From 96d6ca4199e7c5eee8d451618de5161cea317c40 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 08:25:25 +0300 Subject: manual fixes for ruff --- modules/models/diffusion/ddpm_edit.py | 26 ++++++++++---------------- 1 file changed, 10 insertions(+), 16 deletions(-) (limited to 'modules/models/diffusion/ddpm_edit.py') diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index f880bc3c..611c2b69 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -479,7 +479,7 @@ class LatentDiffusion(DDPM): self.cond_stage_key = cond_stage_key try: self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 - except: + except Exception: self.num_downs = 0 if not scale_by_std: self.scale_factor = scale_factor @@ -891,16 +891,6 @@ class LatentDiffusion(DDPM): c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) return self.p_losses(x, c, t, *args, **kwargs) - def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset - def rescale_bbox(bbox): - x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) - y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) - w = min(bbox[2] / crop_coordinates[2], 1 - x0) - h = min(bbox[3] / crop_coordinates[3], 1 - y0) - return x0, y0, w, h - - return [rescale_bbox(b) for b in bboxes] - def apply_model(self, x_noisy, t, cond, return_ids=False): if isinstance(cond, dict): @@ -1171,8 +1161,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(x0_partial) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) return img, intermediates @torch.no_grad() @@ -1219,8 +1211,10 @@ class LatentDiffusion(DDPM): if i % log_every_t == 0 or i == timesteps - 1: intermediates.append(img) - if callback: callback(i) - if img_callback: img_callback(img, i) + if callback: + callback(i) + if img_callback: + img_callback(img, i) if return_intermediates: return img, intermediates @@ -1337,7 +1331,7 @@ class LatentDiffusion(DDPM): if inpaint: # make a simple center square - b, h, w = z.shape[0], z.shape[2], z.shape[3] + h, w = z.shape[2], z.shape[3] mask = torch.ones(N, h, w).to(self.device) # zeros will be filled in mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. -- cgit v1.2.3 From 028d3f6425d85f122027c127fba8bcbf4f66ee75 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:05:02 +0300 Subject: ruff auto fixes --- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 4 ++-- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 12 ++++++------ extensions-builtin/Lora/lora.py | 12 ++++++------ extensions-builtin/Lora/scripts/lora_script.py | 2 +- modules/config_states.py | 2 +- modules/deepbooru.py | 2 +- modules/devices.py | 2 +- modules/hypernetworks/hypernetwork.py | 2 +- modules/hypernetworks/ui.py | 4 ++-- modules/interrogate.py | 2 +- modules/modelloader.py | 2 +- modules/models/diffusion/ddpm_edit.py | 4 ++-- modules/scripts_auto_postprocessing.py | 2 +- modules/sd_hijack.py | 2 +- modules/sd_hijack_optimizations.py | 14 +++++++------- modules/sd_samplers_compvis.py | 2 +- modules/sd_samplers_kdiffusion.py | 2 +- modules/shared.py | 6 +++--- modules/textual_inversion/textual_inversion.py | 2 +- modules/ui.py | 8 ++++---- modules/ui_extra_networks.py | 4 ++-- modules/ui_tempdir.py | 2 +- 22 files changed, 47 insertions(+), 47 deletions(-) (limited to 'modules/models/diffusion/ddpm_edit.py') diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 6303fed5..f457ca93 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -288,5 +288,5 @@ class VQModelInterface(VQModel): dec = self.decoder(quant) return dec -setattr(ldm.models.autoencoder, "VQModel", VQModel) -setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface) +ldm.models.autoencoder.VQModel = VQModel +ldm.models.autoencoder.VQModelInterface = VQModelInterface diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 4d3f6c56..d8fc30e3 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -1116,7 +1116,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1215,7 +1215,7 @@ class LatentDiffusionV1(DDPMV1): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, @@ -1437,7 +1437,7 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): logs['bbox_image'] = cond_img return logs -setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1) -setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1) -setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1) -setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1) +ldm.models.diffusion.ddpm.DDPMV1 = DDPMV1 +ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV1 +ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV1 +ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1 diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index 0ab43229..9795540f 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -172,7 +172,7 @@ def load_lora(name, filename): else: print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}') continue - assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' + raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}") with torch.no_grad(): module.weight.copy_(weight) @@ -184,7 +184,7 @@ def load_lora(name, filename): elif lora_key == "lora_down.weight": lora_module.down = module else: - assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' + raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha") if len(keys_failed_to_match) > 0: print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") @@ -202,7 +202,7 @@ def load_loras(names, multipliers=None): loaded_loras.clear() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] - if any([x is None for x in loras_on_disk]): + if any(x is None for x in loras_on_disk): list_available_loras() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] @@ -309,7 +309,7 @@ def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.Mu print(f'failed to calculate lora weights for layer {lora_layer_name}') - setattr(self, "lora_current_names", wanted_names) + self.lora_current_names = wanted_names def lora_forward(module, input, original_forward): @@ -343,8 +343,8 @@ def lora_forward(module, input, original_forward): def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): - setattr(self, "lora_current_names", ()) - setattr(self, "lora_weights_backup", None) + self.lora_current_names = () + self.lora_weights_backup = None def lora_Linear_forward(self, input): diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index 7db971fd..b70e2de7 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -53,7 +53,7 @@ script_callbacks.on_infotext_pasted(lora.infotext_pasted) shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { - "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), + "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(lora.available_loras)}, refresh=lora.list_available_loras), })) diff --git a/modules/config_states.py b/modules/config_states.py index 8f1ff428..75da862a 100644 --- a/modules/config_states.py +++ b/modules/config_states.py @@ -35,7 +35,7 @@ def list_config_states(): j["filepath"] = path config_states.append(j) - config_states = list(sorted(config_states, key=lambda cs: cs["created_at"], reverse=True)) + config_states = sorted(config_states, key=lambda cs: cs["created_at"], reverse=True) for cs in config_states: timestamp = time.asctime(time.gmtime(cs["created_at"])) diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 1c4554a2..547e1b4c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -78,7 +78,7 @@ class DeepDanbooru: res = [] - filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")]) + filtertags = {x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")} for tag in [x for x in tags if x not in filtertags]: probability = probability_dict[tag] diff --git a/modules/devices.py b/modules/devices.py index c705a3cb..d8a34a0f 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -65,7 +65,7 @@ def enable_tf32(): # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 - if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]): + if any(torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())): torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 9fe749b7..6ef0bfdf 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -403,7 +403,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): k = self.to_k(context_k) v = self.to_v(context_v) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index be168736..e3f9eb13 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -5,13 +5,13 @@ import modules.hypernetworks.hypernetwork from modules import devices, sd_hijack, shared not_available = ["hardswish", "multiheadattention"] -keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) +keys = [x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available] def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure) - return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", "" + return gr.Dropdown.update(choices=sorted(shared.hypernetworks.keys())), f"Created: {filename}", "" def train_hypernetwork(*args): diff --git a/modules/interrogate.py b/modules/interrogate.py index 22df9216..a1c8e537 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -159,7 +159,7 @@ class InterrogateModels: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] top_count = min(top_count, len(text_array)) - text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate) + text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate) text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) text_features /= text_features.norm(dim=-1, keepdim=True) diff --git a/modules/modelloader.py b/modules/modelloader.py index 92ada694..25612bf8 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -39,7 +39,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None if os.path.islink(full_path) and not os.path.exists(full_path): print(f"Skipping broken symlink: {full_path}") continue - if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): + if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist): continue if full_path not in output: output.append(full_path) diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 611c2b69..09432117 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -1130,7 +1130,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] @@ -1229,7 +1229,7 @@ class LatentDiffusion(DDPM): if cond is not None: if isinstance(cond, dict): cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else - list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + [x[:batch_size] for x in cond[key]] for key in cond} else: cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] return self.p_sample_loop(cond, diff --git a/modules/scripts_auto_postprocessing.py b/modules/scripts_auto_postprocessing.py index 30d6d658..d63078de 100644 --- a/modules/scripts_auto_postprocessing.py +++ b/modules/scripts_auto_postprocessing.py @@ -17,7 +17,7 @@ class ScriptPostprocessingForMainUI(scripts.Script): return self.postprocessing_controls.values() def postprocess_image(self, p, script_pp, *args): - args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)} + args_dict = dict(zip(self.postprocessing_controls, args)) pp = scripts_postprocessing.PostprocessedImage(script_pp.image) pp.info = {} diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 81573b78..e374aeb8 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -37,7 +37,7 @@ def apply_optimizations(): optimization_method = None - can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(getattr(torch.nn.functional, "scaled_dot_product_attention")) # not everyone has torch 2.x to use sdp + can_use_sdp = hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention) # not everyone has torch 2.x to use sdp if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): print("Applying xformers cross attention optimization.") diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index b623d53d..a174bbe1 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -49,7 +49,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): v_in = self.to_v(context_v) del context, context_k, context_v, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in dtype = q.dtype @@ -98,7 +98,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): del context, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) @@ -229,7 +229,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): with devices.without_autocast(disable=not shared.opts.upcast_attn): k = k * self.scale - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v)) r = einsum_op(q, k, v) r = r.to(dtype) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) @@ -334,7 +334,7 @@ def xformers_attention_forward(self, x, context=None, mask=None): k_in = self.to_k(context_k) v_in = self.to_v(context_v) - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) + q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in)) del q_in, k_in, v_in dtype = q.dtype @@ -460,7 +460,7 @@ def xformers_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) dtype = q.dtype if shared.opts.upcast_attn: q, k = q.float(), k.float() @@ -482,7 +482,7 @@ def sdp_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) dtype = q.dtype if shared.opts.upcast_attn: q, k = q.float(), k.float() @@ -506,7 +506,7 @@ def sub_quad_attnblock_forward(self, x): k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape - q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v)) q = q.contiguous() k = k.contiguous() v = v.contiguous() diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index bfcc5574..7427648f 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -83,7 +83,7 @@ class VanillaStableDiffusionSampler: conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' + assert all(len(conds) == 1 for conds in conds_list), 'composition via AND is not supported for DDIM/PLMS samplers' cond = tensor # for DDIM, shapes must match, we can't just process cond and uncond independently; diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 3b8e9622..2f733cf5 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -86,7 +86,7 @@ class CFGDenoiser(torch.nn.Module): conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) - assert not is_edit_model or all([len(conds) == 1 for conds in conds_list]), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" + assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] diff --git a/modules/shared.py b/modules/shared.py index 7d70f041..e2691585 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -381,7 +381,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), { "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"), "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"), "extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"), - "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), + "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + list(hypernetworks.keys())}, refresh=reload_hypernetworks), })) options_templates.update(options_section(('ui', "User interface"), { @@ -403,7 +403,7 @@ options_templates.update(options_section(('ui', "User interface"), { "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}), - "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}), + "hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}), "ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"), "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"), "localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), @@ -583,7 +583,7 @@ class Options: if item.section not in section_ids: section_ids[item.section] = len(section_ids) - self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])} + self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section])) def cast_value(self, key, value): """casts an arbitrary to the same type as this setting's value with key diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 9ed9ba45..c37bb2ad 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -167,7 +167,7 @@ class EmbeddingDatabase: if 'string_to_param' in data: param_dict = data['string_to_param'] if hasattr(param_dict, '_parameters'): - param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 + param_dict = param_dict._parameters # fix for torch 1.12.1 loading saved file from torch 1.11 assert len(param_dict) == 1, 'embedding file has multiple terms in it' emb = next(iter(param_dict.items()))[1] # diffuser concepts diff --git a/modules/ui.py b/modules/ui.py index 782b569d..84d661b2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1222,7 +1222,7 @@ def create_ui(): ) def get_textual_inversion_template_names(): - return sorted([x for x in textual_inversion.textual_inversion_templates]) + return sorted(textual_inversion.textual_inversion_templates) with gr.Tab(label="Train", id="train"): gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") @@ -1230,8 +1230,8 @@ def create_ui(): train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) - create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=list(shared.hypernetworks.keys())) + create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks.keys())}, "refresh_train_hypernetwork_name") with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") @@ -1808,7 +1808,7 @@ def create_ui(): if type(x) == gr.Dropdown: def check_dropdown(val): if getattr(x, 'multiselect', False): - return all([value in x.choices for value in val]) + return all(value in x.choices for value in val) else: return val in x.choices diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 800e467a..ab585917 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -26,7 +26,7 @@ def register_page(page): def fetch_file(filename: str = ""): from starlette.responses import FileResponse - if not any([Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs]): + if not any(Path(x).absolute() in Path(filename).absolute().parents for x in allowed_dirs): raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.") ext = os.path.splitext(filename)[1].lower() @@ -326,7 +326,7 @@ def setup_ui(ui, gallery): is_allowed = False for extra_page in ui.stored_extra_pages: - if any([path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()]): + if any(path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()): is_allowed = True break diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index 46fa9cb0..cac73c51 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -23,7 +23,7 @@ def register_tmp_file(gradio, filename): def check_tmp_file(gradio, filename): if hasattr(gradio, 'temp_file_sets'): - return any([filename in fileset for fileset in gradio.temp_file_sets]) + return any(filename in fileset for fileset in gradio.temp_file_sets) if hasattr(gradio, 'temp_dirs'): return any(Path(temp_dir).resolve() in Path(filename).resolve().parents for temp_dir in gradio.temp_dirs) -- cgit v1.2.3 From 550256db1ce18778a9d56ff343d844c61b9f9b83 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:19:16 +0300 Subject: ruff manual fixes --- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 10 +++++----- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 14 +++++++------- extensions-builtin/SwinIR/swinir_model_arch.py | 6 +++++- extensions-builtin/SwinIR/swinir_model_arch_v2.py | 11 +++++++++-- modules/api/api.py | 18 ++++++++++++------ modules/codeformer/codeformer_arch.py | 7 +++++-- modules/codeformer/vqgan_arch.py | 4 ++-- modules/generation_parameters_copypaste.py | 4 ++-- modules/models/diffusion/ddpm_edit.py | 14 ++++++++------ modules/models/diffusion/uni_pc/uni_pc.py | 7 +++++-- modules/safe.py | 2 +- modules/sd_samplers_compvis.py | 2 +- modules/textual_inversion/image_embedding.py | 2 +- modules/textual_inversion/learn_schedule.py | 4 ++-- pyproject.toml | 5 ++++- 15 files changed, 69 insertions(+), 41 deletions(-) (limited to 'modules/models/diffusion/ddpm_edit.py') diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index f457ca93..8cc82d54 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -24,7 +24,7 @@ class VQModel(pl.LightningModule): n_embed, embed_dim, ckpt_path=None, - ignore_keys=[], + ignore_keys=None, image_key="image", colorize_nlabels=None, monitor=None, @@ -62,7 +62,7 @@ class VQModel(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or []) self.scheduler_config = scheduler_config self.lr_g_factor = lr_g_factor @@ -81,11 +81,11 @@ class VQModel(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list()): + def init_from_ckpt(self, path, ignore_keys=None): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -270,7 +270,7 @@ class VQModel(pl.LightningModule): class VQModelInterface(VQModel): def __init__(self, embed_dim, *args, **kwargs): - super().__init__(embed_dim=embed_dim, *args, **kwargs) + super().__init__(*args, embed_dim=embed_dim, **kwargs) self.embed_dim = embed_dim def encode(self, x): diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index d8fc30e3..f16d6504 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -48,7 +48,7 @@ class DDPMV1(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -100,7 +100,7 @@ class DDPMV1(pl.LightningModule): if monitor is not None: self.monitor = monitor if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) @@ -182,13 +182,13 @@ class DDPMV1(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: - for ik in ignore_keys: + for ik in ignore_keys or []: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] @@ -444,7 +444,7 @@ class LatentDiffusionV1(DDPMV1): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1418,10 +1418,10 @@ class Layout2ImgDiffusionV1(LatentDiffusionV1): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py index 863f42db..75f7bedc 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch.py +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -644,13 +644,17 @@ class SwinIR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(SwinIR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py index 0e28ae6e..d4c0b0da 100644 --- a/extensions-builtin/SwinIR/swinir_model_arch_v2.py +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -74,9 +74,12 @@ class WindowAttention(nn.Module): """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., - pretrained_window_size=[0, 0]): + pretrained_window_size=None): super().__init__() + + pretrained_window_size = pretrained_window_size or [0, 0] + self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size @@ -698,13 +701,17 @@ class Swin2SR(nn.Module): """ def __init__(self, img_size=64, patch_size=1, in_chans=3, - embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + embed_dim=96, depths=None, num_heads=None, window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', **kwargs): super(Swin2SR, self).__init__() + + depths = depths or [6, 6, 6, 6] + num_heads = num_heads or [6, 6, 6, 6] + num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 diff --git a/modules/api/api.py b/modules/api/api.py index f52d371b..9efb558e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -34,14 +34,16 @@ import piexif.helper def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) - except Exception: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") + except Exception as e: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in shared.sd_upscalers])}") from e + def script_name_to_index(name, scripts): try: return [script.title().lower() for script in scripts].index(name.lower()) - except Exception: - raise HTTPException(status_code=422, detail=f"Script '{name}' not found") + except Exception as e: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e + def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -50,20 +52,23 @@ def validate_sampler_name(name): return name + def setUpscalers(req: dict): reqDict = vars(req) reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) return reqDict + def decode_base64_to_image(encoding): if encoding.startswith("data:image/"): encoding = encoding.split(";")[1].split(",")[1] try: image = Image.open(BytesIO(base64.b64decode(encoding))) return image - except Exception: - raise HTTPException(status_code=500, detail="Invalid encoded image") + except Exception as e: + raise HTTPException(status_code=500, detail="Invalid encoded image") from e + def encode_pil_to_base64(image): with io.BytesIO() as output_bytes: @@ -94,6 +99,7 @@ def encode_pil_to_base64(image): return base64.b64encode(bytes_data) + def api_middleware(app: FastAPI): rich_available = True try: diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py index 00c407de..ff1c0b4b 100644 --- a/modules/codeformer/codeformer_arch.py +++ b/modules/codeformer/codeformer_arch.py @@ -161,10 +161,13 @@ class Fuse_sft_block(nn.Module): class CodeFormer(VQAutoEncoder): def __init__(self, dim_embd=512, n_head=8, n_layers=9, codebook_size=1024, latent_size=256, - connect_list=['32', '64', '128', '256'], - fix_modules=['quantize','generator']): + connect_list=None, + fix_modules=None): super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) + connect_list = connect_list or ['32', '64', '128', '256'] + fix_modules = fix_modules or ['quantize', 'generator'] + if fix_modules is not None: for module in fix_modules: for param in getattr(self, module).parameters(): diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index 820e6b12..b24a0394 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -326,7 +326,7 @@ class Generator(nn.Module): @ARCH_REGISTRY.register() class VQAutoEncoder(nn.Module): - def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=None, codebook_size=1024, emb_dim=256, beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): super().__init__() logger = get_root_logger() @@ -337,7 +337,7 @@ class VQAutoEncoder(nn.Module): self.embed_dim = emb_dim self.ch_mult = ch_mult self.resolution = img_size - self.attn_resolutions = attn_resolutions + self.attn_resolutions = attn_resolutions or [16] self.quantizer_type = quantizer self.encoder = Encoder( self.in_channels, diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index f1c59c46..7fbbe707 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -19,14 +19,14 @@ registered_param_bindings = [] class ParamBinding: - def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=[]): + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None): self.paste_button = paste_button self.tabname = tabname self.source_text_component = source_text_component self.source_image_component = source_image_component self.source_tabname = source_tabname self.override_settings_component = override_settings_component - self.paste_field_names = paste_field_names + self.paste_field_names = paste_field_names or [] def reset(): diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 09432117..af4dea15 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -52,7 +52,7 @@ class DDPM(pl.LightningModule): beta_schedule="linear", loss_type="l2", ckpt_path=None, - ignore_keys=[], + ignore_keys=None, load_only_unet=False, monitor="val/loss", use_ema=True, @@ -107,7 +107,7 @@ class DDPM(pl.LightningModule): print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: - self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) # If initialing from EMA-only checkpoint, create EMA model after loading. if self.use_ema and not load_ema: @@ -194,7 +194,9 @@ class DDPM(pl.LightningModule): if context is not None: print(f"{context}: Restored training weights") - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + def init_from_ckpt(self, path, ignore_keys=None, only_model=False): + ignore_keys = ignore_keys or [] + sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] @@ -473,7 +475,7 @@ class LatentDiffusion(DDPM): conditioning_key = None ckpt_path = kwargs.pop("ckpt_path", None) ignore_keys = kwargs.pop("ignore_keys", []) - super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs) + super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) self.concat_mode = concat_mode self.cond_stage_trainable = cond_stage_trainable self.cond_stage_key = cond_stage_key @@ -1433,10 +1435,10 @@ class Layout2ImgDiffusion(LatentDiffusion): # TODO: move all layout-specific hacks to this class def __init__(self, cond_stage_key, *args, **kwargs): assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' - super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) def log_images(self, batch, N=8, *args, **kwargs): - logs = super().log_images(batch=batch, N=N, *args, **kwargs) + logs = super().log_images(*args, batch=batch, N=N, **kwargs) key = 'train' if self.training else 'validation' dset = self.trainer.datamodule.datasets[key] diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index a4c4ef4e..6f8ad631 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -178,13 +178,13 @@ def model_wrapper( model, noise_schedule, model_type="noise", - model_kwargs={}, + model_kwargs=None, guidance_type="uncond", #condition=None, #unconditional_condition=None, guidance_scale=1., classifier_fn=None, - classifier_kwargs={}, + classifier_kwargs=None, ): """Create a wrapper function for the noise prediction model. @@ -275,6 +275,9 @@ def model_wrapper( A noise prediction model that accepts the noised data and the continuous time as the inputs. """ + model_kwargs = model_kwargs or [] + classifier_kwargs = classifier_kwargs or [] + def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. diff --git a/modules/safe.py b/modules/safe.py index e6c2f2c0..2d5b972f 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -104,7 +104,7 @@ def check_pt(filename, extra_handler): def load(filename, *args, **kwargs): - return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs) + return load_with_extra(filename, *args, extra_handler=global_extra_handler, **kwargs) def load_with_extra(filename, extra_handler=None, *args, **kwargs): diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py index 7427648f..b1ee3be7 100644 --- a/modules/sd_samplers_compvis.py +++ b/modules/sd_samplers_compvis.py @@ -55,7 +55,7 @@ class VanillaStableDiffusionSampler: def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning) - res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) + res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs) x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res) diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py index ee0e850a..d85a4888 100644 --- a/modules/textual_inversion/image_embedding.py +++ b/modules/textual_inversion/image_embedding.py @@ -17,7 +17,7 @@ class EmbeddingEncoder(json.JSONEncoder): class EmbeddingDecoder(json.JSONDecoder): def __init__(self, *args, **kwargs): - json.JSONDecoder.__init__(self, object_hook=self.object_hook, *args, **kwargs) + json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs) def object_hook(self, d): if 'TORCHTENSOR' in d: diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index f63fc72f..fda58898 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -32,8 +32,8 @@ class LearnScheduleIterator: self.maxit += 1 return assert self.rates - except (ValueError, AssertionError): - raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') + except (ValueError, AssertionError) as e: + raise Exception('Invalid learning rate schedule. It should be a number or, for example, like "0.001:100, 0.00001:1000, 1e-5:10000" to have lr of 0.001 until step 100, 0.00001 until 1000, and 1e-5 until 10000.') from e def __iter__(self): diff --git a/pyproject.toml b/pyproject.toml index 2f65fd6c..346a0cde 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -24,6 +24,9 @@ ignore = [ ] - [tool.ruff.per-file-ignores] "webui.py" = ["E402"] # Module level import not at top of file + +[tool.ruff.flake8-bugbear] +# Allow default arguments like, e.g., `data: List[str] = fastapi.Query(None)`. +extend-immutable-calls = ["fastapi.Depends", "fastapi.security.HTTPBasic"] \ No newline at end of file -- cgit v1.2.3 From d25219b7e889cf34bccae9cb88497708796efda2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 10 May 2023 11:55:09 +0300 Subject: manual fixes for some C408 --- extensions-builtin/LDSR/ldsr_model_arch.py | 4 ++-- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 2 +- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 8 ++++---- modules/api/api.py | 2 +- modules/models/diffusion/ddpm_edit.py | 8 ++++---- modules/models/diffusion/uni_pc/uni_pc.py | 4 ++-- modules/sd_hijack_inpainting.py | 2 +- 7 files changed, 15 insertions(+), 15 deletions(-) (limited to 'modules/models/diffusion/ddpm_edit.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index 27e38549..2173de79 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -157,7 +157,7 @@ class LDSR: def get_cond(selected_path): - example = dict() + example = {} up_f = 4 c = selected_path.convert('RGB') c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) @@ -195,7 +195,7 @@ def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_s @torch.no_grad() def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): - log = dict() + log = {} z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, return_first_stage_outputs=True, diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 8cc82d54..81c5101b 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -237,7 +237,7 @@ class VQModel(pl.LightningModule): return self.decoder.conv_out.weight def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.image_key) x = x.to(self.device) if only_inputs: diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index f16d6504..57c02d12 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -375,7 +375,7 @@ class DDPMV1(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -383,7 +383,7 @@ class DDPMV1(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -1247,7 +1247,7 @@ class LatentDiffusionV1(DDPMV1): use_ddim = ddim_steps is not None - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1274,7 +1274,7 @@ class LatentDiffusionV1(DDPMV1): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: diff --git a/modules/api/api.py b/modules/api/api.py index 9efb558e..594fa655 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -165,7 +165,7 @@ def api_middleware(app: FastAPI): class Api: def __init__(self, app: FastAPI, queue_lock: Lock): if shared.cmd_opts.api_auth: - self.credentials = dict() + self.credentials = {} for auth in shared.cmd_opts.api_auth.split(","): user, password = auth.split(":") self.credentials[user] = password diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index af4dea15..3fb76b65 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -405,7 +405,7 @@ class DDPM(pl.LightningModule): @torch.no_grad() def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): - log = dict() + log = {} x = self.get_input(batch, self.first_stage_key) N = min(x.shape[0], N) n_row = min(x.shape[0], n_row) @@ -413,7 +413,7 @@ class DDPM(pl.LightningModule): log["inputs"] = x # get diffusion row - diffusion_row = list() + diffusion_row = [] x_start = x[:n_row] for t in range(self.num_timesteps): @@ -1263,7 +1263,7 @@ class LatentDiffusion(DDPM): use_ddim = False - log = dict() + log = {} z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, return_first_stage_outputs=True, force_c_encode=True, @@ -1291,7 +1291,7 @@ class LatentDiffusion(DDPM): if plot_diffusion_rows: # get diffusion row - diffusion_row = list() + diffusion_row = [] z_start = z[:n_row] for t in range(self.num_timesteps): if t % self.log_every_t == 0 or t == self.num_timesteps - 1: diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index 6f8ad631..f6c49f87 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -344,7 +344,7 @@ def model_wrapper( t_in = torch.cat([t_continuous] * 2) if isinstance(condition, dict): assert isinstance(unconditional_condition, dict) - c_in = dict() + c_in = {} for k in condition: if isinstance(condition[k], list): c_in[k] = [torch.cat([ @@ -355,7 +355,7 @@ def model_wrapper( unconditional_condition[k], condition[k]]) elif isinstance(condition, list): - c_in = list() + c_in = [] assert isinstance(unconditional_condition, list) for i in range(len(condition)): c_in.append(torch.cat([unconditional_condition[i], condition[i]])) diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 058575b7..c1977b19 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -23,7 +23,7 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F if isinstance(c, dict): assert isinstance(unconditional_conditioning, dict) - c_in = dict() + c_in = {} for k in c: if isinstance(c[k], list): c_in[k] = [ -- cgit v1.2.3 From 51864790fd72386fbbbb015d24a43ce501ecaa4b Mon Sep 17 00:00:00 2001 From: Aarni Koskela Date: Fri, 2 Jun 2023 14:58:10 +0300 Subject: Simplify a bunch of `len(x) > 0`/`len(x) == 0` style expressions --- extensions-builtin/LDSR/sd_hijack_autoencoder.py | 3 ++- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py | 4 ++-- extensions-builtin/Lora/extra_networks_lora.py | 4 ++-- extensions-builtin/Lora/lora.py | 4 ++-- .../extra-options-section/scripts/extra_options_section.py | 2 +- modules/api/api.py | 2 +- modules/call_queue.py | 2 +- modules/extra_networks_hypernet.py | 4 ++-- modules/generation_parameters_copypaste.py | 6 ++---- modules/images.py | 6 +++--- modules/img2img.py | 3 +-- modules/models/diffusion/ddpm_edit.py | 4 ++-- modules/processing.py | 3 ++- modules/prompt_parser.py | 6 +++--- modules/script_callbacks.py | 4 ++-- modules/sd_hijack_clip.py | 2 +- modules/sd_hijack_clip_old.py | 2 +- modules/textual_inversion/autocrop.py | 14 +++++++------- modules/textual_inversion/dataset.py | 2 +- modules/textual_inversion/preprocess.py | 4 ++-- modules/textual_inversion/textual_inversion.py | 2 +- modules/ui.py | 2 +- modules/ui_extensions.py | 5 +++-- modules/ui_settings.py | 2 +- scripts/prompts_from_file.py | 3 +-- 25 files changed, 47 insertions(+), 48 deletions(-) (limited to 'modules/models/diffusion/ddpm_edit.py') diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py index 27a86e13..c29d274d 100644 --- a/extensions-builtin/LDSR/sd_hijack_autoencoder.py +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -91,8 +91,9 @@ class VQModel(pl.LightningModule): del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: + if missing: print(f"Missing Keys: {missing}") + if unexpected: print(f"Unexpected Keys: {unexpected}") def on_train_batch_end(self, *args, **kwargs): diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py index 631a08ef..04adc5eb 100644 --- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -195,9 +195,9 @@ class DDPMV1(pl.LightningModule): missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: + if missing: print(f"Missing Keys: {missing}") - if len(unexpected) > 0: + if unexpected: print(f"Unexpected Keys: {unexpected}") def q_mean_variance(self, x_start, t): diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index b5fea4d2..66ee9c85 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -9,14 +9,14 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def activate(self, p, params_list): additional = shared.opts.sd_lora - if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0: + if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional): p.all_prompts = [x + f"" for x in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) names = [] multipliers = [] for params in params_list: - assert len(params.items) > 0 + assert params.items names.append(params.items[0]) multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py index eec14712..af93991c 100644 --- a/extensions-builtin/Lora/lora.py +++ b/extensions-builtin/Lora/lora.py @@ -219,7 +219,7 @@ def load_lora(name, lora_on_disk): else: raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha") - if len(keys_failed_to_match) > 0: + if keys_failed_to_match: print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}") return lora @@ -267,7 +267,7 @@ def load_loras(names, multipliers=None): lora.multiplier = multipliers[i] if multipliers else 1.0 loaded_loras.append(lora) - if len(failed_to_load_loras) > 0: + if failed_to_load_loras: sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras)) diff --git a/extensions-builtin/extra-options-section/scripts/extra_options_section.py b/extensions-builtin/extra-options-section/scripts/extra_options_section.py index 17f84184..a05e10d8 100644 --- a/extensions-builtin/extra-options-section/scripts/extra_options_section.py +++ b/extensions-builtin/extra-options-section/scripts/extra_options_section.py @@ -21,7 +21,7 @@ class ExtraOptionsSection(scripts.Script): self.setting_names = [] with gr.Blocks() as interface: - with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and len(shared.opts.extra_options) > 0 else gr.Group(), gr.Row(): + with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group(), gr.Row(): for setting_name in shared.opts.extra_options: with FormColumn(): comp = ui_settings.create_setting_component(setting_name) diff --git a/modules/api/api.py b/modules/api/api.py index d34ab422..555eefdb 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -280,7 +280,7 @@ class Api: script_args[0] = selectable_idx + 1 # Now check for always on scripts - if request.alwayson_scripts and (len(request.alwayson_scripts) > 0): + if request.alwayson_scripts: for alwayson_script_name in request.alwayson_scripts.keys(): alwayson_script = self.get_script(alwayson_script_name, script_runner) if alwayson_script is None: diff --git a/modules/call_queue.py b/modules/call_queue.py index 53af6d70..1b5e5273 100644 --- a/modules/call_queue.py +++ b/modules/call_queue.py @@ -21,7 +21,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): def f(*args, **kwargs): # if the first argument is a string that says "task(...)", it is treated as a job id - if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")": + if args and type(args[0]) == str and args[0].startswith("task(") and args[0].endswith(")"): id_task = args[0] progress.add_task_to_queue(id_task) else: diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index aa2a14ef..b6a6dc0e 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): def activate(self, p, params_list): additional = shared.opts.sd_hypernetwork - if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0: + if additional != "None" and additional in shared.hypernetworks and not any(x for x in params_list if x.items[0] == additional): hypernet_prompt_text = f"" p.all_prompts = [f"{prompt}{hypernet_prompt_text}" for prompt in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) @@ -17,7 +17,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): names = [] multipliers = [] for params in params_list: - assert len(params.items) > 0 + assert params.items names.append(params.items[0]) multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 071bd9ea..237401a1 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -55,7 +55,7 @@ def image_from_url_text(filedata): if filedata is None: return None - if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False): + if type(filedata) == list and filedata and type(filedata[0]) == dict and filedata[0].get("is_file", False): filedata = filedata[0] if type(filedata) == dict and filedata.get("is_file", False): @@ -437,7 +437,7 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component, vals_pairs = [f"{k}: {v}" for k, v in vals.items()] - return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0) + return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=bool(vals_pairs)) paste_fields = paste_fields + [(override_settings_component, paste_settings)] @@ -454,5 +454,3 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component, outputs=[], show_progress=False, ) - - diff --git a/modules/images.py b/modules/images.py index a12d252b..7bbfc3e0 100644 --- a/modules/images.py +++ b/modules/images.py @@ -406,7 +406,7 @@ class FilenameGenerator: prompt_no_style = self.prompt for style in shared.prompt_styles.get_style_prompts(self.p.styles): - if len(style) > 0: + if style: for part in style.split("{prompt}"): prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',') @@ -415,7 +415,7 @@ class FilenameGenerator: return sanitize_filename_part(prompt_no_style, replace_spaces=False) def prompt_words(self): - words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0] + words = [x for x in re_nonletters.split(self.prompt or "") if x] if len(words) == 0: words = ["empty"] return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False) @@ -423,7 +423,7 @@ class FilenameGenerator: def datetime(self, *args): time_datetime = datetime.datetime.now() - time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format + time_format = args[0] if (args and args[0] != "") else self.default_time_format try: time_zone = pytz.timezone(args[1]) if len(args) > 1 else None except pytz.exceptions.UnknownTimeZoneError: diff --git a/modules/img2img.py b/modules/img2img.py index 4c12c2c5..35c4facc 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -21,8 +21,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args): is_inpaint_batch = False if inpaint_mask_dir: inpaint_masks = shared.listfiles(inpaint_mask_dir) - is_inpaint_batch = len(inpaint_masks) > 0 - if is_inpaint_batch: + is_inpaint_batch = bool(inpaint_masks) print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py index 3fb76b65..b892d5fc 100644 --- a/modules/models/diffusion/ddpm_edit.py +++ b/modules/models/diffusion/ddpm_edit.py @@ -230,9 +230,9 @@ class DDPM(pl.LightningModule): missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: + if missing: print(f"Missing Keys: {missing}") - if len(unexpected) > 0: + if unexpected: print(f"Unexpected Keys: {unexpected}") def q_mean_variance(self, x_start, t): diff --git a/modules/processing.py b/modules/processing.py index 362ab4c2..9ebdb549 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -975,7 +975,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") if self.enable_hr and latent_scale_mode is None: - assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}" + if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): + raise Exception(f"could not find upscaler named {self.hr_upscaler}") x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py index b4aff704..0069d8b0 100644 --- a/modules/prompt_parser.py +++ b/modules/prompt_parser.py @@ -336,11 +336,11 @@ def parse_prompt_attention(text): round_brackets.append(len(res)) elif text == '[': square_brackets.append(len(res)) - elif weight is not None and len(round_brackets) > 0: + elif weight is not None and round_brackets: multiply_range(round_brackets.pop(), float(weight)) - elif text == ')' and len(round_brackets) > 0: + elif text == ')' and round_brackets: multiply_range(round_brackets.pop(), round_bracket_multiplier) - elif text == ']' and len(square_brackets) > 0: + elif text == ']' and square_brackets: multiply_range(square_brackets.pop(), square_bracket_multiplier) else: parts = re.split(re_break, text) diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index f755283c..77ee55ee 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -287,14 +287,14 @@ def list_unets_callback(): def add_callback(callbacks, fun): stack = [x for x in inspect.stack() if x.filename != __file__] - filename = stack[0].filename if len(stack) > 0 else 'unknown file' + filename = stack[0].filename if stack else 'unknown file' callbacks.append(ScriptCallback(filename, fun)) def remove_current_script_callbacks(): stack = [x for x in inspect.stack() if x.filename != __file__] - filename = stack[0].filename if len(stack) > 0 else 'unknown file' + filename = stack[0].filename if stack else 'unknown file' if filename == 'unknown file': return for callback_list in callback_map.values(): diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py index cc6e8c21..3b5a7666 100644 --- a/modules/sd_hijack_clip.py +++ b/modules/sd_hijack_clip.py @@ -167,7 +167,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module): chunk.multipliers += [weight] * emb_len position += embedding_length_in_tokens - if len(chunk.tokens) > 0 or len(chunks) == 0: + if chunk.tokens or not chunks: next_chunk(is_last=True) return chunks, token_count diff --git a/modules/sd_hijack_clip_old.py b/modules/sd_hijack_clip_old.py index a3476e95..c5c6270b 100644 --- a/modules/sd_hijack_clip_old.py +++ b/modules/sd_hijack_clip_old.py @@ -74,7 +74,7 @@ def forward_old(self: sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase, text self.hijack.comments += hijack_comments - if len(used_custom_terms) > 0: + if used_custom_terms: embedding_names = ", ".join(f"{word} [{checksum}]" for word, checksum in used_custom_terms) self.hijack.comments.append(f"Used embeddings: {embedding_names}") diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index 8e667a4d..75705459 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -77,27 +77,27 @@ def focal_point(im, settings): pois = [] weight_pref_total = 0 - if len(corner_points) > 0: + if corner_points: weight_pref_total += settings.corner_points_weight - if len(entropy_points) > 0: + if entropy_points: weight_pref_total += settings.entropy_points_weight - if len(face_points) > 0: + if face_points: weight_pref_total += settings.face_points_weight corner_centroid = None - if len(corner_points) > 0: + if corner_points: corner_centroid = centroid(corner_points) corner_centroid.weight = settings.corner_points_weight / weight_pref_total pois.append(corner_centroid) entropy_centroid = None - if len(entropy_points) > 0: + if entropy_points: entropy_centroid = centroid(entropy_points) entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total pois.append(entropy_centroid) face_centroid = None - if len(face_points) > 0: + if face_points: face_centroid = centroid(face_points) face_centroid.weight = settings.face_points_weight / weight_pref_total pois.append(face_centroid) @@ -187,7 +187,7 @@ def image_face_points(im, settings): except Exception: continue - if len(faces) > 0: + if faces: rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] return [] diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index b9621fc9..7ee05061 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -32,7 +32,7 @@ class DatasetEntry: class PersonalizedBase(Dataset): def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False): - re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None + re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None self.placeholder_token = placeholder_token diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index a009d8e8..0d4c3f84 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -47,7 +47,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti caption += shared.interrogator.generate_caption(image) if params.process_caption_deepbooru: - if len(caption) > 0: + if caption: caption += ", " caption += deepbooru.model.tag_multi(image) @@ -67,7 +67,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti caption = caption.strip() - if len(caption) > 0: + if caption: with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file: file.write(caption) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 8da050ca..bb6f211c 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -251,7 +251,7 @@ class EmbeddingDatabase: if self.previously_displayed_embeddings != displayed_embeddings: self.previously_displayed_embeddings = displayed_embeddings print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") - if len(self.skipped_embeddings) > 0: + if self.skipped_embeddings: print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") def find_embedding_at_position(self, tokens, offset): diff --git a/modules/ui.py b/modules/ui.py index b7459f08..9a025cca 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -398,7 +398,7 @@ def create_override_settings_dropdown(tabname, row): dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True) dropdown.change( - fn=lambda x: gr.Dropdown.update(visible=len(x) > 0), + fn=lambda x: gr.Dropdown.update(visible=bool(x)), inputs=[dropdown], outputs=[dropdown], ) diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 3140ed64..65173e06 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -333,7 +333,8 @@ def install_extension_from_url(dirname, url, branch_name=None): assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}' normalized_url = normalize_git_url(url) - assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed' + if any(x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url): + raise Exception(f'Extension with this URL is already installed: {url}') tmpdir = os.path.join(paths.data_path, "tmp", dirname) @@ -449,7 +450,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=" existing = installed_extension_urls.get(normalize_git_url(url), None) extension_tags = extension_tags + ["installed"] if existing else extension_tags - if len([x for x in extension_tags if x in tags_to_hide]) > 0: + if any(x for x in extension_tags if x in tags_to_hide): hidden += 1 continue diff --git a/modules/ui_settings.py b/modules/ui_settings.py index 7874298e..2688d8c2 100644 --- a/modules/ui_settings.py +++ b/modules/ui_settings.py @@ -81,7 +81,7 @@ class UiSettings: opts.save(shared.config_filename) except RuntimeError: return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.' - return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.' + return opts.dumpjson(), f'{len(changed)} settings changed{": " if changed else ""}{", ".join(changed)}.' def run_settings_single(self, value, key): if not opts.same_type(value, opts.data_labels[key].default): diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 83a2f220..50320d55 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -121,8 +121,7 @@ class Script(scripts.Script): return [checkbox_iterate, checkbox_iterate_batch, prompt_txt] def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_txt: str): - lines = [x.strip() for x in prompt_txt.splitlines()] - lines = [x for x in lines if len(x) > 0] + lines = [x for x in (x.strip() for x in prompt_txt.splitlines()) if x] p.do_not_save_grid = True -- cgit v1.2.3