current_image = encode_pil_to_base64(shared.state.current_image) - return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) + return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) - def interrogateapi(self, interrogatereq: InterrogateRequest): + def interrogateapi(self, interrogatereq: models.InterrogateRequest): image_b64 = interrogatereq.image if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") @@ -465,7 +467,7 @@ class Api: else: raise HTTPException(status_code=404, detail="Model not found") - return InterrogateResponse(caption=processed) + return models.InterrogateResponse(caption=processed) def interruptapi(self): shared.state.interrupt() @@ -570,36 +572,36 @@ class Api: filename = create_embedding(**args) # create empty embedding sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used shared.state.end() - return CreateResponse(info=f"create embedding filename: {filename}") + return models.CreateResponse(info=f"create embedding filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create embedding error: {e}") + return models.TrainResponse(info=f"create embedding error: {e}") def create_hypernetwork(self, args: dict): try: shared.state.begin() filename = create_hypernetwork(**args) # create empty embedding shared.state.end() - return CreateResponse(info=f"create hypernetwork filename: {filename}") + return models.CreateResponse(info=f"create hypernetwork filename: {filename}") except AssertionError as e: shared.state.end() - return TrainResponse(info=f"create hypernetwork error: {e}") + return models.TrainResponse(info=f"create hypernetwork error: {e}") def preprocess(self, args: dict): try: shared.state.begin() preprocess(**args) # quick operation unless blip/booru interrogation is enabled shared.state.end() - return PreprocessResponse(info = 'preprocess complete') + return models.PreprocessResponse(info = 'preprocess complete') except KeyError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: invalid token: {e}") + return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}") except AssertionError as e: shared.state.end() - return PreprocessResponse(info=f"preprocess error: {e}") + return models.PreprocessResponse(info=f"preprocess error: {e}") except FileNotFoundError as e: shared.state.end() - return PreprocessResponse(info=f'preprocess error: {e}') + return models.PreprocessResponse(info=f'preprocess error: {e}') def train_embedding(self, args: dict): try: @@ -617,10 +619,10 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError as msg: shared.state.end() - return TrainResponse(info=f"train embedding error: {msg}") + return models.TrainResponse(info=f"train embedding error: {msg}") def train_hypernetwork(self, args: dict): try: @@ -641,14 +643,15 @@ class Api: if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") + return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}") except AssertionError: shared.state.end() - return TrainResponse(info=f"train embedding error: {error}") + return models.TrainResponse(info=f"train embedding error: {error}") def get_memory(self): try: - import os, psutil + import os + import psutil process = psutil.Process(os.getpid()) res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe @@ -675,10 +678,10 @@ class Api: 'events': warnings, } else: - cuda = { 'error': 'unavailable' } + cuda = {'error': 'unavailable'} except Exception as err: - cuda = { 'error': f'{err}' } - return MemoryResponse(ram = ram, cuda = cuda) + cuda = {'error': f'{err}'} + return models.MemoryResponse(ram=ram, cuda=cuda) def launch(self, server_name, port): self.app.include_router(self.router) diff --git a/modules/api/models.py b/modules/api/models.py index 4a70f440..4d291076 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -223,8 +223,9 @@ for key in _options: if(_options[key].dest != 'help'): flag = _options[key] _type = str - if _options[key].default is not None: _type = type(_options[key].default) - flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) + if _options[key].default is not None: + _type = type(_options[key].default) + flags.update({flag.dest: (_type, Field(default=flag.default, description=flag.help))}) FlagsModel = create_model("Flags", **flags) diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 11dcc3ee..f1a7cf09 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -7,7 +7,7 @@ from torch import nn, Tensor import torch.nn.functional as F from typing import Optional, List -from modules.codeformer.vqgan_arch import * +from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 6071fea7..7f8bc7c0 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -438,9 +438,11 @@ def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias= padding = padding if pad_type == 'zero' else 0 if convtype=='PartialConv2D': + from torchvision.ops import PartialConv2d # this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='DeformConv2D': + from torchvision.ops import DeformConv2d # not tested c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=groups) elif convtype=='Conv3D': diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 04f27c9f..aa2a14ef 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -1,4 +1,4 @@ -from modules import extra_networks, shared, extra_networks +from modules import extra_networks, shared from modules.hypernetworks import hypernetwork diff --git a/modules/images.py b/modules/images.py index 3d5d76cc..5eb6d855 100644 --- a/modules/images.py +++ b/modules/images.py @@ -472,9 +472,9 @@ def get_next_sequence_number(path, basename): prefix_length = len(basename) for p in os.listdir(path): if p.startswith(basename): - l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) + parts = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element) try: - result = max(int(l[0]), result) + result = max(int(parts[0]), result) except ValueError: pass diff --git a/modules/img2img.py b/modules/img2img.py index cdae301a..32b1ecd6 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -13,7 +13,6 @@ from modules.shared import opts, state import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html -import modules.images as images import modules.scripts diff --git a/modules/interrogate.py b/modules/interrogate.py index 9f7d657f..22df9216 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -11,7 +11,6 @@ import torch.hub from torchvision import transforms from torchvision.transforms.functional import InterpolationMode -import modules.shared as shared from modules import devices, paths, shared, lowvram, modelloader, errors blip_image_eval_size = 384 diff --git a/modules/modelloader.py b/modules/modelloader.py index cb85ac4f..cf685000 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -108,12 +108,12 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None): print(f"Moving {file} from {src_path} to {dest_path}.") try: shutil.move(fullpath, dest_path) - except: + except Exception: pass if len(os.listdir(src_path)) == 0: print(f"Removing empty folder: {src_path}") shutil.rmtree(src_path, True) - except: + except Exception: pass @@ -141,7 +141,7 @@ def load_upscalers(): full_model = f"modules.{model_name}_model" try: importlib.import_module(full_model) - except: + except Exception: pass datas = [] diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f880bc3c..611c2b69 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -479,7 +479,7 @@ class LatentDiffusion(DDPM): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -891,16 +891,6 @@ class LatentDiffusion(DDPM): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1171,8 +1161,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1219,8 +1211,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1337,7 +1331,7 @@ class LatentDiffusion(DDPM): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index a241c8a7..0a9defa1 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -54,7 +54,8 @@ class UniPCSampler(object): if conditioning is not None: if isinstance(conditioning, dict): ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] + while isinstance(ctmp, list): + ctmp = ctmp[0] cbs = ctmp.shape[0] if cbs != batch_size: print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") diff --git a/modules/processing.py b/modules/processing.py index 1a76e552..6f5233c1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -664,7 +664,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not shared.opts.dont_fix_second_order_samplers_schedule: try: step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1 - except: + except Exception: pass uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc) c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c) diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index e084e948..3a720721 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -54,18 +54,21 @@ def get_learned_conditioning_prompt_schedules(prompts, steps): """ def collect_steps(steps, tree): - l = [steps] + res = [steps] + class CollectSteps(lark.Visitor): def scheduled(self, tree): tree.children[-1] = float(tree.children[-1]) if tree.children[-1] < 1: tree.children[-1] *= steps tree.children[-1] = min(steps, int(tree.children[-1])) - l.append(tree.children[-1]) + res.append(tree.children[-1]) + def alternate(self, tree): - l.extend(range(1, steps+1)) + res.extend(range(1, steps+1)) + CollectSteps().visit(tree) - return sorted(set(l)) + return sorted(set(res)) def at_step(step, tree): class AtStep(lark.Transformer): diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index ba1bdcd4..d7d8d2e3 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -185,7 +185,7 @@ def image_face_points(im, settings): try: faces = classifier.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) - except: + except Exception: continue if len(faces) > 0: diff --git a/modules/ui.py b/modules/ui.py index 2171f3aa..6beda76f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1,15 +1,9 @@ -import html import json -import math import mimetypes import os -import platform -import random import sys -import tempfile -import time import traceback -from functools import partial, reduce +from functools import reduce import warnings import gradio as gr diff --git a/modules/upscaler.py b/modules/upscaler.py index e2eaa730..0ad4fe99 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -45,7 +45,7 @@ class Upscaler: try: import cv2 self.can_tile = True - except: + except Exception: pass @abstractmethod -- cgit v1.2.3 From f741a98baccae100fcfb40c017b5c35c5cba1b0c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:43:42 +0300 Subject: imports cleanup for ruff --- extensions-builtin/Lora/lora.py | 1 - extensions-builtin/ScuNET/scripts/scunet_model.py | 1 - extensions-builtin/SwinIR/scripts/swinir_model.py | 3 +-- modules/codeformer/codeformer_arch.py | 4 +--- modules/codeformer/vqgan_arch.py | 2 -- modules/codeformer_model.py | 4 +--- modules/config_states.py | 2 +- modules/esrgan_model.py | 2 +- modules/esrgan_model_arch.py | 1 - modules/extensions.py | 1 - modules/generation_parameters_copypaste.py | 4 ---- modules/hypernetworks/hypernetwork.py | 3 +-- modules/hypernetworks/ui.py | 2 -- modules/images.py | 2 +- modules/img2img.py | 5 +---- modules/mac_specific.py | 1 - modules/modelloader.py | 1 - modules/models/diffusion/uni_pc/uni_pc.py | 1 - modules/processing.py | 5 ++--- modules/sd_hijack.py | 2 +- modules/sd_hijack_inpainting.py | 6 ------ modules/sd_hijack_ip2p.py | 5 +---- modules/sd_hijack_xlmr.py | 2 -- modules/sd_models.py | 2 +- modules/sd_models_config.py | 1 - modules/sd_samplers_kdiffusion.py | 1 - modules/sd_vae.py | 3 --- modules/shared.py | 3 --- modules/styles.py | 9 --------- modules/textual_inversion/autocrop.py | 4 +--- modules/textual_inversion/image_embedding.py | 2 +- modules/textual_inversion/preprocess.py | 4 ---- modules/textual_inversion/textual_inversion.py | 1 - modules/txt2img.py | 9 +++------ modules/ui.py | 5 ++--- modules/ui_extra_networks.py | 1 - modules/ui_postprocessing.py | 2 +- modules/upscaler.py | 2 -- modules/xlmr.py | 2 +- pyproject.toml | 11 +++++++---- scripts/custom_code.py | 2 +- scripts/outpainting_mk_2.py | 4 ++-- scripts/poor_mans_outpainting.py | 4 ++-- scripts/prompt_matrix.py | 7 ++----- scripts/prompts_from_file.py | 5 +---- scripts/sd_upscale.py | 4 ++-- scripts/xyz_grid.py | 6 ++---- webui.py | 2 +- 48 files changed, 42 insertions(+), 114 deletions(-) (limited to 'modules/images.py') diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index ba1293df..0ab43229 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -1,4 +1,3 @@ -import glob import os import re import torch diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index c7fd5739..aa2fdb3a 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -13,7 +13,6 @@ import modules.upscaler from modules import devices, modelloader from scunet_model_arch import SCUNet as net from modules.shared import opts -from modules import images class UpscalerScuNET(modules.upscaler.Upscaler): diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index d77c3a92..55dd94ab 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -1,4 +1,3 @@ -import contextlib import os import numpy as np @@ -8,7 +7,7 @@ from basicsr.utils.download_util import load_file_from_url from tqdm import tqdm from modules import modelloader, devices, script_callbacks, shared -from modules.shared import cmd_opts, opts, state +from modules.shared import opts, state from swinir_model_arch import SwinIR as net from swinir_model_arch_v2 import Swin2SR as net2 from modules.upscaler import Upscaler, UpscalerData diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index f1a7cf09..00c407de 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -1,14 +1,12 @@ # this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py import math -import numpy as np import torch from torch import nn, Tensor import torch.nn.functional as F -from typing import Optional, List +from typing import Optional from modules.codeformer.vqgan_arch import VQAutoEncoder, ResBlock -from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY def calc_mean_std(feat, eps=1e-5): diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index e7293683..820e6b12 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -5,11 +5,9 @@ VQGAN code, adapted from the original created by the Unleashing Transformers aut https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py ''' -import numpy as np import torch import torch.nn as nn import torch.nn.functional as F -import copy from basicsr.utils import get_root_logger from basicsr.utils.registry import ARCH_REGISTRY diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8d84bbc9..8e56cb89 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -33,11 +33,9 @@ def setup_model(dirname): try: from torchvision.transforms.functional import normalize from modules.codeformer.codeformer_arch import CodeFormer - from basicsr.utils.download_util import load_file_from_url - from basicsr.utils import imwrite, img2tensor, tensor2img + from basicsr.utils import img2tensor, tensor2img from facelib.utils.face_restoration_helper import FaceRestoreHelper from facelib.detection.retinaface import retinaface - from modules.shared import cmd_opts net_class = CodeFormer diff --git a/modules/config_states.py b/modules/config_states.py index 2ea00929..8f1ff428 100644 --- a/modules/config_states.py +++ b/modules/config_states.py @@ -14,7 +14,7 @@ from collections import OrderedDict import git from modules import shared, extensions -from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path, config_states_dir +from modules.paths_internal import script_path, config_states_dir all_config_states = OrderedDict() diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index f4369257..85aa6934 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -6,7 +6,7 @@ from PIL import Image from basicsr.utils.download_util import load_file_from_url import modules.esrgan_model_arch as arch -from modules import shared, modelloader, images, devices +from modules import modelloader, images, devices from modules.upscaler import Upscaler, UpscalerData from modules.shared import opts diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 7f8bc7c0..4de9dd8d 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -2,7 +2,6 @@ from collections import OrderedDict import math -import functools import torch import torch.nn as nn import torch.nn.functional as F diff --git a/modules/extensions.py b/modules/extensions.py index 34d9d654..829f8cd9 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -3,7 +3,6 @@ import sys import traceback import time -from datetime import datetime import git from modules import shared diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index fe8b18b2..f1c59c46 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,15 +1,11 @@ import base64 -import html import io -import math import os import re -from pathlib import Path import gradio as gr from modules.paths import data_path from modules import shared, ui_tempdir, script_callbacks -import tempfile from PIL import Image re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 1fc49537..9fe749b7 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -1,4 +1,3 @@ -import csv import datetime import glob import html @@ -18,7 +17,7 @@ from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ -from collections import defaultdict, deque +from collections import deque from statistics import stdev, mean diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 76599f5a..be168736 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -1,6 +1,4 @@ import html -import os -import re import gradio as gr import modules.hypernetworks.hypernetwork diff --git a/modules/images.py b/modules/images.py index 5eb6d855..7392cb8b 100644 --- a/modules/images.py +++ b/modules/images.py @@ -19,7 +19,7 @@ import json import hashlib from modules import sd_samplers, shared, script_callbacks, errors -from modules.shared import opts, cmd_opts +from modules.shared import opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) diff --git a/modules/img2img.py b/modules/img2img.py index 32b1ecd6..d704bf90 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -1,12 +1,9 @@ -import math import os -import sys -import traceback import numpy as np from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError -from modules import devices, sd_samplers +from modules import sd_samplers from modules.generation_parameters_copypaste import create_override_settings_dict from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 40ce2101..5c2f92a1 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -1,6 +1,5 @@ import torch import platform -from modules import paths from modules.sd_hijack_utils import CondFunc from packaging import version diff --git a/modules/modelloader.py b/modules/modelloader.py index cf685000..92ada694 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -1,4 +1,3 @@ -import glob import os import shutil import importlib diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 11b330bc..a4c4ef4e 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,5 +1,4 @@ import torch -import torch.nn.functional as F import math from tqdm.auto import trange diff --git a/modules/processing.py b/modules/processing.py index 6f5233c1..c3932d6b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -2,7 +2,6 @@ import json import math import os import sys -import warnings import hashlib import torch @@ -11,10 +10,10 @@ from PIL import Image, ImageFilter, ImageOps import random import cv2 from skimage import exposure -from typing import Any, Dict, List, Optional +from typing import Any, Dict, List import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index d8135211..81573b78 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -3,7 +3,7 @@ from torch.nn.functional import silu from types import MethodType import modules.textual_inversion.textual_inversion -from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint +from modules import devices, sd_hijack_optimizations, shared from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 55a2ce4d..344d75c8 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -1,15 +1,9 @@ -import os import torch -from einops import repeat -from omegaconf import ListConfig - import ldm.models.diffusion.ddpm import ldm.models.diffusion.ddim import ldm.models.diffusion.plms -from ldm.models.diffusion.ddpm import LatentDiffusion -from ldm.models.diffusion.plms import PLMSSampler from ldm.models.diffusion.ddim import DDIMSampler, noise_like from ldm.models.diffusion.sampling_util import norm_thresholding diff --git a/modules/sd_hijack_ip2p.py b/modules/sd_hijack_ip2p.py index 41ed54a2..6fe6b6ff 100644 --- a/modules/sd_hijack_ip2p.py +++ b/modules/sd_hijack_ip2p.py @@ -1,8 +1,5 @@ -import collections import os.path -import sys -import gc -import time + def should_hijack_ip2p(checkpoint_info): from modules import sd_models_config diff --git a/modules/sd_hijack_xlmr.py b/modules/sd_hijack_xlmr.py index 4ac51c38..28528329 100644 --- a/modules/sd_hijack_xlmr.py +++ b/modules/sd_hijack_xlmr.py @@ -1,8 +1,6 @@ -import open_clip.tokenizer import torch from modules import sd_hijack_clip, devices -from modules.shared import opts class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords): diff --git a/modules/sd_models.py b/modules/sd_models.py index 11c1a344..1c09c709 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -565,7 +565,7 @@ def reload_model_weights(sd_model=None, info=None): def unload_model_weights(sd_model=None, info=None): - from modules import lowvram, devices, sd_hijack + from modules import devices, sd_hijack timer = Timer() if model_data.sd_model: diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 7a79925a..9bfe1237 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -1,4 +1,3 @@ -import re import os import torch diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 0fc9f456..3b8e9622 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,7 +1,6 @@ from collections import deque import torch import inspect -import einops import k_diffusion.sampling from modules import prompt_parser, devices, sd_samplers_common diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 521e485a..b7176125 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,8 +1,5 @@ -import torch -import safetensors.torch import os import collections -from collections import namedtuple from modules import paths, shared, devices, script_callbacks, sd_models import glob from copy import deepcopy diff --git a/modules/shared.py b/modules/shared.py index 4631965b..44cd2c0c 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,12 +1,9 @@ -import argparse import datetime import json import os import sys import time -import requests -from PIL import Image import gradio as gr import tqdm diff --git a/modules/styles.py b/modules/styles.py index 11642075..c22769cf 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -1,18 +1,9 @@ -# We need this so Python doesn't complain about the unknown StableDiffusionProcessing-typehint at runtime -from __future__ import annotations - import csv import os import os.path import typing -import collections.abc as abc -import tempfile import shutil -if typing.TYPE_CHECKING: - # Only import this when code is being type-checked, it doesn't have any effect at runtime - from .processing import StableDiffusionProcessing - class PromptStyle(typing.NamedTuple): name: str diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index d7d8d2e3..7770d22f 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -1,10 +1,8 @@ import cv2 import requests import os -from collections import defaultdict -from math import log, sqrt import numpy as np -from PIL import Image, ImageDraw +from PIL import ImageDraw GREEN = "#0F0" BLUE = "#00F" diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index 5593f88c..ee0e850a 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -2,7 +2,7 @@ import base64 import json import numpy as np import zlib -from PIL import Image, PngImagePlugin, ImageDraw, ImageFont +from PIL import Image, ImageDraw, ImageFont from fonts.ttf import Roboto import torch from modules.shared import opts diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index da0bcb26..d0cad09e 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,13 +1,9 @@ import os from PIL import Image, ImageOps import math -import platform -import sys import tqdm -import time from modules import paths, shared, images, deepbooru -from modules.shared import opts, cmd_opts from modules.textual_inversion import autocrop diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index f753b75f..9ed9ba45 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -1,7 +1,6 @@ import os import sys import traceback -import inspect from collections import namedtuple import torch diff --git a/modules/txt2img.py b/modules/txt2img.py index 16841d0f..f022381c 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,18 +1,15 @@ import modules.scripts -from modules import sd_samplers +from modules import sd_samplers, processing from modules.generation_parameters_copypaste import create_override_settings_dict -from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \ - StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, cmd_opts import modules.shared as shared -import modules.processing as processing from modules.ui import plaintext_to_html def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args): override_settings = create_override_settings_dict(override_settings_texts) - p = StableDiffusionProcessingTxt2Img( + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids, @@ -53,7 +50,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step processed = modules.scripts.scripts_txt2img.run(p, *args) if processed is None: - processed = process_images(p) + processed = processing.process_images(p) p.close() diff --git a/modules/ui.py b/modules/ui.py index 6beda76f..f7e57593 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -14,10 +14,10 @@ from PIL import Image, PngImagePlugin from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing, progress -from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton, FormHTML +from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path, data_path -from modules.shared import opts, cmd_opts, restricted_opts +from modules.shared import opts, cmd_opts import modules.codeformer_model import modules.generation_parameters_copypaste as parameters_copypaste @@ -28,7 +28,6 @@ import modules.shared as shared import modules.styles import modules.textual_inversion.ui from modules import prompt_parser -from modules.images import save_image from modules.sd_hijack import model_hijack from modules.sd_samplers import samplers, samplers_for_img2img from modules.textual_inversion import textual_inversion diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 49e06289..800e467a 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -1,4 +1,3 @@ -import glob import os.path import urllib.parse from pathlib import Path diff --git a/modules/ui_postprocessing.py b/modules/ui_postprocessing.py index f25639e5..c7dc1154 100644 --- a/modules/ui_postprocessing.py +++ b/modules/ui_postprocessing.py @@ -1,5 +1,5 @@ import gradio as gr -from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue +from modules import scripts, shared, ui_common, postprocessing, call_queue import modules.generation_parameters_copypaste as parameters_copypaste diff --git a/modules/upscaler.py b/modules/upscaler.py index 0ad4fe99..777593b0 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -2,8 +2,6 @@ import os from abc import abstractmethod import PIL -import numpy as np -import torch from PIL import Image import modules.shared diff --git a/modules/xlmr.py b/modules/xlmr.py index beab3fdf..e056c3f6 100644 --- a/modules/xlmr.py +++ b/modules/xlmr.py @@ -1,4 +1,4 @@ -from transformers import BertPreTrainedModel,BertModel,BertConfig +from transformers import BertPreTrainedModel, BertConfig import torch.nn as nn import torch from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig diff --git a/pyproject.toml b/pyproject.toml index 1e164abc..9caa9ba2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,10 +1,13 @@ [tool.ruff] +exclude = ["extensions"] + ignore = [ "E501", - "E731", - "E402", # Module level import not at top of file - "F401" # Module imported but unused + + "F401", # Module imported but unused ] -exclude = ["extensions"] + +[tool.ruff.per-file-ignores] +"webui.py" = ["E402"] # Module level import not at top of file \ No newline at end of file diff --git a/scripts/custom_code.py b/scripts/custom_code.py index f36a3675..cc6f0d49 100644 --- a/scripts/custom_code.py +++ b/scripts/custom_code.py @@ -4,7 +4,7 @@ import ast import copy from modules.processing import Processed -from modules.shared import opts, cmd_opts, state +from modules.shared import cmd_opts def convertExpr2Expression(expr): diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py index b10fed6c..665dbe89 100644 --- a/scripts/outpainting_mk_2.py +++ b/scripts/outpainting_mk_2.py @@ -7,9 +7,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image, ImageDraw -from modules import images, processing, devices +from modules import images from modules.processing import Processed, process_images -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state # this function is taken from https://github.com/parlance-zz/g-diffuser-bot diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py index ddcbd2d3..c0bbecc1 100644 --- a/scripts/poor_mans_outpainting.py +++ b/scripts/poor_mans_outpainting.py @@ -4,9 +4,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image, ImageDraw -from modules import images, processing, devices +from modules import images, devices from modules.processing import Processed, process_images -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state class Script(scripts.Script): diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index e9b11517..fb06beab 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -1,14 +1,11 @@ import math -from collections import namedtuple -from copy import copy -import random import modules.scripts as scripts import gradio as gr from modules import images -from modules.processing import process_images, Processed -from modules.shared import opts, cmd_opts, state +from modules.processing import process_images +from modules.shared import opts, state import modules.sd_samplers diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 76dc5778..149bc85f 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -1,6 +1,4 @@ import copy -import math -import os import random import sys import traceback @@ -11,8 +9,7 @@ import gradio as gr from modules import sd_samplers from modules.processing import Processed, process_images -from PIL import Image -from modules.shared import opts, cmd_opts, state +from modules.shared import state def process_string_tag(tag): diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index 332d76d9..d873a09c 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -4,9 +4,9 @@ import modules.scripts as scripts import gradio as gr from PIL import Image -from modules import processing, shared, sd_samplers, images, devices +from modules import processing, shared, images, devices from modules.processing import Processed -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state class Script(scripts.Script): diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 2ff42ef8..332e0ecd 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -10,15 +10,13 @@ import numpy as np import modules.scripts as scripts import gradio as gr -from modules import images, paths, sd_samplers, processing, sd_models, sd_vae +from modules import images, sd_samplers, processing, sd_models, sd_vae from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img -from modules.shared import opts, cmd_opts, state +from modules.shared import opts, state import modules.shared as shared import modules.sd_samplers import modules.sd_models import modules.sd_vae -import glob -import os import re from modules.ui_components import ToolButton diff --git a/webui.py b/webui.py index ec3d2aba..48277075 100644 --- a/webui.py +++ b/webui.py @@ -43,7 +43,7 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__: torch.__long_version__ = torch.__version__ torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) -from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states +from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states import modules.codeformer_model as codeformer import modules.face_restoration import modules.gfpgan_model as gfpgan -- cgit v1.2.3 From a5121e7a0623db328a9462d340d389ed6737374a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:37:18 +0300 Subject: fixes for B007 --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- extensions-builtin/Lora/lora.py | 2 +- extensions-builtin/ScuNET/scripts/scunet_model.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 2 +- modules/codeformer_model.py | 2 +- modules/esrgan_model.py | 8 ++------ modules/extra_networks.py | 2 +- modules/generation_parameters_copypaste.py | 2 +- modules/hypernetworks/hypernetwork.py | 12 ++++++------ modules/images.py | 2 +- modules/interrogate.py | 4 ++-- modules/prompt_parser.py | 14 +++++++------- modules/safe.py | 4 ++-- modules/scripts.py | 10 +++++----- modules/scripts_postprocessing.py | 8 ++++---- modules/sd_hijack_clip.py | 2 +- modules/shared.py | 6 +++--- modules/textual_inversion/learn_schedule.py | 2 +- modules/textual_inversion/textual_inversion.py | 10 +++++----- modules/ui.py | 6 +++--- modules/ui_extra_networks.py | 2 +- modules/ui_tempdir.py | 2 +- modules/upscaler.py | 2 +- pyproject.toml | 1 - scripts/prompts_from_file.py | 2 +- scripts/sd_upscale.py | 4 ++-- scripts/xyz_grid.py | 2 +- 28 files changed, 57 insertions(+), 62 deletions(-) (limited to 'modules/images.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index a5fb8907..27e38549 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -88,7 +88,7 @@ class LDSR: x_t = None logs = None - for n in range(n_runs): + for _ in range(n_runs): if custom_shape is not None: x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 9795540f..7b56136f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -418,7 +418,7 @@ def infotext_pasted(infotext, params): added = [] - for k, v in params.items(): + for k in params: if not k.startswith("AddNet Model "): continue diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py index aa2fdb3a..1f5ea0d3 100644 --- a/extensions-builtin/ScuNET/scripts/scunet_model.py +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -132,7 +132,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler): model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(filename), strict=True) model.eval() - for k, v in model.named_parameters(): + for _, v in model.named_parameters(): v.requires_grad = False model = model.to(device) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 75f7bedc..de195d9b 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -848,7 +848,7 @@ class SwinIR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index d4c0b0da..15777af9 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -1001,7 +1001,7 @@ class Swin2SR(nn.Module): H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() - for i, layer in enumerate(self.layers): + for layer in self.layers: flops += layer.flops() flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py index 8e56cb89..ececdbae 100644 --- a/modules/codeformer_model.py +++ b/modules/codeformer_model.py @@ -94,7 +94,7 @@ def setup_model(dirname): self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() - for idx, cropped_face in enumerate(self.face_helper.cropped_faces): + for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 85aa6934..a009eb42 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -16,9 +16,7 @@ def mod2normal(state_dict): # this code is copied from https://github.com/victorca25/iNNfer if 'conv_first.weight' in state_dict: crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] @@ -52,9 +50,7 @@ def resrgan2normal(state_dict, nb=23): if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: re8x = 0 crt_net = {} - items = [] - for k, v in state_dict.items(): - items.append(k) + items = list(state_dict) crt_net['model.0.weight'] = state_dict['conv_first.weight'] crt_net['model.0.bias'] = state_dict['conv_first.bias'] diff --git a/modules/extra_networks.py b/modules/extra_networks.py index 1978673d..f9db41bc 100644 --- a/modules/extra_networks.py +++ b/modules/extra_networks.py @@ -91,7 +91,7 @@ def deactivate(p, extra_network_data): """call deactivate for extra networks in extra_network_data in specified order, then call deactivate for all remaining registered networks""" - for extra_network_name, extra_network_args in extra_network_data.items(): + for extra_network_name in extra_network_data: extra_network = extra_network_registry.get(extra_network_name, None) if extra_network is None: continue diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 7fbbe707..b0e945a1 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -247,7 +247,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model lines.append(lastline) lastline = '' - for i, line in enumerate(lines): + for line in lines: line = line.strip() if line.startswith("Negative prompt:"): done_with_prompt = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6ef0bfdf..38ef074f 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -177,34 +177,34 @@ class Hypernetwork: def weights(self): res = [] - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: res += layer.parameters() return res def train(self, mode=True): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.train(mode=mode) for param in layer.parameters(): param.requires_grad = mode def to(self, device): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.to(device) return self def set_multiplier(self, multiplier): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.multiplier = multiplier return self def eval(self): - for k, layers in self.layers.items(): + for layers in self.layers.values(): for layer in layers: layer.eval() for param in layer.parameters(): @@ -619,7 +619,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/images.py b/modules/images.py index 7392cb8b..c4e98c75 100644 --- a/modules/images.py +++ b/modules/images.py @@ -149,7 +149,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): return ImageFont.truetype(Roboto, fontsize) def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): - for i, line in enumerate(lines): + for line in lines: fnt = initial_fnt fontsize = initial_fontsize while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: diff --git a/modules/interrogate.py b/modules/interrogate.py index a1c8e537..111b1322 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -207,8 +207,8 @@ class InterrogateModels: image_features /= image_features.norm(dim=-1, keepdim=True) - for name, topn, items in self.categories(): - matches = self.rank(image_features, items, top_count=topn) + for cat in self.categories(): + matches = self.rank(image_features, cat.items, top_count=cat.topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index 3a720721..b4aff704 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -143,7 +143,7 @@ def get_learned_conditioning(model, prompts, steps): conds = model.get_learned_conditioning(texts) cond_schedule = [] - for i, (end_at_step, text) in enumerate(prompt_schedule): + for i, (end_at_step, _) in enumerate(prompt_schedule): cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i])) cache[prompt] = cond_schedule @@ -219,8 +219,8 @@ def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_s res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for i, cond_schedule in enumerate(c): target_index = 0 - for current, (end_at, cond) in enumerate(cond_schedule): - if current_step <= end_at: + for current, entry in enumerate(cond_schedule): + if current_step <= entry.end_at_step: target_index = current break res[i] = cond_schedule[target_index].cond @@ -234,13 +234,13 @@ def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): tensors = [] conds_list = [] - for batch_no, composable_prompts in enumerate(c.batch): + for composable_prompts in c.batch: conds_for_batch = [] - for cond_index, composable_prompt in enumerate(composable_prompts): + for composable_prompt in composable_prompts: target_index = 0 - for current, (end_at, cond) in enumerate(composable_prompt.schedules): - if current_step <= end_at: + for current, entry in enumerate(composable_prompt.schedules): + if current_step <= entry.end_at_step: target_index = current break diff --git a/modules/safe.py b/modules/safe.py index 2d5b972f..1e791c5b 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -95,11 +95,11 @@ def check_pt(filename, extra_handler): except zipfile.BadZipfile: - # if it's not a zip file, it's an olf pytorch format, with five objects written to pickle + # if it's not a zip file, it's an old pytorch format, with five objects written to pickle with open(filename, "rb") as file: unpickler = RestrictedUnpickler(file) unpickler.extra_handler = extra_handler - for i in range(5): + for _ in range(5): unpickler.load() diff --git a/modules/scripts.py b/modules/scripts.py index d945b89f..0c12ebd5 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -231,7 +231,7 @@ def load_scripts(): syspath = sys.path def register_scripts_from_module(module): - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) != type: continue @@ -295,9 +295,9 @@ class ScriptRunner: auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() - for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: - script = script_class() - script.filename = path + for script_data in auto_processing_scripts + scripts_data: + script = script_data.script_class() + script.filename = script_data.path script.is_txt2img = not is_img2img script.is_img2img = is_img2img @@ -492,7 +492,7 @@ class ScriptRunner: module = script_loading.load_module(script.filename) cache[filename] = module - for key, script_class in module.__dict__.items(): + for script_class in module.__dict__.values(): if type(script_class) == type and issubclass(script_class, Script): self.scripts[si] = script_class() self.scripts[si].filename = filename diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index b11568c0..6751406c 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -66,9 +66,9 @@ class ScriptPostprocessingRunner: def initialize_scripts(self, scripts_data): self.scripts = [] - for script_class, path, basedir, script_module in scripts_data: - script: ScriptPostprocessing = script_class() - script.filename = path + for script_data in scripts_data: + script: ScriptPostprocessing = script_data.script_class() + script.filename = script_data.path if script.name == "Simple Upscale": continue @@ -124,7 +124,7 @@ class ScriptPostprocessingRunner: script_args = args[script.args_from:script.args_to] process_args = {} - for (name, component), value in zip(script.controls.items(), script_args): + for (name, component), value in zip(script.controls.items(), script_args): # noqa B007 process_args[name] = value script.process(pp, **process_args) diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index 9fa5c5c5..c0c350f6 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -223,7 +223,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): self.hijack.fixes = [x.fixes for x in batch_chunk] for fixes in self.hijack.fixes: - for position, embedding in fixes: + for position, embedding in fixes: # noqa: B007 used_embeddings[embedding.name] = embedding z = self.process_tokens(tokens, multipliers) diff --git a/modules/shared.py b/modules/shared.py index e2691585..913c9e63 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -211,7 +211,7 @@ class OptionInfo: def options_section(section_identifier, options_dict): - for k, v in options_dict.items(): + for v in options_dict.values(): v.section = section_identifier return options_dict @@ -579,7 +579,7 @@ class Options: section_ids = {} settings_items = self.data_labels.items() - for k, item in settings_items: + for _, item in settings_items: if item.section not in section_ids: section_ids[item.section] = len(section_ids) @@ -740,7 +740,7 @@ def walk_files(path, allowed_extensions=None): if allowed_extensions is not None: allowed_extensions = set(allowed_extensions) - for root, dirs, files in os.walk(path): + for root, _, files in os.walk(path): for filename in files: if allowed_extensions is not None: _, ext = os.path.splitext(filename) diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index fda58898..c56bea45 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -12,7 +12,7 @@ class LearnScheduleIterator: self.it = 0 self.maxit = 0 try: - for i, pair in enumerate(pairs): + for pair in pairs: if not pair.strip(): continue tmp = pair.split(':') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c37bb2ad..47035332 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -29,7 +29,7 @@ textual_inversion_templates = {} def list_textual_inversion_templates(): textual_inversion_templates.clear() - for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): for fn in fns: path = os.path.join(root, fn) @@ -198,7 +198,7 @@ class EmbeddingDatabase: if not os.path.isdir(embdir.path): return - for root, dirs, fns in os.walk(embdir.path, followlinks=True): + for root, _, fns in os.walk(embdir.path, followlinks=True): for fn in fns: try: fullfn = os.path.join(root, fn) @@ -215,7 +215,7 @@ class EmbeddingDatabase: def load_textual_inversion_embeddings(self, force_reload=False): if not force_reload: need_reload = False - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): if embdir.has_changed(): need_reload = True break @@ -228,7 +228,7 @@ class EmbeddingDatabase: self.skipped_embeddings.clear() self.expected_shape = self.get_expected_shape() - for path, embdir in self.embedding_dirs.items(): + for embdir in self.embedding_dirs.values(): self.load_from_dir(embdir) embdir.update() @@ -469,7 +469,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st try: sd_hijack_checkpoint.add() - for i in range((steps-initial_step) * gradient_step): + for _ in range((steps-initial_step) * gradient_step): if scheduler.finished: break if shared.state.interrupted: diff --git a/modules/ui.py b/modules/ui.py index 84d661b2..83bfb7d8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -416,7 +416,7 @@ def create_sampler_and_steps_selection(choices, tabname): def ordered_ui_categories(): user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder.split(","))} - for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): + for _, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): yield category @@ -1646,7 +1646,7 @@ def create_ui(): with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo: with gr.Row(elem_id="quicksettings", variant="compact"): - for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): + for _i, k, _item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): component = create_setting_component(k, is_quicksettings=True) component_dict[k] = component @@ -1673,7 +1673,7 @@ def create_ui(): outputs=[text_settings, result], ) - for i, k, item in quicksettings_list: + for _i, k, _item in quicksettings_list: component = component_dict[k] info = opts.data_labels[k] diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index ab585917..2fd82e8e 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -90,7 +90,7 @@ class ExtraNetworksPage: subdirs = {} for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]: - for root, dirs, files in os.walk(parentdir): + for root, dirs, _ in os.walk(parentdir): for dirname in dirs: x = os.path.join(root, dirname) diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index cac73c51..f05049e1 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -72,7 +72,7 @@ def cleanup_tmpdr(): if temp_dir == "" or not os.path.isdir(temp_dir): return - for root, dirs, files in os.walk(temp_dir, topdown=False): + for root, _, files in os.walk(temp_dir, topdown=False): for name in files: _, extension = os.path.splitext(name) if extension != ".png": diff --git a/modules/upscaler.py b/modules/upscaler.py index e145be30..8acb6e96 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -55,7 +55,7 @@ class Upscaler: dest_w = int(img.width * scale) dest_h = int(img.height * scale) - for i in range(3): + for _ in range(3): shape = (img.width, img.height) img = self.do_upscale(img, selected_model) diff --git a/pyproject.toml b/pyproject.toml index 346a0cde..c88907be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -20,7 +20,6 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - "B007", # Loop control variable not used within loop body ] diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 149bc85f..27af5ff6 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -156,7 +156,7 @@ class Script(scripts.Script): images = [] all_prompts = [] infotexts = [] - for n, args in enumerate(jobs): + for args in jobs: state.job = f"{state.job_no + 1} out of {state.job_count}" copy_p = copy.copy(p) diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index d873a09c..0b1d3096 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -56,7 +56,7 @@ class Script(scripts.Script): work = [] - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: work.append(tiledata[2]) @@ -85,7 +85,7 @@ class Script(scripts.Script): work_results += processed.images image_index = 0 - for y, h, row in grid.tiles: + for _y, _h, row in grid.tiles: for tiledata in row: tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) image_index += 1 diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 332e0ecd..38a20381 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -704,7 +704,7 @@ class Script(scripts.Script): if not include_sub_grids: # Done with sub-grids, drop all related information: - for sg in range(z_count): + for _ in range(z_count): del processed.images[1] del processed.all_prompts[1] del processed.all_seeds[1] -- cgit v1.2.3 From df7070eca22278b25c921ef72d3f97a221d66242 Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Thu, 11 May 2023 10:06:19 +0300 Subject: Deduplicate get_font code --- modules/images.py | 13 +++++++------ modules/textual_inversion/image_embedding.py | 9 ++------- 2 files changed, 9 insertions(+), 13 deletions(-) (limited to 'modules/images.py') diff --git a/modules/images.py b/modules/images.py index c4e98c75..d8527179 100644 --- a/modules/images.py +++ b/modules/images.py @@ -24,6 +24,13 @@ from modules.shared import opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) +def get_font(fontsize: int): + try: + return ImageFont.truetype(opts.font or Roboto, fontsize) + except Exception: + return ImageFont.truetype(Roboto, fontsize) + + def image_grid(imgs, batch_size=1, rows=None): if rows is None: if opts.n_rows > 0: @@ -142,12 +149,6 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): lines.append(word) return lines - def get_font(fontsize): - try: - return ImageFont.truetype(opts.font or Roboto, fontsize) - except Exception: - return ImageFont.truetype(Roboto, fontsize) - def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): for line in lines: fnt = initial_fnt diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index d85a4888..5858a55f 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -3,9 +3,7 @@ import json import numpy as np import zlib from PIL import Image, ImageDraw, ImageFont -from fonts.ttf import Roboto import torch -from modules.shared import opts class EmbeddingEncoder(json.JSONEncoder): @@ -136,11 +134,8 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t image = srcimage.copy() fontsize = 32 if textfont is None: - try: - textfont = ImageFont.truetype(opts.font or Roboto, fontsize) - textfont = opts.font or Roboto - except Exception: - textfont = Roboto + from modules.images import get_font + textfont = get_font(fontsize) factor = 1.5 gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0)) -- cgit v1.2.3 From 1332c46b71b169b889d7df420f3285d9022da5cc Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Thu, 11 May 2023 10:07:01 +0300 Subject: Drop fonts + font-roboto deps since we only use the single regular cut of Roboto --- modules/Roboto-Regular.ttf | Bin 0 -> 305608 bytes modules/images.py | 6 +++--- modules/paths_internal.py | 2 ++ requirements.txt | 2 -- requirements_versions.txt | 2 -- 5 files changed, 5 insertions(+), 7 deletions(-) create mode 100644 modules/Roboto-Regular.ttf (limited to 'modules/images.py') diff --git a/modules/Roboto-Regular.ttf b/modules/Roboto-Regular.ttf new file mode 100644 index 00000000..500b1045 Binary files /dev/null and b/modules/Roboto-Regular.ttf differ diff --git a/modules/images.py b/modules/images.py index d8527179..3b8b62d9 100644 --- a/modules/images.py +++ b/modules/images.py @@ -13,12 +13,12 @@ import numpy as np import piexif import piexif.helper from PIL import Image, ImageFont, ImageDraw, PngImagePlugin -from fonts.ttf import Roboto import string import json import hashlib from modules import sd_samplers, shared, script_callbacks, errors +from modules.paths_internal import roboto_ttf_file from modules.shared import opts LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) @@ -26,9 +26,9 @@ LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.L def get_font(fontsize: int): try: - return ImageFont.truetype(opts.font or Roboto, fontsize) + return ImageFont.truetype(opts.font or roboto_ttf_file, fontsize) except Exception: - return ImageFont.truetype(Roboto, fontsize) + return ImageFont.truetype(roboto_ttf_file, fontsize) def image_grid(imgs, batch_size=1, rows=None): diff --git a/modules/paths_internal.py b/modules/paths_internal.py index a3d3e1f8..a23f6d70 100644 --- a/modules/paths_internal.py +++ b/modules/paths_internal.py @@ -22,3 +22,5 @@ models_path = os.path.join(data_path, "models") extensions_dir = os.path.join(data_path, "extensions") extensions_builtin_dir = os.path.join(script_path, "extensions-builtin") config_states_dir = os.path.join(script_path, "config_states") + +roboto_ttf_file = os.path.join(modules_path, 'Roboto-Regular.ttf') diff --git a/requirements.txt b/requirements.txt index 35987a13..2423bfd2 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,8 +2,6 @@ astunparse blendmodes accelerate basicsr -fonts -font-roboto gfpgan gradio==3.29.0 numpy diff --git a/requirements_versions.txt b/requirements_versions.txt index 47602904..df8c6861 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -11,8 +11,6 @@ torch omegaconf==2.2.3 pytorch_lightning==1.9.4 scikit-image==0.19.2 -fonts -font-roboto timm==0.6.7 piexif==1.1.3 einops==0.4.1 -- cgit v1.2.3 From 49a55b410b66b7dd9be9335d8a2e3a71e4f8b15c Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Thu, 11 May 2023 18:28:15 +0300 Subject: Autofix Ruff W (not W605) (mostly whitespace) --- extensions-builtin/LDSR/ldsr_model_arch.py | 4 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 6 +-- extensions-builtin/ScuNET/scunet_model_arch.py | 2 +- extensions-builtin/SwinIR/scripts/swinir_model.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch.py | 2 +- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 52 +++++++++++------------ launch.py | 2 +- modules/api/api.py | 4 +- modules/api/models.py | 2 +- modules/cmd_args.py | 2 +- modules/codeformer/codeformer_arch.py | 14 +++--- modules/codeformer/vqgan_arch.py | 38 ++++++++--------- modules/esrgan_model_arch.py | 4 +- modules/extras.py | 2 +- modules/hypernetworks/hypernetwork.py | 12 +++--- modules/images.py | 2 +- modules/mac_specific.py | 4 +- modules/masking.py | 2 +- modules/ngrok.py | 4 +- modules/processing.py | 2 +- modules/script_callbacks.py | 14 +++--- modules/sd_hijack.py | 12 +++--- modules/sd_hijack_optimizations.py | 32 +++++++------- modules/sd_models.py | 4 +- modules/sd_samplers_kdiffusion.py | 18 ++++---- modules/sub_quadratic_attention.py | 2 +- modules/textual_inversion/dataset.py | 4 +- modules/textual_inversion/preprocess.py | 2 +- modules/textual_inversion/textual_inversion.py | 16 +++---- modules/ui.py | 18 ++++---- modules/ui_extensions.py | 6 +-- modules/xlmr.py | 6 +-- pyproject.toml | 5 ++- scripts/img2imgalt.py | 14 +++--- scripts/loopback.py | 8 ++-- scripts/poor_mans_outpainting.py | 2 +- scripts/prompt_matrix.py | 2 +- scripts/prompts_from_file.py | 4 +- scripts/sd_upscale.py | 2 +- 39 files changed, 167 insertions(+), 166 deletions(-) (limited to 'modules/images.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 2173de79..7f450086 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -130,11 +130,11 @@ class LDSR: im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) else: print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") - + # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) - + logs = self.run(model["model"], im_padded, diffusion_steps, eta) sample = logs["sample"] diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 57c02d12..631a08ef 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -460,7 +460,7 @@ class LatentDiffusionV1(DDPMV1): self.instantiate_cond_stage(cond_stage_config) self.cond_stage_forward = cond_stage_forward self.clip_denoised = False - self.bbox_tokenizer = None + self.bbox_tokenizer = None self.restarted_from_ckpt = False if ckpt_path is not None: @@ -792,7 +792,7 @@ class LatentDiffusionV1(DDPMV1): z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) # 2. apply model loop over last dim - if isinstance(self.first_stage_model, VQModelInterface): + if isinstance(self.first_stage_model, VQModelInterface): output_list = [self.first_stage_model.decode(z[:, :, :, :, i], force_not_quantize=predict_cids or force_not_quantize) for i in range(z.shape[-1])] @@ -890,7 +890,7 @@ class LatentDiffusionV1(DDPMV1): if hasattr(self, "split_input_params"): assert len(cond) == 1 # todo can only deal with one conditioning atm - assert not return_ids + assert not return_ids ks = self.split_input_params["ks"] # eg. (128, 128) stride = self.split_input_params["stride"] # eg. (64, 64) diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py index 8028918a..b51a8806 100644 --- a/extensions-builtin/ScuNET/scunet_model_arch.py +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -265,4 +265,4 @@ class SCUNet(nn.Module): nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) \ No newline at end of file + nn.init.constant_(m.weight, 1.0) diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py index 55dd94ab..0ba50487 100644 --- a/extensions-builtin/SwinIR/scripts/swinir_model.py +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -150,7 +150,7 @@ def inference(img, model, tile, tile_overlap, window_size, scale): for w_idx in w_idx_list: if state.interrupted or state.skipped: break - + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 73e37cfa..93b93274 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -805,7 +805,7 @@ class SwinIR(nn.Module): def forward(self, x): H, W = x.shape[2:] x = self.check_image_size(x) - + self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 3ca9be78..dad22cca 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -241,7 +241,7 @@ class SwinTransformerBlock(nn.Module): attn_mask = None self.register_buffer("attn_mask", attn_mask) - + def calculate_mask(self, x_size): # calculate attention mask for SW-MSA H, W = x_size @@ -263,7 +263,7 @@ class SwinTransformerBlock(nn.Module): attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) - return attn_mask + return attn_mask def forward(self, x, x_size): H, W = x_size @@ -288,7 +288,7 @@ class SwinTransformerBlock(nn.Module): attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C else: attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) - + # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C @@ -369,7 +369,7 @@ class PatchMerging(nn.Module): H, W = self.input_resolution flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim flops += H * W * self.dim // 2 - return flops + return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. @@ -447,7 +447,7 @@ class BasicLayer(nn.Module): nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) - + class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: @@ -492,7 +492,7 @@ class PatchEmbed(nn.Module): flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim - return flops + return flops class RSTB(nn.Module): """Residual Swin Transformer Block (RSTB). @@ -531,7 +531,7 @@ class RSTB(nn.Module): num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path, norm_layer=norm_layer, @@ -622,7 +622,7 @@ class Upsample(nn.Sequential): else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) - + class Upsample_hf(nn.Sequential): """Upsample module. @@ -642,7 +642,7 @@ class Upsample_hf(nn.Sequential): m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') - super(Upsample_hf, self).__init__(*m) + super(Upsample_hf, self).__init__(*m) class UpsampleOneStep(nn.Sequential): @@ -667,8 +667,8 @@ class UpsampleOneStep(nn.Sequential): H, W = self.input_resolution flops = H * W * self.num_feat * 3 * 9 return flops - - + + class Swin2SR(nn.Module): r""" Swin2SR @@ -699,7 +699,7 @@ class Swin2SR(nn.Module): def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6), - window_size=7, mlp_ratio=4., qkv_bias=True, + window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', @@ -764,7 +764,7 @@ class Swin2SR(nn.Module): num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results norm_layer=norm_layer, @@ -776,7 +776,7 @@ class Swin2SR(nn.Module): ) self.layers.append(layer) - + if self.upsampler == 'pixelshuffle_hf': self.layers_hf = nn.ModuleList() for i_layer in range(self.num_layers): @@ -787,7 +787,7 @@ class Swin2SR(nn.Module): num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, - qkv_bias=qkv_bias, + qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results norm_layer=norm_layer, @@ -799,7 +799,7 @@ class Swin2SR(nn.Module): ) self.layers_hf.append(layer) - + self.norm = norm_layer(self.num_features) # build the last conv layer in deep feature extraction @@ -829,10 +829,10 @@ class Swin2SR(nn.Module): self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.conv_after_aux = nn.Sequential( nn.Conv2d(3, num_feat, 3, 1, 1), - nn.LeakyReLU(inplace=True)) + nn.LeakyReLU(inplace=True)) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - + elif self.upsampler == 'pixelshuffle_hf': self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) @@ -846,7 +846,7 @@ class Swin2SR(nn.Module): nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - + elif self.upsampler == 'pixelshuffledirect': # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, @@ -905,7 +905,7 @@ class Swin2SR(nn.Module): x = self.patch_unembed(x, x_size) return x - + def forward_features_hf(self, x): x_size = (x.shape[2], x.shape[3]) x = self.patch_embed(x) @@ -919,7 +919,7 @@ class Swin2SR(nn.Module): x = self.norm(x) # B L C x = self.patch_unembed(x, x_size) - return x + return x def forward(self, x): H, W = x.shape[2:] @@ -951,7 +951,7 @@ class Swin2SR(nn.Module): x = self.conv_after_body(self.forward_features(x)) + x x_before = self.conv_before_upsample(x) x_out = self.conv_last(self.upsample(x_before)) - + x_hf = self.conv_first_hf(x_before) x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf x_hf = self.conv_before_upsample_hf(x_hf) @@ -977,15 +977,15 @@ class Swin2SR(nn.Module): x_first = self.conv_first(x) res = self.conv_after_body(self.forward_features(x_first)) + x_first x = x + self.conv_last(res) - + x = x / self.img_range + self.mean if self.upsampler == "pixelshuffle_aux": return x[:, :, :H*self.upscale, :W*self.upscale], aux - + elif self.upsampler == "pixelshuffle_hf": x_out = x_out / self.img_range + self.mean return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale] - + else: return x[:, :, :H*self.upscale, :W*self.upscale] @@ -1014,4 +1014,4 @@ if __name__ == '__main__': x = torch.randn((1, 3, height, width)) x = model(x) - print(x.shape) \ No newline at end of file + print(x.shape) diff --git a/launch.py b/launch.py index 670af87c..62b33f14 100644 --- a/launch.py +++ b/launch.py @@ -327,7 +327,7 @@ def prepare_environment(): if args.update_all_extensions: git_pull_recursive(extensions_dir) - + if "--exit" in sys.argv: print("Exiting because of --exit argument") exit(0) diff --git a/modules/api/api.py b/modules/api/api.py index 594fa655..165985c3 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -227,7 +227,7 @@ class Api: script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) script = script_runner.selectable_scripts[script_idx] return script, script_idx - + def get_scripts_list(self): t2ilist = [str(title.lower()) for title in scripts.scripts_txt2img.titles] i2ilist = [str(title.lower()) for title in scripts.scripts_img2img.titles] @@ -237,7 +237,7 @@ class Api: def get_script(self, script_name, script_runner): if script_name is None or script_name == "": return None, None - + script_idx = script_name_to_index(script_name, script_runner.scripts) return script_runner.scripts[script_idx] diff --git a/modules/api/models.py b/modules/api/models.py index 4d291076..006ccdb7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -289,4 +289,4 @@ class MemoryResponse(BaseModel): class ScriptsList(BaseModel): txt2img: list = Field(default=None,title="Txt2img", description="Titles of scripts (txt2img)") - img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") \ No newline at end of file + img2img: list = Field(default=None,title="Img2img", description="Titles of scripts (img2img)") diff --git a/modules/cmd_args.py b/modules/cmd_args.py index e01ca655..f4a4ab36 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -102,4 +102,4 @@ parser.add_argument("--no-gradio-queue", action='store_true', help="Disables gra parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers") parser.add_argument("--no-hashing", action='store_true', help="disable sha256 hashing of checkpoints to help loading performance", default=False) parser.add_argument("--no-download-sd-model", action='store_true', help="don't download SD1.5 model even if no model is found in --ckpt-dir", default=False) -parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') \ No newline at end of file +parser.add_argument('--subpath', type=str, help='customize the subpath for gradio, use with reverse proxy') diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 45c70f84..12db6814 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -119,7 +119,7 @@ class TransformerSALayer(nn.Module): tgt_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): - + # self attention tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) @@ -159,7 +159,7 @@ class Fuse_sft_block(nn.Module): @ARCH_REGISTRY.register() class CodeFormer(VQAutoEncoder): - def __init__(self, dim_embd=512, n_head=8, n_layers=9, + def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, connect_list=('32', '64', '128', '256'), fix_modules=('quantize', 'generator')): @@ -179,14 +179,14 @@ class CodeFormer(VQAutoEncoder): self.feat_emb = nn.Linear(256, self.dim_embd) # transformer - self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) + self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) for _ in range(self.n_layers)]) # logits_predict head self.idx_pred_layer = nn.Sequential( nn.LayerNorm(dim_embd), nn.Linear(dim_embd, codebook_size, bias=False)) - + self.channels = { '16': 512, '32': 256, @@ -221,7 +221,7 @@ class CodeFormer(VQAutoEncoder): enc_feat_dict = {} out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.encoder.blocks): - x = block(x) + x = block(x) if i in out_list: enc_feat_dict[str(x.shape[-1])] = x.clone() @@ -266,11 +266,11 @@ class CodeFormer(VQAutoEncoder): fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] for i, block in enumerate(self.generator.blocks): - x = block(x) + x = block(x) if i in fuse_list: # fuse after i-th block f_size = str(x.shape[-1]) if w>0: x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) out = x # logits doesn't need softmax before cross_entropy loss - return out, logits, lq_feat \ No newline at end of file + return out, logits, lq_feat diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index b24a0394..09ee6660 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -13,7 +13,7 @@ from basicsr.utils.registry import ARCH_REGISTRY def normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) - + @torch.jit.script def swish(x): @@ -210,15 +210,15 @@ class AttnBlock(nn.Module): # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h*w) - q = q.permute(0, 2, 1) + q = q.permute(0, 2, 1) k = k.reshape(b, c, h*w) - w_ = torch.bmm(q, k) + w_ = torch.bmm(q, k) w_ = w_ * (int(c)**(-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h*w) - w_ = w_.permute(0, 2, 1) + w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) @@ -270,18 +270,18 @@ class Encoder(nn.Module): def forward(self, x): for block in self.blocks: x = block(x) - + return x class Generator(nn.Module): def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): super().__init__() - self.nf = nf - self.ch_mult = ch_mult + self.nf = nf + self.ch_mult = ch_mult self.num_resolutions = len(self.ch_mult) self.num_res_blocks = res_blocks - self.resolution = img_size + self.resolution = img_size self.attn_resolutions = attn_resolutions self.in_channels = emb_dim self.out_channels = 3 @@ -315,24 +315,24 @@ class Generator(nn.Module): blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) self.blocks = nn.ModuleList(blocks) - + def forward(self, x): for block in self.blocks: x = block(x) - + return x - + @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() - self.in_channels = 3 - self.nf = nf - self.n_blocks = res_blocks + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks self.codebook_size = codebook_size self.embed_dim = emb_dim self.ch_mult = ch_mult @@ -363,11 +363,11 @@ class VQAutoEncoder(nn.Module): self.kl_weight ) self.generator = Generator( - self.nf, + self.nf, self.embed_dim, - self.ch_mult, - self.n_blocks, - self.resolution, + self.ch_mult, + self.n_blocks, + self.resolution, self.attn_resolutions ) @@ -432,4 +432,4 @@ class VQGANDiscriminator(nn.Module): raise ValueError('Wrong params!') def forward(self, x): - return self.main(x) \ No newline at end of file + return self.main(x) diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py index 4de9dd8d..2b9888ba 100644 --- a/modules/esrgan_model_arch.py +++ b/modules/esrgan_model_arch.py @@ -105,7 +105,7 @@ class ResidualDenseBlock_5C(nn.Module): Modified options that can be used: - "Partial Convolution based Padding" arXiv:1811.11718 - "Spectral normalization" arXiv:1802.05957 - - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. + - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. {Rakotonirina} and A. {Rasoanaivo} """ @@ -170,7 +170,7 @@ class GaussianNoise(nn.Module): scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x sampled_noise = self.noise.repeat(*x.size()).normal_() * scale x = x + sampled_noise - return x + return x def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) diff --git a/modules/extras.py b/modules/extras.py index eb4f0b42..bdf9b3b7 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -199,7 +199,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_ result_is_inpainting_model = True else: theta_0[key] = theta_func2(a, b, multiplier) - + theta_0[key] = to_half(theta_0[key], save_as_half) shared.state.sampling_step += 1 diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 38ef074f..570b5603 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -540,7 +540,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) - + clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None if clip_grad: clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) @@ -593,7 +593,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi print(e) scaler = torch.cuda.amp.GradScaler() - + batch_size = ds.batch_size gradient_step = ds.gradient_step # n steps = batch_size * gradient_step * n image processed @@ -636,7 +636,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi if clip_grad: clip_grad_sched.step(hypernetwork.step) - + with devices.autocast(): x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) if use_weight: @@ -657,14 +657,14 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step += loss.item() scaler.scale(loss).backward() - + # go back until we reach gradient accumulation steps if (j + 1) % gradient_step != 0: continue loss_logging.append(_loss_step) if clip_grad: clip_grad(weights, clip_grad_sched.learn_rate) - + scaler.step(optimizer) scaler.update() hypernetwork.step += 1 @@ -674,7 +674,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0 steps_done = hypernetwork.step + 1 - + epoch_num = hypernetwork.step // steps_per_epoch epoch_step = hypernetwork.step % steps_per_epoch diff --git a/modules/images.py b/modules/images.py index 3b8b62d9..b2de3662 100644 --- a/modules/images.py +++ b/modules/images.py @@ -367,7 +367,7 @@ class FilenameGenerator: self.seed = seed self.prompt = prompt self.image = image - + def hasprompt(self, *args): lower = self.prompt.lower() if self.p is None or self.prompt is None: diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 5c2f92a1..d74c6b95 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -42,7 +42,7 @@ if has_mps: # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs), lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')) - # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 + # MPS workaround for https://github.com/pytorch/pytorch/issues/80800 CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs), lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps') # MPS workaround for https://github.com/pytorch/pytorch/issues/90532 @@ -60,4 +60,4 @@ if has_mps: # MPS workaround for https://github.com/pytorch/pytorch/issues/92311 if platform.processor() == 'i386': for funcName in ['torch.argmax', 'torch.Tensor.argmax']: - CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') \ No newline at end of file + CondFunc(funcName, lambda _, input, *args, **kwargs: torch.max(input.float() if input.dtype == torch.int64 else input, *args, **kwargs)[1], lambda _, input, *args, **kwargs: input.device.type == 'mps') diff --git a/modules/masking.py b/modules/masking.py index a5c4d2da..be9f84c7 100644 --- a/modules/masking.py +++ b/modules/masking.py @@ -4,7 +4,7 @@ from PIL import Image, ImageFilter, ImageOps def get_crop_region(mask, pad=0): """finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle. For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)""" - + h, w = mask.shape crop_left = 0 diff --git a/modules/ngrok.py b/modules/ngrok.py index 7a7b4b26..67a74e85 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -13,7 +13,7 @@ def connect(token, port, region): config = conf.PyngrokConfig( auth_token=token, region=region ) - + # Guard for existing tunnels existing = ngrok.get_tunnels(pyngrok_config=config) if existing: @@ -24,7 +24,7 @@ def connect(token, port, region): print(f'ngrok has already been connected to localhost:{port}! URL: {public_url}\n' 'You can use this link after the launch is complete.') return - + try: if account is None: public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url diff --git a/modules/processing.py b/modules/processing.py index c3932d6b..f902b9df 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -164,7 +164,7 @@ class StableDiffusionProcessing: self.all_subseeds = None self.iteration = 0 self.is_hr_pass = False - + @property def sd_model(self): diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 17109732..7d9dd736 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -32,22 +32,22 @@ class CFGDenoiserParams: def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond): self.x = x """Latent image representation in the process of being denoised""" - + self.image_cond = image_cond """Conditioning image""" - + self.sigma = sigma """Current sigma noise step value""" - + self.sampling_step = sampling_step """Current Sampling step number""" - + self.total_sampling_steps = total_sampling_steps """Total number of sampling steps planned""" - + self.text_cond = text_cond """ Encoder hidden states of text conditioning from prompt""" - + self.text_uncond = text_uncond """ Encoder hidden states of text conditioning from negative prompt""" @@ -240,7 +240,7 @@ def add_callback(callbacks, fun): callbacks.append(ScriptCallback(filename, fun)) - + def remove_current_script_callbacks(): stack = [x for x in inspect.stack() if x.filename != __file__] filename = stack[0].filename if len(stack) > 0 else 'unknown file' diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index e374aeb8..7e50f1ab 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -34,7 +34,7 @@ def apply_optimizations(): ldm.modules.diffusionmodules.model.nonlinearity = silu ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th - + optimization_method = None can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp @@ -92,12 +92,12 @@ def fix_checkpoint(): def weighted_loss(sd_model, pred, target, mean=True): #Calculate the weight normally, but ignore the mean loss = sd_model._old_get_loss(pred, target, mean=False) - + #Check if we have weights available weight = getattr(sd_model, '_custom_loss_weight', None) if weight is not None: loss *= weight - + #Return the loss, as mean if specified return loss.mean() if mean else loss @@ -105,7 +105,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): try: #Temporarily append weights to a place accessible during loss calc sd_model._custom_loss_weight = w - + #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set if not hasattr(sd_model, '_old_get_loss'): @@ -120,7 +120,7 @@ def weighted_forward(sd_model, x, c, w, *args, **kwargs): del sd_model._custom_loss_weight except AttributeError: pass - + #If we have an old loss function, reset the loss function to the original one if hasattr(sd_model, '_old_get_loss'): sd_model.get_loss = sd_model._old_get_loss @@ -184,7 +184,7 @@ class StableDiffusionModelHijack: def undo_hijack(self, m): if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: - m.cond_stage_model = m.cond_stage_model.wrapped + m.cond_stage_model = m.cond_stage_model.wrapped elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: m.cond_stage_model = m.cond_stage_model.wrapped diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index a174bbe1..f00fe55c 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -62,10 +62,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): end = i + 2 s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) s1 *= self.scale - + s2 = s1.softmax(dim=-1) del s1 - + r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) del s2 del q, k, v @@ -95,43 +95,43 @@ def split_cross_attention_forward(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k_in = k_in * self.scale - + del context, x - + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in - + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - + mem_free_total = get_available_vram() - + gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 - + if mem_required > mem_free_total: steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") - + if steps > 64: max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') - + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) - + s2 = s1.softmax(dim=-1, dtype=q.dtype) del s1 - + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 - + del q, k, v r1 = r1.to(dtype) @@ -228,7 +228,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k = k * self.scale - + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) r = einsum_op(q, k, v) r = r.to(dtype) @@ -369,7 +369,7 @@ def scaled_dot_product_attention_forward(self, x, context=None, mask=None): q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2) k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2) v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2) - + del q_in, k_in, v_in dtype = q.dtype @@ -451,7 +451,7 @@ def cross_attention_attnblock_forward(self, x): h3 += x return h3 - + def xformers_attnblock_forward(self, x): try: h_ = x diff --git a/modules/sd_models.py b/modules/sd_models.py index d1e946a5..3316d021 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -165,7 +165,7 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint - + checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) if checkpoint_info is not None: return checkpoint_info @@ -372,7 +372,7 @@ def enable_midas_autodownload(): if not os.path.exists(path): if not os.path.exists(midas_path): mkdir(midas_path) - + print(f"Downloading midas model weights for {model_type} to {path}") request.urlretrieve(midas_urls[model_type], path) print(f"{model_type} downloaded") diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 2f733cf5..e9e41818 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -93,10 +93,10 @@ class CFGDenoiser(torch.nn.Module): if shared.sd_model.model.conditioning_key == "crossattn-adm": image_uncond = torch.zeros_like(image_cond) - make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} + make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} else: image_uncond = image_cond - make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} + make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} if not is_edit_model: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) @@ -316,7 +316,7 @@ class KDiffusionSampler: sigma_sched = sigmas[steps - t_enc - 1:] xi = x + noise * sigma_sched[0] - + extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters @@ -339,9 +339,9 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x self.last_latent = x extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond } @@ -374,9 +374,9 @@ class KDiffusionSampler: self.last_latent = x samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ - 'cond': conditioning, - 'image_cond': image_conditioning, - 'uncond': unconditional_conditioning, + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond }, disable=False, callback=self.callback_state, **extra_params_kwargs)) diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index cc38debd..497568eb 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -179,7 +179,7 @@ def efficient_dot_product_attention( chunk_idx, min(query_chunk_size, q_tokens) ) - + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk compute_query_chunk_attn: ComputeQueryChunkAttn = partial( diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 41610e03..b9621fc9 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -118,7 +118,7 @@ class PersonalizedBase(Dataset): weight = torch.ones(latent_sample.shape) else: weight = None - + if latent_sampling_method == "random": entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight) else: @@ -243,4 +243,4 @@ class BatchLoaderRandom(BatchLoader): return self def collate_wrapper_random(batch): - return BatchLoaderRandom(batch) \ No newline at end of file + return BatchLoaderRandom(batch) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index d0cad09e..a009d8e8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -125,7 +125,7 @@ def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, thr default=None ) return wh and center_crop(image, *wh) - + def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None): width = process_width diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 9e1b2b9a..d489ed1e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -323,16 +323,16 @@ def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epo tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step) def tensorboard_add_scaler(tensorboard_writer, tag, value, step): - tensorboard_writer.add_scalar(tag=tag, + tensorboard_writer.add_scalar(tag=tag, scalar_value=value, global_step=step) def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): # Convert a pil image to a torch tensor img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) - img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], + img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands())) img_tensor = img_tensor.permute((2, 0, 1)) - + tensorboard_writer.add_image(tag, img_tensor, global_step=step) def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): @@ -402,7 +402,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if initial_step >= steps: shared.state.textinfo = "Model has already been trained beyond specified max steps" return embedding, filename - + scheduler = LearnRateScheduler(learn_rate, steps, initial_step) clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ @@ -412,7 +412,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." old_parallel_processing_allowed = shared.parallel_processing_allowed - + if shared.opts.training_enable_tensorboard: tensorboard_writer = tensorboard_setup(log_directory) @@ -439,7 +439,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu') if embedding.checksum() == optimizer_saved_dict.get('hash', None): optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) - + if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) print("Loaded existing optimizer from checkpoint") @@ -485,7 +485,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st if clip_grad: clip_grad_sched.step(embedding.step) - + with devices.autocast(): x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) if use_weight: @@ -513,7 +513,7 @@ def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_st # go back until we reach gradient accumulation steps if (j + 1) % gradient_step != 0: continue - + if clip_grad: clip_grad(embedding.vec, clip_grad_sched.learn_rate) diff --git a/modules/ui.py b/modules/ui.py index 1efb656a..ff82fff6 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1171,7 +1171,7 @@ def create_ui(): process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") - + with gr.Column(visible=False) as process_multicrop_col: gr.Markdown('Each image is center-cropped with an automatically chosen width and height.') with gr.Row(): @@ -1183,7 +1183,7 @@ def create_ui(): with gr.Row(): process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective") process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold") - + with gr.Row(): with gr.Column(scale=3): gr.HTML(value="") @@ -1226,7 +1226,7 @@ def create_ui(): with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - + with FormRow(): clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) @@ -1565,7 +1565,7 @@ def create_ui(): gr.HTML(shared.html("licenses.html"), elem_id="licenses") gr.Button(value="Show all pages", elem_id="settings_show_all_pages") - + def unload_sd_weights(): modules.sd_models.unload_model_weights() @@ -1841,15 +1841,15 @@ def versions_html(): return f""" version: {tag} - •  + • python: {python_version} - •  + • torch: {getattr(torch, '__long_version__',torch.__version__)} - •  + • xformers: {xformers_version} - •  + • gradio: {gr.__version__} - •  + • checkpoint: N/A """ diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index ed70abe5..af497733 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -467,7 +467,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=" {html.escape(description)}

Added: {html.escape(added)}

{install_code} - + """ for tag in [x for x in extension_tags if x not in tags]: @@ -535,9 +535,9 @@ def create_ui(): hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"]) sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order", ], type="index") - with gr.Row(): + with gr.Row(): search_extensions_text = gr.Text(label="Search").style(container=False) - + install_result = gr.HTML() available_extensions_table = gr.HTML() diff --git a/modules/xlmr.py b/modules/xlmr.py index e056c3f6..a407a3ca 100644 --- a/modules/xlmr.py +++ b/modules/xlmr.py @@ -28,7 +28,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): config_class = BertSeriesConfig def __init__(self, config=None, **kargs): - # modify initialization for autoloading + # modify initialization for autoloading if config is None: config = XLMRobertaConfig() config.attention_probs_dropout_prob= 0.1 @@ -74,7 +74,7 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): text["attention_mask"] = torch.tensor( text['attention_mask']).to(device) features = self(**text) - return features['projection_state'] + return features['projection_state'] def forward( self, @@ -134,4 +134,4 @@ class BertSeriesModelWithTransformation(BertPreTrainedModel): class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation): base_model_prefix = 'roberta' - config_class= RobertaSeriesConfig \ No newline at end of file + config_class= RobertaSeriesConfig diff --git a/pyproject.toml b/pyproject.toml index c88907be..d4a1bbf4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,6 +6,7 @@ extend-select = [ "B", "C", "I", + "W", ] exclude = [ @@ -20,7 +21,7 @@ ignore = [ "I001", # Import block is un-sorted or un-formatted "C901", # Function is too complex "C408", # Rewrite as a literal - + "W605", # invalid escape sequence, messes with some docstrings ] [tool.ruff.per-file-ignores] @@ -28,4 +29,4 @@ ignore = [ [tool.ruff.flake8-bugbear] # Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`. -extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file +extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index bb00fb3f..1e833fa8 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -149,9 +149,9 @@ class Script(scripts.Script): sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment")) return [ - info, + info, override_sampler, - override_prompt, original_prompt, original_negative_prompt, + override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment, @@ -191,17 +191,17 @@ class Script(scripts.Script): self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment) rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p) - + combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5) - + sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model) sigmas = sampler.model_wrap.get_sigmas(p.steps) - + noise_dt = combined_noise - (p.init_latent / sigmas[0]) - + p.seed = p.seed + 1 - + return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning) p.sample = sample_extra diff --git a/scripts/loopback.py b/scripts/loopback.py index ad6609be..2d5feaf9 100644 --- a/scripts/loopback.py +++ b/scripts/loopback.py @@ -14,7 +14,7 @@ class Script(scripts.Script): def show(self, is_img2img): return is_img2img - def ui(self, is_img2img): + def ui(self, is_img2img): loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear") @@ -104,7 +104,7 @@ class Script(scripts.Script): p.seed = processed.seed + 1 p.denoising_strength = calculate_denoising_strength(i + 1) - + if state.skipped: break @@ -121,7 +121,7 @@ class Script(scripts.Script): all_images.append(last_image) p.inpainting_fill = original_inpainting_fill - + if state.interrupted: break @@ -132,7 +132,7 @@ class Script(scripts.Script): if opts.return_grid: grids.append(grid) - + all_images = grids + all_images processed = Processed(p, all_images, initial_seed, initial_info) diff --git a/scripts/poor_mans_outpainting.py b/scripts/poor_mans_outpainting.py index c0bbecc1..ea0632b6 100644 --- a/scripts/poor_mans_outpainting.py +++ b/scripts/poor_mans_outpainting.py @@ -19,7 +19,7 @@ class Script(scripts.Script): def ui(self, is_img2img): if not is_img2img: return None - + pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels")) mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur")) inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill")) diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index fb06beab..88324fe6 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -96,7 +96,7 @@ class Script(scripts.Script): p.prompt_for_display = positive_prompt processed = process_images(p) - grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) + grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size) processed.images.insert(0, grid) processed.index_of_first_image = 1 diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 9607077a..2378816f 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -109,7 +109,7 @@ class Script(scripts.Script): def title(self): return "Prompts from file or textbox" - def ui(self, is_img2img): + def ui(self, is_img2img): checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate")) checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch")) @@ -166,7 +166,7 @@ class Script(scripts.Script): proc = process_images(copy_p) images += proc.images - + if checkbox_iterate: p.seed = p.seed + (p.batch_size * p.n_iter) all_prompts += proc.all_prompts diff --git a/scripts/sd_upscale.py b/scripts/sd_upscale.py index 0b1d3096..e614c23b 100644 --- a/scripts/sd_upscale.py +++ b/scripts/sd_upscale.py @@ -16,7 +16,7 @@ class Script(scripts.Script): def show(self, is_img2img): return is_img2img - def ui(self, is_img2img): + def ui(self, is_img2img): info = gr.HTML("

Will upscale the image by the selected scale factor; use width and height sliders to set tile size

") overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap")) scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor")) -- cgit v1.2.3 From a6b618d07248267de36f0e8f4a847d997285e272 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 17 May 2023 21:03:41 +0300 Subject: use a single function for saving images with metadata both in extra networks and main mode for #10395 --- modules/images.py | 70 ++++++++++++++++++++++++++------------------ modules/ui_extra_networks.py | 19 ++---------- 2 files changed, 43 insertions(+), 46 deletions(-) (limited to 'modules/images.py') diff --git a/modules/images.py b/modules/images.py index b2de3662..4e8cd993 100644 --- a/modules/images.py +++ b/modules/images.py @@ -482,6 +482,43 @@ def get_next_sequence_number(path, basename): return result + 1 +def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_pnginfo=None): + if extension is None: + extension = os.path.splitext(filename)[1] + + image_format = Image.registered_extensions()[extension] + + existing_pnginfo = existing_pnginfo or {} + if opts.enable_pnginfo: + existing_pnginfo['parameters'] = geninfo + + if extension.lower() == '.png': + pnginfo_data = PngImagePlugin.PngInfo() + for k, v in (existing_pnginfo or {}).items(): + pnginfo_data.add_text(k, str(v)) + + image.save(filename, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data) + + elif extension.lower() in (".jpg", ".jpeg", ".webp"): + if image.mode == 'RGBA': + image = image.convert("RGB") + elif image.mode == 'I;16': + image = image.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L") + + image.save(filename, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless) + + if opts.enable_pnginfo and geninfo is not None: + exif_bytes = piexif.dump({ + "Exif": { + piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or "", encoding="unicode") + }, + }) + + piexif.insert(exif_bytes, filename) + else: + image.save(filename, format=image_format, quality=opts.jpeg_quality) + + def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None): """Save an image. @@ -566,38 +603,13 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i info = params.pnginfo.get(pnginfo_section_name, None) def _atomically_save_image(image_to_save, filename_without_extension, extension): - # save image with .tmp extension to avoid race condition when another process detects new image in the directory + """ + save image with .tmp extension to avoid race condition when another process detects new image in the directory + """ temp_file_path = f"{filename_without_extension}.tmp" - image_format = Image.registered_extensions()[extension] - - if extension.lower() == '.png': - pnginfo_data = PngImagePlugin.PngInfo() - if opts.enable_pnginfo: - for k, v in params.pnginfo.items(): - pnginfo_data.add_text(k, str(v)) - - image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data) - elif extension.lower() in (".jpg", ".jpeg", ".webp"): - if image_to_save.mode == 'RGBA': - image_to_save = image_to_save.convert("RGB") - elif image_to_save.mode == 'I;16': - image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L") - - image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless) - - if opts.enable_pnginfo and info is not None: - exif_bytes = piexif.dump({ - "Exif": { - piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode") - }, - }) - - piexif.insert(exif_bytes, temp_file_path) - else: - image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality) + save_image_with_geninfo(image_to_save, info, temp_file_path, extension, params.pnginfo) - # atomically rename the file with correct extension os.replace(temp_file_path, filename_without_extension + extension) fullfn_without_extension, extension = os.path.splitext(params.filename) diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 471df23b..c6e45fb1 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -4,7 +4,7 @@ from pathlib import Path from PIL import PngImagePlugin from modules import shared -from modules.images import read_info_from_image +from modules.images import read_info_from_image, save_image_with_geninfo import gradio as gr import json import html @@ -343,22 +343,7 @@ def setup_ui(ui, gallery): assert is_allowed, f'writing to {filename} is not allowed' - if geninfo: - ext = os.path.splitext(filename)[1].lower() - if ext == '.png': - pnginfo_data = PngImagePlugin.PngInfo() - pnginfo_data.add_text('parameters', geninfo) - image.save(filename, pnginfo=pnginfo_data) - elif ext in ('.jpg', '.jpeg', '.webp'): - exif_bytes = piexif.dump({ - 'Exif': {piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or '', - encoding='unicode')} - }) - image.save(filename, exif=exif_bytes, quality=shared.opts.jpeg_quality) - else: - image.save(filename) - else: - image.save(filename) + save_image_with_geninfo(image, geninfo, filename) return [page.create_html(ui.tabname) for page in ui.stored_extra_pages] -- cgit v1.2.3