From a1825ee741bb21b35561d58db8cb316d7f5d0c79 Mon Sep 17 00:00:00 2001 From: Splendide Imaginarius <119545140+Splendide-Imaginarius@users.noreply.github.com> Date: Thu, 3 Aug 2023 02:03:35 +0000 Subject: Make StableDiffusionProcessingImg2Img.mask_blur a property MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Fixes breakage when mask_blur is set after construction. See https://github.com/Coyote-A/ultimate-upscale-for-automatic1111/issues/111#issuecomment-1652091424 Thanks to Алексей Трофимов and eunnone for reporting the issue. --- modules/processing.py | 21 ++++++++++++++++++--- 1 file changed, 18 insertions(+), 3 deletions(-) mode change 100644 => 100755 modules/processing.py (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py old mode 100644 new mode 100755 index b0992ee1..44d20fb7 --- a/modules/processing.py +++ b/modules/processing.py @@ -1232,11 +1232,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.image_mask = mask self.latent_mask = None self.mask_for_overlay = None - if mask_blur is not None: - mask_blur_x = mask_blur - mask_blur_y = mask_blur self.mask_blur_x = mask_blur_x self.mask_blur_y = mask_blur_y + if mask_blur is not None: + self.mask_blur = mask_blur self.inpainting_fill = inpainting_fill self.inpaint_full_res = inpaint_full_res self.inpaint_full_res_padding = inpaint_full_res_padding @@ -1246,6 +1245,22 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.nmask = None self.image_conditioning = None + @property + def mask_blur(self): + if self.mask_blur_x == self.mask_blur_y: + return self.mask_blur_x + return None + + @mask_blur.setter + def mask_blur(self, value): + self.mask_blur_x = value + self.mask_blur_y = value + + @mask_blur.deleter + def mask_blur(self): + del self.mask_blur_x + del self.mask_blur_y + def init(self, all_prompts, all_seeds, all_subseeds): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) crop_region = None -- cgit v1.2.3 From 56888644a67298253260eda84ceb2d6cd0ce5099 Mon Sep 17 00:00:00 2001 From: Splendide Imaginarius <119545140+Splendide-Imaginarius@users.noreply.github.com> Date: Sat, 5 Aug 2023 04:54:23 +0000 Subject: Reduce mask blur kernel size to 2.5 sigmas MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This more closely matches the old behavior of PIL's Gaussian blur, and fixes breakage when tiling. See https://github.com/Coyote-A/ultimate-upscale-for-automatic1111/issues/111#issuecomment-1663504109 Thanks to Алексей Трофимов and eunnone for reporting the issue. --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 44d20fb7..63cd025c 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1275,13 +1275,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if self.mask_blur_x > 0: np_mask = np.array(image_mask) - kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1 + kernel_size = 2 * int(2.5 * self.mask_blur_x + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x) image_mask = Image.fromarray(np_mask) if self.mask_blur_y > 0: np_mask = np.array(image_mask) - kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1 + kernel_size = 2 * int(2.5 * self.mask_blur_y + 0.5) + 1 np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y) image_mask = Image.fromarray(np_mask) -- cgit v1.2.3 From af27b716e53671c52308d4e101214b0fd4fd5e80 Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Fri, 11 Aug 2023 12:22:11 -0400 Subject: Fix color correction by converting image to RGB --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c048ca25..131c4c3c 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -57,7 +57,7 @@ def apply_color_correction(correction, original_image): image = blendLayers(image, original_image, BlendType.LUMINOSITY) - return image + return image.convert('RGB') def apply_overlay(image, paste_loc, index, overlays): -- cgit v1.2.3 From 64311faa6848d641cc452115e4e1eb47d2a7b519 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 12 Aug 2023 12:39:59 +0300 Subject: put refiner into main UI, into the new accordions section add VAE from main model into infotext, not from refiner model option to make scripts UI without gr.Group fix inconsistencies with refiner when usings samplers that do more denoising than steps --- modules/processing.py | 22 ++++++++----- modules/processing_scripts/refiner.py | 55 +++++++++++++++++++++++++++++++++ modules/scripts.py | 24 ++++++++++----- modules/sd_models.py | 3 ++ modules/sd_samplers_cfg_denoiser.py | 6 +++- modules/sd_samplers_common.py | 40 ++++++++++++++---------- modules/sd_samplers_kdiffusion.py | 3 +- modules/shared_items.py | 4 +-- modules/shared_options.py | 2 -- modules/ui.py | 58 ++++++++++++++++++++--------------- modules/ui_components.py | 18 ++++++++--- style.css | 32 +++++++++++-------- 12 files changed, 188 insertions(+), 79 deletions(-) create mode 100644 modules/processing_scripts/refiner.py (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 131c4c3c..5996cbac 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -373,9 +373,10 @@ class StableDiffusionProcessing: negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True) sampler_config = sd_samplers.find_sampler_config(self.sampler_name) - self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1 - self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data) - self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data) + total_steps = sampler_config.total_steps(self.steps) if sampler_config else self.steps + self.step_multiplier = total_steps // self.steps + self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, total_steps, [self.cached_uc], self.extra_network_data) + self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, total_steps, [self.cached_c], self.extra_network_data) def get_conds(self): return self.c, self.uc @@ -579,8 +580,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), - "VAE hash": sd_vae.get_loaded_vae_hash() if opts.add_model_hash_to_info else None, - "VAE": sd_vae.get_loaded_vae_name() if opts.add_model_name_to_info else None, + "VAE hash": p.loaded_vae_hash if opts.add_model_hash_to_info else None, + "VAE": p.loaded_vae_name if opts.add_model_name_to_info else None, "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), @@ -669,6 +670,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.tiling is None: p.tiling = opts.tiling + p.loaded_vae_name = sd_vae.get_loaded_vae_name() + p.loaded_vae_hash = sd_vae.get_loaded_vae_hash() + modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() @@ -1188,8 +1192,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): hr_prompts = prompt_parser.SdConditioning(self.hr_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y) hr_negative_prompts = prompt_parser.SdConditioning(self.hr_negative_prompts, width=self.hr_upscale_to_x, height=self.hr_upscale_to_y, is_negative_prompt=True) - self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data) - self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) + sampler_config = sd_samplers.find_sampler_config(self.hr_sampler_name or self.sampler_name) + steps = self.hr_second_pass_steps or self.steps + total_steps = sampler_config.total_steps(steps) if sampler_config else steps + + self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, hr_negative_prompts, total_steps, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data) + self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, total_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) def setup_conds(self): super().setup_conds() diff --git a/modules/processing_scripts/refiner.py b/modules/processing_scripts/refiner.py new file mode 100644 index 00000000..5a82991a --- /dev/null +++ b/modules/processing_scripts/refiner.py @@ -0,0 +1,55 @@ +import gradio as gr + +from modules import scripts, sd_models +from modules.ui_common import create_refresh_button +from modules.ui_components import InputAccordion + + +class ScriptRefiner(scripts.Script): + section = "accordions" + create_group = False + + def __init__(self): + pass + + def title(self): + return "Refiner" + + def show(self, is_img2img): + return scripts.AlwaysVisible + + def ui(self, is_img2img): + with InputAccordion(False, label="Refiner", elem_id=self.elem_id("enable")) as enable_refiner: + with gr.Row(): + refiner_checkpoint = gr.Dropdown(label='Checkpoint', elem_id=self.elem_id("checkpoint"), choices=sd_models.checkpoint_tiles(), value='', tooltip="switch to another model in the middle of generation") + create_refresh_button(refiner_checkpoint, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, self.elem_id("checkpoint_refresh")) + + refiner_switch_at = gr.Slider(value=0.8, label="Switch at", minimum=0.01, maximum=1.0, step=0.01, elem_id=self.elem_id("switch_at"), tooltip="fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation") + + def lookup_checkpoint(title): + info = sd_models.get_closet_checkpoint_match(title) + return None if info is None else info.title + + self.infotext_fields = [ + (enable_refiner, lambda d: 'Refiner' in d), + (refiner_checkpoint, lambda d: lookup_checkpoint(d.get('Refiner'))), + (refiner_switch_at, 'Refiner switch at'), + ] + + return enable_refiner, refiner_checkpoint, refiner_switch_at + + def before_process(self, p, enable_refiner, refiner_checkpoint, refiner_switch_at): + # the actual implementation is in sd_samplers_common.py, apply_refiner + + p.refiner_checkpoint_info = None + p.refiner_switch_at = None + + if not enable_refiner or refiner_checkpoint in (None, "", "None"): + return + + refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(refiner_checkpoint) + if refiner_checkpoint_info is None: + raise Exception(f'Could not find checkpoint with name {refiner_checkpoint}') + + p.refiner_checkpoint_info = refiner_checkpoint_info + p.refiner_switch_at = refiner_switch_at diff --git a/modules/scripts.py b/modules/scripts.py index f7d060aa..51da732a 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -37,7 +37,10 @@ class Script: is_img2img = False group = None - """A gr.Group component that has all script's UI inside it""" + """A gr.Group component that has all script's UI inside it.""" + + create_group = True + """If False, for alwayson scripts, a group component will not be created.""" infotext_fields = None """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when @@ -232,6 +235,7 @@ class Script: """ pass + current_basedir = paths.script_path @@ -250,7 +254,7 @@ postprocessing_scripts_data = [] ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"]) -def list_scripts(scriptdirname, extension): +def list_scripts(scriptdirname, extension, *, include_extensions=True): scripts_list = [] basedir = os.path.join(paths.script_path, scriptdirname) @@ -258,8 +262,9 @@ def list_scripts(scriptdirname, extension): for filename in sorted(os.listdir(basedir)): scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename))) - for ext in extensions.active(): - scripts_list += ext.list_files(scriptdirname, extension) + if include_extensions: + for ext in extensions.active(): + scripts_list += ext.list_files(scriptdirname, extension) scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)] @@ -288,7 +293,7 @@ def load_scripts(): postprocessing_scripts_data.clear() script_callbacks.clear_callbacks() - scripts_list = list_scripts("scripts", ".py") + scripts_list = list_scripts("scripts", ".py") + list_scripts("modules/processing_scripts", ".py", include_extensions=False) syspath = sys.path @@ -429,10 +434,13 @@ class ScriptRunner: if script.alwayson and script.section != section: continue - with gr.Group(visible=script.alwayson) as group: - self.create_script_ui(script) + if script.create_group: + with gr.Group(visible=script.alwayson) as group: + self.create_script_ui(script) - script.group = group + script.group = group + else: + self.create_script_ui(script) def prepare_ui(self): self.inputs = [None] diff --git a/modules/sd_models.py b/modules/sd_models.py index a178adca..f6fbdcd6 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -147,6 +147,9 @@ re_strip_checksum = re.compile(r"\s*\[[^]]+]\s*$") def get_closet_checkpoint_match(search_string): + if not search_string: + return None + checkpoint_info = checkpoint_aliases.get(search_string, None) if checkpoint_info is not None: return checkpoint_info diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index a532e013..113425b2 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -45,6 +45,11 @@ class CFGDenoiser(torch.nn.Module): self.nmask = None self.init_latent = None self.steps = None + """number of steps as specified by user in UI""" + + self.total_steps = None + """expected number of calls to denoiser calculated from self.steps and specifics of the selected sampler""" + self.step = 0 self.image_cfg_scale = None self.padded_cond_uncond = False @@ -56,7 +61,6 @@ class CFGDenoiser(torch.nn.Module): def inner_model(self): raise NotImplementedError() - def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] denoised = torch.clone(denoised_uncond) diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 35c4d657..85f3c7e0 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -7,7 +7,16 @@ from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, s from modules.shared import opts, state import k_diffusion.sampling -SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) + +SamplerDataTuple = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) + + +class SamplerData(SamplerDataTuple): + def total_steps(self, steps): + if self.options.get("second_order", False): + steps = steps * 2 + + return steps def setup_img2img_steps(p, steps=None): @@ -131,31 +140,26 @@ def replace_torchsde_browinan(): replace_torchsde_browinan() -def apply_refiner(sampler): - completed_ratio = sampler.step / sampler.steps +def apply_refiner(cfg_denoiser): + completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps + refiner_switch_at = cfg_denoiser.p.refiner_switch_at + refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info - if completed_ratio <= shared.opts.sd_refiner_switch_at: + if refiner_switch_at is not None and completed_ratio <= refiner_switch_at: return False - if shared.opts.sd_refiner_checkpoint == "None": + if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info: return False - if shared.sd_model.sd_checkpoint_info.title == shared.opts.sd_refiner_checkpoint: - return False - - refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(shared.opts.sd_refiner_checkpoint) - if refiner_checkpoint_info is None: - raise Exception(f'Could not find checkpoint with name {shared.opts.sd_refiner_checkpoint}') - - sampler.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title - sampler.p.extra_generation_params['Refiner switch at'] = shared.opts.sd_refiner_switch_at + cfg_denoiser.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title + cfg_denoiser.p.extra_generation_params['Refiner switch at'] = refiner_switch_at with sd_models.SkipWritingToConfig(): sd_models.reload_model_weights(info=refiner_checkpoint_info) devices.torch_gc() - sampler.p.setup_conds() - sampler.update_inner_model() + cfg_denoiser.p.setup_conds() + cfg_denoiser.update_inner_model() return True @@ -192,7 +196,7 @@ class Sampler: self.sampler_noises = None self.stop_at = None self.eta = None - self.config = None # set by the function calling the constructor + self.config: SamplerData = None # set by the function calling the constructor self.last_latent = None self.s_min_uncond = None self.s_churn = 0.0 @@ -208,6 +212,7 @@ class Sampler: self.p = None self.model_wrap_cfg = None self.sampler_extra_args = None + self.options = {} def callback_state(self, d): step = d['i'] @@ -220,6 +225,7 @@ class Sampler: def launch_sampling(self, steps, func): self.model_wrap_cfg.steps = steps + self.model_wrap_cfg.total_steps = self.config.total_steps(steps) state.sampling_steps = steps state.sampling_step = 0 diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index d10fe12e..1f8e9c4b 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -64,9 +64,10 @@ class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser): class KDiffusionSampler(sd_samplers_common.Sampler): - def __init__(self, funcname, sd_model): + def __init__(self, funcname, sd_model, options=None): super().__init__(funcname) + self.options = options or {} self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) self.model_wrap_cfg = CFGDenoiserKDiffusion(self) diff --git a/modules/shared_items.py b/modules/shared_items.py index e4ec40a8..754166d2 100644 --- a/modules/shared_items.py +++ b/modules/shared_items.py @@ -69,8 +69,8 @@ def reload_hypernetworks(): ui_reorder_categories_builtin_items = [ "inpaint", "sampler", + "accordions", "checkboxes", - "hires_fix", "dimensions", "cfg", "seed", @@ -86,7 +86,7 @@ def ui_reorder_categories(): sections = {} for script in scripts.scripts_txt2img.scripts + scripts.scripts_img2img.scripts: - if isinstance(script.section, str): + if isinstance(script.section, str) and script.section not in ui_reorder_categories_builtin_items: sections[script.section] = 1 yield from sections diff --git a/modules/shared_options.py b/modules/shared_options.py index 1e5b64ea..9ae51f18 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -140,8 +140,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"), "tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"), - "sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext="Refiner").info("switch to another model in the middle of generation"), - "sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Refiner switch at').info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"), })) options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), { diff --git a/modules/ui.py b/modules/ui.py index 05292734..3321b94d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -438,35 +438,38 @@ def create_ui(): with FormRow(elem_classes="checkboxes-row", variant="compact"): pass - elif category == "hires_fix": - with InputAccordion(False, label="Hires. fix") as enable_hr: - with enable_hr.extra(): - hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False, min_width=0) + elif category == "accordions": + with gr.Row(elem_id="txt2img_accordions", elem_classes="accordions"): + with InputAccordion(False, label="Hires. fix", elem_id="txt2img_hr") as enable_hr: + with enable_hr.extra(): + hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False, min_width=0) - with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"): - hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) - hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") + with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"): + hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") - with FormRow(elem_id="txt2img_hires_fix_row2", variant="compact"): - hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") - hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") - hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") + with FormRow(elem_id="txt2img_hires_fix_row2", variant="compact"): + hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") + hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") + hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") - with FormRow(elem_id="txt2img_hires_fix_row3", variant="compact", visible=opts.hires_fix_show_sampler) as hr_sampler_container: + with FormRow(elem_id="txt2img_hires_fix_row3", variant="compact", visible=opts.hires_fix_show_sampler) as hr_sampler_container: - hr_checkpoint_name = gr.Dropdown(label='Hires checkpoint', elem_id="hr_checkpoint", choices=["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True), value="Use same checkpoint") - create_refresh_button(hr_checkpoint_name, modules.sd_models.list_models, lambda: {"choices": ["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True)}, "hr_checkpoint_refresh") + hr_checkpoint_name = gr.Dropdown(label='Hires checkpoint', elem_id="hr_checkpoint", choices=["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True), value="Use same checkpoint") + create_refresh_button(hr_checkpoint_name, modules.sd_models.list_models, lambda: {"choices": ["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True)}, "hr_checkpoint_refresh") - hr_sampler_name = gr.Dropdown(label='Hires sampling method', elem_id="hr_sampler", choices=["Use same sampler"] + sd_samplers.visible_sampler_names(), value="Use same sampler") + hr_sampler_name = gr.Dropdown(label='Hires sampling method', elem_id="hr_sampler", choices=["Use same sampler"] + sd_samplers.visible_sampler_names(), value="Use same sampler") - with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container: - with gr.Column(scale=80): - with gr.Row(): - hr_prompt = gr.Textbox(label="Hires prompt", elem_id="hires_prompt", show_label=False, lines=3, placeholder="Prompt for hires fix pass.\nLeave empty to use the same prompt as in first pass.", elem_classes=["prompt"]) - with gr.Column(scale=80): - with gr.Row(): - hr_negative_prompt = gr.Textbox(label="Hires negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"]) + with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container: + with gr.Column(scale=80): + with gr.Row(): + hr_prompt = gr.Textbox(label="Hires prompt", elem_id="hires_prompt", show_label=False, lines=3, placeholder="Prompt for hires fix pass.\nLeave empty to use the same prompt as in first pass.", elem_classes=["prompt"]) + with gr.Column(scale=80): + with gr.Row(): + hr_negative_prompt = gr.Textbox(label="Hires negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"]) + + scripts.scripts_txt2img.setup_ui_for_section(category) elif category == "batch": if not opts.dimensions_and_batch_together: @@ -482,7 +485,7 @@ def create_ui(): with FormGroup(elem_id="txt2img_script_container"): custom_inputs = scripts.scripts_txt2img.setup_ui() - else: + if category not in {"accordions"}: scripts.scripts_txt2img.setup_ui_for_section(category) hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] @@ -794,6 +797,10 @@ def create_ui(): with FormRow(elem_classes="checkboxes-row", variant="compact"): pass + elif category == "accordions": + with gr.Row(elem_id="img2img_accordions", elem_classes="accordions"): + scripts.scripts_img2img.setup_ui_for_section(category) + elif category == "batch": if not opts.dimensions_and_batch_together: with FormRow(elem_id="img2img_column_batch"): @@ -836,7 +843,8 @@ def create_ui(): inputs=[], outputs=[inpaint_controls, mask_alpha], ) - else: + + if category not in {"accordions"}: scripts.scripts_img2img.setup_ui_for_section(category) img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) diff --git a/modules/ui_components.py b/modules/ui_components.py index bfe2fbd9..d08b2b99 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -87,13 +87,23 @@ class InputAccordion(gr.Checkbox): self.accordion_id = f"input-accordion-{InputAccordion.global_index}" InputAccordion.global_index += 1 - kwargs['elem_id'] = self.accordion_id + "-checkbox" - kwargs['visible'] = False - super().__init__(value, **kwargs) + kwargs_checkbox = { + **kwargs, + "elem_id": f"{self.accordion_id}-checkbox", + "visible": False, + } + super().__init__(value, **kwargs_checkbox) self.change(fn=None, _js='function(checked){ inputAccordionChecked("' + self.accordion_id + '", checked); }', inputs=[self]) - self.accordion = gr.Accordion(kwargs.get('label', 'Accordion'), open=value, elem_id=self.accordion_id, elem_classes=['input-accordion']) + kwargs_accordion = { + **kwargs, + "elem_id": self.accordion_id, + "label": kwargs.get('label', 'Accordion'), + "elem_classes": ['input-accordion'], + "open": value, + } + self.accordion = gr.Accordion(**kwargs_accordion) def extra(self): """Allows you to put something into the label of the accordion. diff --git a/style.css b/style.css index 4cdce87c..260b1056 100644 --- a/style.css +++ b/style.css @@ -166,16 +166,6 @@ a{ color: var(--button-secondary-text-color-hover); } -.checkboxes-row{ - margin-bottom: 0.5em; - margin-left: 0em; -} -.checkboxes-row > div{ - flex: 0; - white-space: nowrap; - min-width: auto !important; -} - button.custom-button{ border-radius: var(--button-large-radius); padding: var(--button-large-padding); @@ -352,7 +342,7 @@ div.block.gradio-accordion { } div.dimensions-tools{ - min-width: 0 !important; + min-width: 1.6em !important; max-width: fit-content; flex-direction: column; place-content: center; @@ -1012,10 +1002,28 @@ div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-chi } div.block.input-accordion{ - margin-bottom: 0.4em; + } .input-accordion-extra{ flex: 0 0 auto !important; margin: 0 0.5em 0 auto; } + +div.accordions > div.input-accordion{ + min-width: fit-content !important; +} + +div.accordions > div.gradio-accordion .label-wrap span{ + white-space: nowrap; + margin-right: 0.25em; +} + +div.accordions{ + gap: 0.5em; +} + +div.accordions > div.input-accordion.input-accordion-open{ + flex: 1 auto; +} + -- cgit v1.2.3 From b293ed30610c040e621e1840d63047ae298f0650 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 12 Aug 2023 12:54:32 +0300 Subject: make it possible to use hires fix together with refiner --- modules/processing.py | 6 ++++++ modules/processing_scripts/refiner.py | 2 +- modules/sd_samplers_common.py | 3 +++ 3 files changed, 10 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 5996cbac..6ad105d7 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1200,6 +1200,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, hr_prompts, total_steps, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data) def setup_conds(self): + if self.is_hr_pass: + # if we are in hr pass right now, the call is being made from the refiner, and we don't need to setup firstpass cons or switch model + self.hr_c = None + self.calculate_hr_conds() + return + super().setup_conds() self.hr_uc = None diff --git a/modules/processing_scripts/refiner.py b/modules/processing_scripts/refiner.py index 5a82991a..773ec5d0 100644 --- a/modules/processing_scripts/refiner.py +++ b/modules/processing_scripts/refiner.py @@ -24,7 +24,7 @@ class ScriptRefiner(scripts.Script): refiner_checkpoint = gr.Dropdown(label='Checkpoint', elem_id=self.elem_id("checkpoint"), choices=sd_models.checkpoint_tiles(), value='', tooltip="switch to another model in the middle of generation") create_refresh_button(refiner_checkpoint, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, self.elem_id("checkpoint_refresh")) - refiner_switch_at = gr.Slider(value=0.8, label="Switch at", minimum=0.01, maximum=1.0, step=0.01, elem_id=self.elem_id("switch_at"), tooltip="fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation") + refiner_switch_at = gr.Slider(value=0.8, label="Switch at", minimum=0.01, maximum=1.0, step=0.01, elem_id=self.elem_id("switch_at"), tooltip="fraction of sampling steps when the switch to refiner model should happen; 1=never, 0.5=switch in the middle of generation") def lookup_checkpoint(title): info = sd_models.get_closet_checkpoint_match(title) diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 85f3c7e0..40c7aae0 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -151,6 +151,9 @@ def apply_refiner(cfg_denoiser): if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info: return False + if getattr(cfg_denoiser.p, "enable_hr", False) and not cfg_denoiser.p.is_hr_pass: + return False + cfg_denoiser.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title cfg_denoiser.p.extra_generation_params['Refiner switch at'] = refiner_switch_at -- cgit v1.2.3 From fa9370b7411166c19e8e386400dc4e6082f47b2d Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 13 Aug 2023 06:07:30 +0300 Subject: add refiner to StableDiffusionProcessing class write out correct model name in infotext, rather than the refiner model --- modules/processing.py | 38 +++++++++++++++++++++++++++-------- modules/processing_scripts/refiner.py | 16 +++++---------- modules/sd_samplers_common.py | 2 +- 3 files changed, 36 insertions(+), 20 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 6ad105d7..b47ddaa8 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -111,7 +111,7 @@ class StableDiffusionProcessing: cached_uc = [None, None] cached_c = [None, None] - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, refiner_checkpoint: str = None, refiner_switch_at: float = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -153,10 +153,14 @@ class StableDiffusionProcessing: self.s_noise = s_noise if s_noise is not None else opts.s_noise self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} self.override_settings_restore_afterwards = override_settings_restore_afterwards + self.refiner_checkpoint = refiner_checkpoint + self.refiner_switch_at = refiner_switch_at + self.is_using_inpainting_conditioning = False self.disable_extra_networks = False self.token_merging_ratio = 0 self.token_merging_ratio_hr = 0 + self.refiner_checkpoint_info = None if not seed_enable_extras: self.subseed = -1 @@ -191,6 +195,11 @@ class StableDiffusionProcessing: self.user = None + self.sd_model_name = None + self.sd_model_hash = None + self.sd_vae_name = None + self.sd_vae_hash = None + @property def sd_model(self): return shared.sd_model @@ -408,7 +417,10 @@ class Processed: self.batch_size = p.batch_size self.restore_faces = p.restore_faces self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None - self.sd_model_hash = shared.sd_model.sd_model_hash + self.sd_model_name = p.sd_model_name + self.sd_model_hash = p.sd_model_hash + self.sd_vae_name = p.sd_vae_name + self.sd_vae_hash = p.sd_vae_hash self.seed_resize_from_w = p.seed_resize_from_w self.seed_resize_from_h = p.seed_resize_from_h self.denoising_strength = getattr(p, 'denoising_strength', None) @@ -459,7 +471,10 @@ class Processed: "batch_size": self.batch_size, "restore_faces": self.restore_faces, "face_restoration_model": self.face_restoration_model, + "sd_model_name": self.sd_model_name, "sd_model_hash": self.sd_model_hash, + "sd_vae_name": self.sd_vae_name, + "sd_vae_hash": self.sd_vae_hash, "seed_resize_from_w": self.seed_resize_from_w, "seed_resize_from_h": self.seed_resize_from_h, "denoising_strength": self.denoising_strength, @@ -578,10 +593,10 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index], "Face restoration": opts.face_restoration_model if p.restore_faces else None, "Size": f"{p.width}x{p.height}", - "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), - "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), - "VAE hash": p.loaded_vae_hash if opts.add_model_hash_to_info else None, - "VAE": p.loaded_vae_name if opts.add_model_name_to_info else None, + "Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None, + "Model": p.sd_model_name if opts.add_model_name_to_info else None, + "VAE hash": p.sd_vae_hash if opts.add_model_hash_to_info else None, + "VAE": p.sd_vae_name if opts.add_model_name_to_info else None, "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), @@ -670,8 +685,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.tiling is None: p.tiling = opts.tiling - p.loaded_vae_name = sd_vae.get_loaded_vae_name() - p.loaded_vae_hash = sd_vae.get_loaded_vae_hash() + if p.refiner_checkpoint not in (None, "", "None"): + p.refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(p.refiner_checkpoint) + if p.refiner_checkpoint_info is None: + raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}') + + p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra + p.sd_model_hash = shared.sd_model.sd_model_hash + p.sd_vae_name = sd_vae.get_loaded_vae_name() + p.sd_vae_hash = sd_vae.get_loaded_vae_hash() modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() diff --git a/modules/processing_scripts/refiner.py b/modules/processing_scripts/refiner.py index 773ec5d0..7b946d05 100644 --- a/modules/processing_scripts/refiner.py +++ b/modules/processing_scripts/refiner.py @@ -41,15 +41,9 @@ class ScriptRefiner(scripts.Script): def before_process(self, p, enable_refiner, refiner_checkpoint, refiner_switch_at): # the actual implementation is in sd_samplers_common.py, apply_refiner - p.refiner_checkpoint_info = None - p.refiner_switch_at = None - if not enable_refiner or refiner_checkpoint in (None, "", "None"): - return - - refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(refiner_checkpoint) - if refiner_checkpoint_info is None: - raise Exception(f'Could not find checkpoint with name {refiner_checkpoint}') - - p.refiner_checkpoint_info = refiner_checkpoint_info - p.refiner_switch_at = refiner_switch_at + p.refiner_checkpoint_info = None + p.refiner_switch_at = None + else: + p.refiner_checkpoint = refiner_checkpoint + p.refiner_switch_at = refiner_switch_at diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 40c7aae0..380cdd5f 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -145,7 +145,7 @@ def apply_refiner(cfg_denoiser): refiner_switch_at = cfg_denoiser.p.refiner_switch_at refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info - if refiner_switch_at is not None and completed_ratio <= refiner_switch_at: + if refiner_switch_at is not None and completed_ratio < refiner_switch_at: return False if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info: -- cgit v1.2.3 From 599f61a1e0bddf463dd3c6adb84509b3d9db1941 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 13 Aug 2023 08:24:16 +0300 Subject: use dataclass for StableDiffusionProcessing --- modules/processing.py | 318 +++++++++++++++++++++++------------------- modules/sd_samplers_common.py | 5 +- 2 files changed, 176 insertions(+), 147 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b47ddaa8..007a4e05 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1,9 +1,11 @@ +from __future__ import annotations import json import logging import math import os import sys import hashlib +from dataclasses import dataclass, field import torch import numpy as np @@ -11,7 +13,7 @@ from PIL import Image, ImageOps import random import cv2 from skimage import exposure -from typing import Any, Dict, List +from typing import Any import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng @@ -104,106 +106,126 @@ def txt2img_image_conditioning(sd_model, x, width, height): return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) +@dataclass(repr=False) class StableDiffusionProcessing: - """ - The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing - """ + sd_model: object = None + outpath_samples: str = None + outpath_grids: str = None + prompt: str = "" + prompt_for_display: str = None + negative_prompt: str = "" + styles: list[str] = field(default_factory=list) + seed: int = -1 + subseed: int = -1 + subseed_strength: float = 0 + seed_resize_from_h: int = -1 + seed_resize_from_w: int = -1 + seed_enable_extras: bool = True + sampler_name: str = None + batch_size: int = 1 + n_iter: int = 1 + steps: int = 50 + cfg_scale: float = 7.0 + width: int = 512 + height: int = 512 + restore_faces: bool = None + tiling: bool = None + do_not_save_samples: bool = False + do_not_save_grid: bool = False + extra_generation_params: dict[str, Any] = None + overlay_images: list = None + eta: float = None + do_not_reload_embeddings: bool = False + denoising_strength: float = 0 + ddim_discretize: str = None + s_min_uncond: float = None + s_churn: float = None + s_tmax: float = None + s_tmin: float = None + s_noise: float = None + override_settings: dict[str, Any] = None + override_settings_restore_afterwards: bool = True + sampler_index: int = None + refiner_checkpoint: str = None + refiner_switch_at: float = None + token_merging_ratio = 0 + token_merging_ratio_hr = 0 + disable_extra_networks: bool = False + + script_args: list = None + cached_uc = [None, None] cached_c = [None, None] - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, refiner_checkpoint: str = None, refiner_switch_at: float = None, script_args: list = None): - if sampler_index is not None: + sampler: sd_samplers_common.Sampler | None = field(default=None, init=False) + is_using_inpainting_conditioning: bool = field(default=False, init=False) + paste_to: tuple | None = field(default=None, init=False) + + is_hr_pass: bool = field(default=False, init=False) + + c: tuple = field(default=None, init=False) + uc: tuple = field(default=None, init=False) + + rng: rng.ImageRNG | None = field(default=None, init=False) + step_multiplier: int = field(default=1, init=False) + color_corrections: list = field(default=None, init=False) + + scripts: list = field(default=None, init=False) + all_prompts: list = field(default=None, init=False) + all_negative_prompts: list = field(default=None, init=False) + all_seeds: list = field(default=None, init=False) + all_subseeds: list = field(default=None, init=False) + iteration: int = field(default=0, init=False) + main_prompt: str = field(default=None, init=False) + main_negative_prompt: str = field(default=None, init=False) + + prompts: list = field(default=None, init=False) + negative_prompts: list = field(default=None, init=False) + seeds: list = field(default=None, init=False) + subseeds: list = field(default=None, init=False) + extra_network_data: dict = field(default=None, init=False) + + user: str = field(default=None, init=False) + + sd_model_name: str = field(default=None, init=False) + sd_model_hash: str = field(default=None, init=False) + sd_vae_name: str = field(default=None, init=False) + sd_vae_hash: str = field(default=None, init=False) + + def __post_init__(self): + if self.sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) - self.outpath_samples: str = outpath_samples - self.outpath_grids: str = outpath_grids - self.prompt: str = prompt - self.prompt_for_display: str = None - self.negative_prompt: str = (negative_prompt or "") - self.styles: list = styles or [] - self.seed: int = seed - self.subseed: int = subseed - self.subseed_strength: float = subseed_strength - self.seed_resize_from_h: int = seed_resize_from_h - self.seed_resize_from_w: int = seed_resize_from_w - self.sampler_name: str = sampler_name - self.batch_size: int = batch_size - self.n_iter: int = n_iter - self.steps: int = steps - self.cfg_scale: float = cfg_scale - self.width: int = width - self.height: int = height - self.restore_faces: bool = restore_faces - self.tiling: bool = tiling - self.do_not_save_samples: bool = do_not_save_samples - self.do_not_save_grid: bool = do_not_save_grid - self.extra_generation_params: dict = extra_generation_params or {} - self.overlay_images = overlay_images - self.eta = eta - self.do_not_reload_embeddings = do_not_reload_embeddings - self.paste_to = None - self.color_corrections = None - self.denoising_strength: float = denoising_strength self.sampler_noise_scheduler_override = None - self.ddim_discretize = ddim_discretize or opts.ddim_discretize - self.s_min_uncond = s_min_uncond or opts.s_min_uncond - self.s_churn = s_churn or opts.s_churn - self.s_tmin = s_tmin or opts.s_tmin - self.s_tmax = (s_tmax if s_tmax is not None else opts.s_tmax) or float('inf') - self.s_noise = s_noise if s_noise is not None else opts.s_noise - self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} - self.override_settings_restore_afterwards = override_settings_restore_afterwards - self.refiner_checkpoint = refiner_checkpoint - self.refiner_switch_at = refiner_switch_at - - self.is_using_inpainting_conditioning = False - self.disable_extra_networks = False - self.token_merging_ratio = 0 - self.token_merging_ratio_hr = 0 + self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond + self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn + self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin + self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf') + self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise + + self.extra_generation_params = self.extra_generation_params or {} + self.override_settings = self.override_settings or {} + self.script_args = self.script_args or {} + self.refiner_checkpoint_info = None - if not seed_enable_extras: + if not self.seed_enable_extras: self.subseed = -1 self.subseed_strength = 0 self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 - self.scripts = None - self.script_args = script_args - self.all_prompts = None - self.all_negative_prompts = None - self.all_seeds = None - self.all_subseeds = None - self.iteration = 0 - self.is_hr_pass = False - self.sampler = None - self.main_prompt = None - self.main_negative_prompt = None - - self.prompts = None - self.negative_prompts = None - self.extra_network_data = None - self.seeds = None - self.subseeds = None - - self.step_multiplier = 1 self.cached_uc = StableDiffusionProcessing.cached_uc self.cached_c = StableDiffusionProcessing.cached_c - self.uc = None - self.c = None - self.rng: rng.ImageRNG = None - - self.user = None - - self.sd_model_name = None - self.sd_model_hash = None - self.sd_vae_name = None - self.sd_vae_hash = None @property def sd_model(self): return shared.sd_model + @sd_model.setter + def sd_model(self, value): + pass + def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} @@ -932,49 +954,51 @@ def old_hires_fix_first_pass_dimensions(width, height): return width, height +@dataclass(repr=False) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): - sampler = None + enable_hr: bool = False + denoising_strength: float = 0.75 + firstphase_width: int = 0 + firstphase_height: int = 0 + hr_scale: float = 2.0 + hr_upscaler: str = None + hr_second_pass_steps: int = 0 + hr_resize_x: int = 0 + hr_resize_y: int = 0 + hr_checkpoint_name: str = None + hr_sampler_name: str = None + hr_prompt: str = '' + hr_negative_prompt: str = '' + cached_hr_uc = [None, None] cached_hr_c = [None, None] - def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): - super().__init__(**kwargs) - self.enable_hr = enable_hr - self.denoising_strength = denoising_strength - self.hr_scale = hr_scale - self.hr_upscaler = hr_upscaler - self.hr_second_pass_steps = hr_second_pass_steps - self.hr_resize_x = hr_resize_x - self.hr_resize_y = hr_resize_y - self.hr_upscale_to_x = hr_resize_x - self.hr_upscale_to_y = hr_resize_y - self.hr_checkpoint_name = hr_checkpoint_name - self.hr_checkpoint_info = None - self.hr_sampler_name = hr_sampler_name - self.hr_prompt = hr_prompt - self.hr_negative_prompt = hr_negative_prompt - self.all_hr_prompts = None - self.all_hr_negative_prompts = None - self.latent_scale_mode = None - - if firstphase_width != 0 or firstphase_height != 0: + hr_checkpoint_info: dict = field(default=None, init=False) + hr_upscale_to_x: int = field(default=0, init=False) + hr_upscale_to_y: int = field(default=0, init=False) + truncate_x: int = field(default=0, init=False) + truncate_y: int = field(default=0, init=False) + applied_old_hires_behavior_to: tuple = field(default=None, init=False) + latent_scale_mode: dict = field(default=None, init=False) + hr_c: tuple | None = field(default=None, init=False) + hr_uc: tuple | None = field(default=None, init=False) + all_hr_prompts: list = field(default=None, init=False) + all_hr_negative_prompts: list = field(default=None, init=False) + hr_prompts: list = field(default=None, init=False) + hr_negative_prompts: list = field(default=None, init=False) + hr_extra_network_data: list = field(default=None, init=False) + + def __post_init__(self): + super().__post_init__() + + if self.firstphase_width != 0 or self.firstphase_height != 0: self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height - self.width = firstphase_width - self.height = firstphase_height - - self.truncate_x = 0 - self.truncate_y = 0 - self.applied_old_hires_behavior_to = None - - self.hr_prompts = None - self.hr_negative_prompts = None - self.hr_extra_network_data = None + self.width = self.firstphase_width + self.height = self.firstphase_height self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c - self.hr_c = None - self.hr_uc = None def calculate_target_resolution(self): if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): @@ -1252,7 +1276,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return super().get_conds() - def parse_extra_network_prompts(self): res = super().parse_extra_network_prompts() @@ -1265,32 +1288,37 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return res +@dataclass(repr=False) class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): - sampler = None - - def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): - super().__init__(**kwargs) - - self.init_images = init_images - self.resize_mode: int = resize_mode - self.denoising_strength: float = denoising_strength - self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None - self.init_latent = None - self.image_mask = mask - self.latent_mask = None - self.mask_for_overlay = None - self.mask_blur_x = mask_blur_x - self.mask_blur_y = mask_blur_y - if mask_blur is not None: - self.mask_blur = mask_blur - self.inpainting_fill = inpainting_fill - self.inpaint_full_res = inpaint_full_res - self.inpaint_full_res_padding = inpaint_full_res_padding - self.inpainting_mask_invert = inpainting_mask_invert - self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier + init_images: list = None + resize_mode: int = 0 + denoising_strength: float = 0.75 + image_cfg_scale: float = None + mask: Any = None + mask_blur_x: int = 4 + mask_blur_y: int = 4 + mask_blur: int = None + inpainting_fill: int = 0 + inpaint_full_res: bool = True + inpaint_full_res_padding: int = 0 + inpainting_mask_invert: int = 0 + initial_noise_multiplier: float = None + latent_mask: Image = None + + image_mask: Any = field(default=None, init=False) + + nmask: torch.Tensor = field(default=None, init=False) + image_conditioning: torch.Tensor = field(default=None, init=False) + init_img_hash: str = field(default=None, init=False) + mask_for_overlay: Image = field(default=None, init=False) + init_latent: torch.Tensor = field(default=None, init=False) + + def __post_init__(self): + super().__post_init__() + + self.image_mask = self.mask self.mask = None - self.nmask = None - self.image_conditioning = None + self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier @property def mask_blur(self): @@ -1300,15 +1328,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): @mask_blur.setter def mask_blur(self, value): - self.mask_blur_x = value - self.mask_blur_y = value - - @mask_blur.deleter - def mask_blur(self): - del self.mask_blur_x - del self.mask_blur_y + if isinstance(value, int): + self.mask_blur_x = value + self.mask_blur_y = value def init(self, all_prompts, all_seeds, all_subseeds): + self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None + self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) crop_region = None diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 380cdd5f..09d1e11e 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -305,5 +305,8 @@ class Sampler: current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size] return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds) + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + raise NotImplementedError() - + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + raise NotImplementedError() -- cgit v1.2.3 From 69f49c8d394220331eaa6609825b477eed60e0f4 Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Sun, 13 Aug 2023 04:40:34 -0400 Subject: Clear sampler before decoding images More significant VRAM reduction. --- modules/processing.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 007a4e05..16104f92 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1192,6 +1192,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio()) + self.sampler = None + devices.torch_gc() + decoded_samples = decode_latent_batch(self.sd_model, samples, target_device=devices.cpu, check_for_nans=True) self.is_hr_pass = False -- cgit v1.2.3 From d8419762c1454ba51baa710d9ce8e762efc056ef Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 13 Aug 2023 15:07:37 +0300 Subject: Lora: output warnings in UI rather than fail for unfitting loras; switch to logging for error output in console --- extensions-builtin/Lora/extra_networks_lora.py | 12 ++++- extensions-builtin/Lora/networks.py | 61 ++++++++++++++++---------- extensions-builtin/Lora/scripts/lora_script.py | 6 +-- modules/processing.py | 13 +++--- 4 files changed, 58 insertions(+), 34 deletions(-) (limited to 'modules/processing.py') diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py index ba2945c6..32e32cab 100644 --- a/extensions-builtin/Lora/extra_networks_lora.py +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -1,4 +1,4 @@ -from modules import extra_networks, shared +from modules import extra_networks, shared, sd_hijack import networks @@ -6,9 +6,14 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): def __init__(self): super().__init__('lora') + self.errors = {} + """mapping of network names to the number of errors the network had during operation""" + def activate(self, p, params_list): additional = shared.opts.sd_lora + self.errors.clear() + if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional): p.all_prompts = [x + f"" for x in p.all_prompts] params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) @@ -56,4 +61,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork): p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes) def deactivate(self, p): - pass + if self.errors: + p.comment("Networks with errors: " + ", ".join(f"{k} ({v})" for k, v in self.errors.items())) + + self.errors.clear() diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index ba621139..c252ed9e 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -1,3 +1,4 @@ +import logging import os import re @@ -194,7 +195,7 @@ def load_network(name, network_on_disk): net.modules[key] = net_module if keys_failed_to_match: - print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}") + logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}") return net @@ -207,7 +208,6 @@ def purge_networks_from_memory(): devices.torch_gc() - def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): already_loaded = {} @@ -248,7 +248,7 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No if net is None: failed_to_load_networks.append(name) - print(f"Couldn't find network with name {name}") + logging.info(f"Couldn't find network with name {name}") continue net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0 @@ -257,7 +257,7 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No loaded_networks.append(net) if failed_to_load_networks: - sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks)) + sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks)) purge_networks_from_memory() @@ -314,17 +314,22 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn for net in loaded_networks: module = net.modules.get(network_layer_name, None) if module is not None and hasattr(self, 'weight'): - with torch.no_grad(): - updown, ex_bias = module.calc_updown(self.weight) + try: + with torch.no_grad(): + updown, ex_bias = module.calc_updown(self.weight) - if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: - # inpainting model. zero pad updown to make channel[1] 4 to 9 - updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) + if len(self.weight.shape) == 4 and self.weight.shape[1] == 9: + # inpainting model. zero pad updown to make channel[1] 4 to 9 + updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) - self.weight += updown - if ex_bias is not None and getattr(self, 'bias', None) is not None: - self.bias += ex_bias - continue + self.weight += updown + if ex_bias is not None and getattr(self, 'bias', None) is not None: + self.bias += ex_bias + except RuntimeError as e: + logging.debug(f"Network {net.name} layer {network_layer_name}: {e}") + extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 + + continue module_q = net.modules.get(network_layer_name + "_q_proj", None) module_k = net.modules.get(network_layer_name + "_k_proj", None) @@ -332,21 +337,28 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn module_out = net.modules.get(network_layer_name + "_out_proj", None) if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: - with torch.no_grad(): - updown_q = module_q.calc_updown(self.in_proj_weight) - updown_k = module_k.calc_updown(self.in_proj_weight) - updown_v = module_v.calc_updown(self.in_proj_weight) - updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) - updown_out = module_out.calc_updown(self.out_proj.weight) - - self.in_proj_weight += updown_qkv - self.out_proj.weight += updown_out - continue + try: + with torch.no_grad(): + updown_q = module_q.calc_updown(self.in_proj_weight) + updown_k = module_k.calc_updown(self.in_proj_weight) + updown_v = module_v.calc_updown(self.in_proj_weight) + updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) + updown_out = module_out.calc_updown(self.out_proj.weight) + + self.in_proj_weight += updown_qkv + self.out_proj.weight += updown_out + + except RuntimeError as e: + logging.debug(f"Network {net.name} layer {network_layer_name}: {e}") + extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 + + continue if module is None: continue - print(f'failed to calculate network weights for layer {network_layer_name}') + logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation") + extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 self.network_current_names = wanted_names @@ -519,6 +531,7 @@ def infotext_pasted(infotext, params): if added: params["Prompt"] += "\n" + "".join(added) +extra_network_lora = None available_networks = {} available_network_aliases = {} diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index dc307f8c..4c6e774a 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -23,9 +23,9 @@ def unload(): def before_ui(): ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) - extra_network = extra_networks_lora.ExtraNetworkLora() - extra_networks.register_extra_network(extra_network) - extra_networks.register_extra_network_alias(extra_network, "lyco") + networks.extra_network_lora = extra_networks_lora.ExtraNetworkLora() + extra_networks.register_extra_network(networks.extra_network_lora) + extra_networks.register_extra_network_alias(networks.extra_network_lora, "lyco") if not hasattr(torch.nn, 'Linear_forward_before_network'): diff --git a/modules/processing.py b/modules/processing.py index 007a4e05..10749aa2 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -157,6 +157,7 @@ class StableDiffusionProcessing: cached_uc = [None, None] cached_c = [None, None] + comments: dict = None sampler: sd_samplers_common.Sampler | None = field(default=None, init=False) is_using_inpainting_conditioning: bool = field(default=False, init=False) paste_to: tuple | None = field(default=None, init=False) @@ -196,6 +197,8 @@ class StableDiffusionProcessing: if self.sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) + self.comments = {} + self.sampler_noise_scheduler_override = None self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn @@ -226,6 +229,9 @@ class StableDiffusionProcessing: def sd_model(self, value): pass + def comment(self, text): + self.comments[text] = 1 + def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} @@ -429,7 +435,7 @@ class Processed: self.subseed = subseed self.subseed_strength = p.subseed_strength self.info = info - self.comments = comments + self.comments = "".join(f"{comment}\n" for comment in p.comments) self.width = p.width self.height = p.height self.sampler_name = p.sampler_name @@ -720,8 +726,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() - comments = {} - p.setup_prompts() if type(seed) == list: @@ -801,7 +805,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.setup_conds() for comment in model_hijack.comments: - comments[comment] = 1 + p.comment(comment) p.extra_generation_params.update(model_hijack.extra_generation_params) @@ -930,7 +934,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: images_list=output_images, seed=p.all_seeds[0], info=infotexts[0], - comments="".join(f"{comment}\n" for comment in comments), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts, -- cgit v1.2.3 From f093c9d39d0fe9951a8f5c570027cecc68778ef2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sun, 13 Aug 2023 17:31:10 +0300 Subject: fix broken XYZ plot seeds add new callback for scripts to be used before processing --- modules/processing.py | 32 ++++++++++++++++++++++++++++++-- modules/processing_scripts/seed.py | 2 +- modules/scripts.py | 17 ++++++++++++++++- 3 files changed, 47 insertions(+), 4 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index fdf49359..74366655 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -152,7 +152,9 @@ class StableDiffusionProcessing: token_merging_ratio_hr = 0 disable_extra_networks: bool = False - script_args: list = None + scripts_value: scripts.ScriptRunner = field(default=None, init=False) + script_args_value: list = field(default=None, init=False) + scripts_setup_complete: bool = field(default=False, init=False) cached_uc = [None, None] cached_c = [None, None] @@ -171,7 +173,6 @@ class StableDiffusionProcessing: step_multiplier: int = field(default=1, init=False) color_corrections: list = field(default=None, init=False) - scripts: list = field(default=None, init=False) all_prompts: list = field(default=None, init=False) all_negative_prompts: list = field(default=None, init=False) all_seeds: list = field(default=None, init=False) @@ -229,6 +230,33 @@ class StableDiffusionProcessing: def sd_model(self, value): pass + @property + def scripts(self): + return self.scripts_value + + @scripts.setter + def scripts(self, value): + self.scripts_value = value + + if self.scripts_value and self.script_args_value and not self.scripts_setup_complete: + self.setup_scripts() + + @property + def script_args(self): + return self.script_args_value + + @script_args.setter + def script_args(self, value): + self.script_args_value = value + + if self.scripts_value and self.script_args_value and not self.scripts_setup_complete: + self.setup_scripts() + + def setup_scripts(self): + self.scripts_setup_complete = True + + self.scripts.setup_scrips(self) + def comment(self, text): self.comments[text] = 1 diff --git a/modules/processing_scripts/seed.py b/modules/processing_scripts/seed.py index cc90775a..96b44dfb 100644 --- a/modules/processing_scripts/seed.py +++ b/modules/processing_scripts/seed.py @@ -58,7 +58,7 @@ class ScriptSeed(scripts.ScriptBuiltin): return self.seed, subseed, subseed_strength - def before_process(self, p, seed, subseed, subseed_strength): + def setup(self, p, seed, subseed, subseed_strength): p.seed = seed if subseed_strength > 0: diff --git a/modules/scripts.py b/modules/scripts.py index c6459b45..d4a9da94 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -106,9 +106,16 @@ class Script: pass + def setup(self, p, *args): + """For AlwaysVisible scripts, this function is called when the processing object is set up, before any processing starts. + args contains all values returned by components from ui(). + """ + pass + + def before_process(self, p, *args): """ - This function is called very early before processing begins for AlwaysVisible scripts. + This function is called very early during processing begins for AlwaysVisible scripts. You can modify the processing object (p) here, inject hooks, etc. args contains all values returned by components from ui() """ @@ -706,6 +713,14 @@ class ScriptRunner: except Exception: errors.report(f"Error running before_hr: {script.filename}", exc_info=True) + def setup_scrips(self, p): + for script in self.alwayson_scripts: + try: + script_args = p.script_args[script.args_from:script.args_to] + script.setup(p, *script_args) + except Exception: + errors.report(f"Error running setup: {script.filename}", exc_info=True) + scripts_txt2img: ScriptRunner = None scripts_img2img: ScriptRunner = None -- cgit v1.2.3 From c7c16f805c9ea0da42d1d993f2ea7bda48beba76 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 09:48:40 +0300 Subject: repair /docs page --- modules/api/models.py | 9 +++++---- modules/processing.py | 3 ++- 2 files changed, 7 insertions(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/api/models.py b/modules/api/models.py index 800c9b93..6a574771 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -50,10 +50,12 @@ class PydanticModelGenerator: additional_fields = None, ): def field_type_generator(k, v): - # field_type = str if not overrides.get(k) else overrides[k]["type"] - # print(k, v.annotation, v.default) field_type = v.annotation + if field_type == 'Image': + # images are sent as base64 strings via API + field_type = 'str' + return Optional[field_type] def merge_class_params(class_): @@ -63,7 +65,6 @@ class PydanticModelGenerator: parameters = {**parameters, **inspect.signature(classes.__init__).parameters} return parameters - self._model_name = model_name self._class_data = merge_class_params(class_instance) @@ -72,7 +73,7 @@ class PydanticModelGenerator: field=underscore(k), field_alias=k, field_type=field_type_generator(k, v), - field_value=v.default + field_value=None if isinstance(v.default, property) else v.default ) for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED ] diff --git a/modules/processing.py b/modules/processing.py index 74366655..69d365b8 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -114,7 +114,7 @@ class StableDiffusionProcessing: prompt: str = "" prompt_for_display: str = None negative_prompt: str = "" - styles: list[str] = field(default_factory=list) + styles: list[str] = None seed: int = -1 subseed: int = -1 subseed_strength: float = 0 @@ -199,6 +199,7 @@ class StableDiffusionProcessing: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) self.comments = {} + self.styles = [] self.sampler_noise_scheduler_override = None self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond -- cgit v1.2.3 From abbecb3e7363e422d6840fbb5746c74fd453ead5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 10:15:10 +0300 Subject: further repair the /docs page to not break styles with the attempted fix --- modules/processing.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 69d365b8..f34ba48a 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -199,7 +199,9 @@ class StableDiffusionProcessing: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) self.comments = {} - self.styles = [] + + if self.styles is None: + self.styles = [] self.sampler_noise_scheduler_override = None self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond -- cgit v1.2.3