From fa931733f6acc94e058a1d3d4655846e33ae34be Mon Sep 17 00:00:00 2001 From: Philpax Date: Sun, 25 Dec 2022 20:17:49 +1100 Subject: fix(api): assign sd_model after settings change --- modules/processing.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 4a406084..0b270278 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -50,9 +50,9 @@ def apply_color_correction(correction, original_image): correction, channel_axis=2 ), cv2.COLOR_LAB2RGB).astype("uint8")) - + image = blendLayers(image, original_image, BlendType.LUMINOSITY) - + return image @@ -466,6 +466,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE + # Assign sd_model here to ensure that it reflects the model after any changes + p.sd_model = shared.sd_model res = process_images_inner(p) finally: -- cgit v1.2.3 From 4af3ca5393151d61363c30eef4965e694eeac15e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 26 Dec 2022 10:11:28 +0300 Subject: make it so that blank ENSD does not break image generation --- modules/processing.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 4a406084..0a9a8f95 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -338,13 +338,14 @@ def slerp(val, low, high): def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): + eta_noise_seed_delta = opts.eta_noise_seed_delta or 0 xs = [] # if we have multiple seeds, this means we are working with batch size>1; this then # enables the generation of additional tensors with noise that the sampler will use during its processing. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to # produce the same images as with two batches [100], [101]. - if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0): + if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0): sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] else: sampler_noises = None @@ -384,8 +385,8 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see if sampler_noises is not None: cnt = p.sampler.number_of_needed_noises(p) - if opts.eta_noise_seed_delta > 0: - torch.manual_seed(seed + opts.eta_noise_seed_delta) + if eta_noise_seed_delta > 0: + torch.manual_seed(seed + eta_noise_seed_delta) for j in range(cnt): sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) -- cgit v1.2.3 From f4535f6e4f001314bd155bc6e1b6908e02792b9a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 31 Dec 2022 23:40:55 +0300 Subject: make it so that memory/embeddings info is displayed in a separate UI element from generation parameters, and is preserved when you change the displayed infotext by clicking on gallery images --- modules/img2img.py | 2 +- modules/processing.py | 5 +++-- modules/txt2img.py | 2 +- modules/ui.py | 31 +++++++++++++++++-------------- 4 files changed, 22 insertions(+), 18 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/img2img.py b/modules/img2img.py index 81da4b13..ca58b5d8 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -162,4 +162,4 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro if opts.do_not_show_images: processed.images = [] - return processed.images, generation_info_js, plaintext_to_html(processed.info) + return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments) diff --git a/modules/processing.py b/modules/processing.py index 0a9a8f95..42dc19ea 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -239,7 +239,7 @@ class StableDiffusionProcessing(): class Processed: - def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None): + def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""): self.images = images_list self.prompt = p.prompt self.negative_prompt = p.negative_prompt @@ -247,6 +247,7 @@ class Processed: self.subseed = subseed self.subseed_strength = p.subseed_strength self.info = info + self.comments = comments self.width = p.width self.height = p.height self.sampler_name = p.sampler_name @@ -646,7 +647,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: devices.torch_gc() - res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts) + res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts) if p.scripts is not None: p.scripts.postprocess(p, res) diff --git a/modules/txt2img.py b/modules/txt2img.py index c8f81176..7f61e19a 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -59,4 +59,4 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: if opts.do_not_show_images: processed.images = [] - return processed.images, generation_info_js, plaintext_to_html(processed.info) + return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments) diff --git a/modules/ui.py b/modules/ui.py index 397dd804..f550ad00 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -159,7 +159,7 @@ def save_files(js_data, images, do_make_zip, index): zip_file.writestr(filenames[i], f.read()) fullfns.insert(0, zip_filepath) - return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}") + return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}") @@ -593,6 +593,8 @@ Requested path was: {f} with gr.Group(): html_info = gr.HTML() + html_log = gr.HTML() + generation_info = gr.Textbox(visible=False) if tabname == 'txt2img' or tabname == 'img2img': generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button") @@ -615,16 +617,16 @@ Requested path was: {f} ], outputs=[ download_files, - html_info, - html_info, - html_info, + html_log, ] ) else: html_info_x = gr.HTML() html_info = gr.HTML() + html_log = gr.HTML() + parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None) - return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info + return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log def create_ui(): @@ -686,14 +688,14 @@ def create_ui(): with gr.Group(): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() - txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples) + txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) txt2img_args = dict( - fn=wrap_gradio_gpu_call(modules.txt2img.txt2img), + fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']), _js="submit", inputs=[ txt2img_prompt, @@ -720,7 +722,8 @@ def create_ui(): outputs=[ txt2img_gallery, generation_info, - html_info + html_info, + html_log, ], show_progress=False, ) @@ -799,7 +802,6 @@ def create_ui(): with gr.Blocks(analytics_enabled=False) as img2img_interface: img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True) - with gr.Row(elem_id='img2img_progress_row'): img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False) @@ -883,7 +885,7 @@ def create_ui(): with gr.Group(): custom_inputs = modules.scripts.scripts_img2img.setup_ui() - img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples) + img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt) connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) @@ -915,7 +917,7 @@ def create_ui(): ) img2img_args = dict( - fn=wrap_gradio_gpu_call(modules.img2img.img2img), + fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']), _js="submit_img2img", inputs=[ dummy_component, @@ -954,7 +956,8 @@ def create_ui(): outputs=[ img2img_gallery, generation_info, - html_info + html_info, + html_log, ], show_progress=False, ) @@ -1078,10 +1081,10 @@ def create_ui(): with gr.Group(): upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False) - result_images, html_info_x, html_info = create_output_panel("extras", opts.outdir_extras_samples) + result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples) submit.click( - fn=wrap_gradio_gpu_call(modules.extras.run_extras), + fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']), _js="get_extras_tab_index", inputs=[ dummy_component, -- cgit v1.2.3 From ef27a18b6b7cb1a8eebdc9b2e88d25baf2c2414d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 2 Jan 2023 19:42:10 +0300 Subject: Hires fix rework --- modules/generation_parameters_copypaste.py | 32 ++++++++++++++ modules/images.py | 24 +++++++++-- modules/processing.py | 68 ++++++++++++------------------ modules/shared.py | 7 ++- modules/txt2img.py | 6 +-- modules/ui.py | 15 +++---- scripts/xy_grid.py | 4 +- 7 files changed, 96 insertions(+), 60 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 8e7f0df0..d6fa822b 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -1,5 +1,6 @@ import base64 import io +import math import os import re from pathlib import Path @@ -164,6 +165,35 @@ def find_hypernetwork_key(hypernet_name, hypernet_hash=None): return None +def restore_old_hires_fix_params(res): + """for infotexts that specify old First pass size parameter, convert it into + width, height, and hr scale""" + + firstpass_width = res.get('First pass size-1', None) + firstpass_height = res.get('First pass size-2', None) + + if firstpass_width is None or firstpass_height is None: + return + + firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height) + width = int(res.get("Size-1", 512)) + height = int(res.get("Size-2", 512)) + + if firstpass_width == 0 or firstpass_height == 0: + # old algorithm for auto-calculating first pass size + desired_pixel_count = 512 * 512 + actual_pixel_count = width * height + scale = math.sqrt(desired_pixel_count / actual_pixel_count) + firstpass_width = math.ceil(scale * width / 64) * 64 + firstpass_height = math.ceil(scale * height / 64) * 64 + + hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height + + res['Size-1'] = firstpass_width + res['Size-2'] = firstpass_height + res['Hires upscale'] = hr_scale + + def parse_generation_parameters(x: str): """parses generation parameters string, the one you see in text field under the picture in UI: ``` @@ -221,6 +251,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model hypernet_hash = res.get("Hypernet hash", None) res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash) + restore_old_hires_fix_params(res) + return res diff --git a/modules/images.py b/modules/images.py index f84fd485..c3a5fc8b 100644 --- a/modules/images.py +++ b/modules/images.py @@ -230,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts): return draw_grid_annotations(im, width, height, hor_texts, ver_texts) -def resize_image(resize_mode, im, width, height): +def resize_image(resize_mode, im, width, height, upscaler_name=None): + """ + Resizes an image with the specified resize_mode, width, and height. + + Args: + resize_mode: The mode to use when resizing the image. + 0: Resize the image to the specified width and height. + 1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. + 2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. + im: The image to resize. + width: The width to resize the image to. + height: The height to resize the image to. + upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img. + """ + + upscaler_name = upscaler_name or opts.upscaler_for_img2img + def resize(im, w, h): - if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L': + if upscaler_name is None or upscaler_name == "None" or im.mode == 'L': return im.resize((w, h), resample=LANCZOS) scale = max(w / im.width, h / im.height) if scale > 1.0: - upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img] - assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}" + upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] + assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}" upscaler = upscalers[0] im = upscaler.scaler.upscale(im, scale, upscaler.data_path) diff --git a/modules/processing.py b/modules/processing.py index 42dc19ea..4654570c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -658,14 +658,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None - def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs): + def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength - self.firstphase_width = firstphase_width - self.firstphase_height = firstphase_height - self.truncate_x = 0 - self.truncate_y = 0 + self.hr_scale = hr_scale + self.hr_upscaler = hr_upscaler + + if firstphase_width != 0 or firstphase_height != 0: + print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr) + self.hr_scale = self.width / firstphase_width + self.width = firstphase_width + self.height = firstphase_height def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: @@ -674,47 +678,29 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: state.job_count = state.job_count * 2 - self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}" - - if self.firstphase_width == 0 or self.firstphase_height == 0: - desired_pixel_count = 512 * 512 - actual_pixel_count = self.width * self.height - scale = math.sqrt(desired_pixel_count / actual_pixel_count) - self.firstphase_width = math.ceil(scale * self.width / 64) * 64 - self.firstphase_height = math.ceil(scale * self.height / 64) * 64 - firstphase_width_truncated = int(scale * self.width) - firstphase_height_truncated = int(scale * self.height) - - else: - - width_ratio = self.width / self.firstphase_width - height_ratio = self.height / self.firstphase_height - - if width_ratio > height_ratio: - firstphase_width_truncated = self.firstphase_width - firstphase_height_truncated = self.firstphase_width * self.height / self.width - else: - firstphase_width_truncated = self.firstphase_height * self.width / self.height - firstphase_height_truncated = self.firstphase_height - - self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f - self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f + self.extra_generation_params["Hires upscale"] = self.hr_scale + if self.hr_upscaler is not None: + self.extra_generation_params["Hires upscaler"] = self.hr_upscaler def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) + latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_default_mode + if self.enable_hr and latent_scale_mode is None: + assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}" + + x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) + if not self.enable_hr: - x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) return samples - x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height)) - - samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] + target_width = int(self.width * self.hr_scale) + target_height = int(self.height * self.hr_scale) - """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" def save_intermediate(image, index): + """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" + if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix: return @@ -723,11 +709,11 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") - if opts.use_scale_latent_for_hires_fix: + if latent_scale_mode is not None: for i in range(samples.shape[0]): save_intermediate(samples, i) - samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. @@ -747,7 +733,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): save_intermediate(image, i) - image = images.resize_image(0, image, self.width, self.height) + image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) batch_images.append(image) @@ -764,7 +750,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) # GC now before running the next img2img to prevent running out of memory x = None diff --git a/modules/shared.py b/modules/shared.py index 7f430b93..b65559ee 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -327,7 +327,6 @@ options_templates.update(options_section(('upscaling', "Upscaling"), { "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), - "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"), })) options_templates.update(options_section(('face-restoration', "Face restoration"), { @@ -545,6 +544,12 @@ opts = Options() if os.path.exists(config_filename): opts.load(config_filename) +latent_upscale_default_mode = "Latent" +latent_upscale_modes = { + "Latent": "bilinear", + "Latent (nearest)": "nearest", +} + sd_upscalers = [] sd_model = None diff --git a/modules/txt2img.py b/modules/txt2img.py index 7f61e19a..e189a899 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -8,7 +8,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args): +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -33,8 +33,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: tiling=tiling, enable_hr=enable_hr, denoising_strength=denoising_strength if enable_hr else None, - firstphase_width=firstphase_width if enable_hr else None, - firstphase_height=firstphase_height if enable_hr else None, + hr_scale=hr_scale, + hr_upscaler=hr_upscaler, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index 7070ea15..27cd9ddd 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -684,11 +684,11 @@ def create_ui(): with gr.Row(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") - enable_hr = gr.Checkbox(label='Highres. fix', value=False, elem_id="txt2img_enable_hr") + enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") with gr.Row(visible=False) as hr_options: - firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0, elem_id="txt2img_firstphase_width") - firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0, elem_id="txt2img_firstphase_height") + hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") with gr.Row(equal_height=True): @@ -729,8 +729,8 @@ def create_ui(): width, enable_hr, denoising_strength, - firstphase_width, - firstphase_height, + hr_scale, + hr_upscaler, ] + custom_inputs, outputs=[ @@ -762,7 +762,6 @@ def create_ui(): outputs=[hr_options], ) - txt2img_paste_fields = [ (txt2img_prompt, "Prompt"), (txt2img_negative_prompt, "Negative prompt"), @@ -781,8 +780,8 @@ def create_ui(): (denoising_strength, "Denoising strength"), (enable_hr, lambda d: "Denoising strength" in d), (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), - (firstphase_width, "First pass size-1"), - (firstphase_height, "First pass size-2"), + (hr_scale, "Hires upscale"), + (hr_upscaler, "Hires upscaler"), *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 3e0b2805..f92f9776 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -202,7 +202,7 @@ axis_options = [ AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None), AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None), AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None), - AxisOption("Upscale latent space for hires.", str, apply_upscale_latent_space, format_value_add_label, None), + AxisOption("Hires upscaler", str, apply_field("hr_upscaler"), format_value_add_label, None), AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None), AxisOption("VAE", str, apply_vae, format_value_add_label, None), AxisOption("Styles", str, apply_styles, format_value_add_label, None), @@ -267,7 +267,6 @@ class SharedSettingsStackHelper(object): self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers self.hypernetwork = opts.sd_hypernetwork self.model = shared.sd_model - self.use_scale_latent_for_hires_fix = opts.use_scale_latent_for_hires_fix self.vae = opts.sd_vae def __exit__(self, exc_type, exc_value, tb): @@ -278,7 +277,6 @@ class SharedSettingsStackHelper(object): hypernetwork.apply_strength() opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers - opts.data["use_scale_latent_for_hires_fix"] = self.use_scale_latent_for_hires_fix re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") -- cgit v1.2.3 From e9fb9bb0c25f59109a816fc53c385bed58965c24 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 3 Jan 2023 17:40:20 +0300 Subject: fix hires fix not working in API when user does not specify upscaler --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 4654570c..a172af0b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -685,7 +685,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_default_mode + latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest") if self.enable_hr and latent_scale_mode is None: assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}" -- cgit v1.2.3 From e5b7ee910e7bb88f08e8876b5732cb034c6fe529 Mon Sep 17 00:00:00 2001 From: MMaker Date: Wed, 4 Jan 2023 04:22:01 -0500 Subject: fix: Save full res of intermediate step --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index a172af0b..93e75ba6 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -705,7 +705,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return if not isinstance(image, Image.Image): - image = sd_samplers.sample_to_image(image, index) + image = sd_samplers.sample_to_image(image, index, approximation=0) images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") -- cgit v1.2.3 From 15fd0b8bc4734ea85bca1acfb12b51465ab9817d Mon Sep 17 00:00:00 2001 From: MMaker Date: Wed, 4 Jan 2023 05:12:54 -0500 Subject: Update processing.py --- modules/processing.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index a172af0b..7c72b56a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -713,7 +713,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): for i in range(samples.shape[0]): save_intermediate(samples, i) - samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode) + samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"]) # Avoid making the inpainting conditioning unless necessary as # this does need some extra compute to decode / encode the image again. -- cgit v1.2.3 From 4d66bf2c0d27702cc83b9cc57ebb1f359d18d938 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 17:24:46 +0300 Subject: add infotext to "-before-highres-fix" images --- modules/processing.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index fd7c7015..c03e77e7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -136,6 +136,7 @@ class StableDiffusionProcessing(): self.all_negative_prompts = None self.all_seeds = None self.all_subseeds = None + self.iteration = 0 def txt2img_image_conditioning(self, x, width=None, height=None): if self.sampler.conditioning_key not in {'hybrid', 'concat'}: @@ -544,6 +545,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: state.job_count = p.n_iter for n in range(p.n_iter): + p.iteration = n + if state.skipped: state.skipped = False @@ -707,7 +710,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if not isinstance(image, Image.Image): image = sd_samplers.sample_to_image(image, index, approximation=0) - images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") + info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index) + images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix") if latent_scale_mode is not None: for i in range(samples.shape[0]): -- cgit v1.2.3 From 525cea924562afd676f55470095268a0f6fca59e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 17:58:07 +0300 Subject: use shared function from processing for creating dummy mask when training inpainting model --- modules/processing.py | 39 +++++++++++++------------- modules/textual_inversion/textual_inversion.py | 33 ++++++---------------- 2 files changed, 29 insertions(+), 43 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c03e77e7..c7264aff 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -76,6 +76,24 @@ def apply_overlay(image, paste_loc, index, overlays): return image +def txt2img_image_conditioning(sd_model, x, width, height): + if sd_model.model.conditioning_key not in {'hybrid', 'concat'}: + # Dummy zero conditioning if we're not using inpainting model. + # Still takes up a bit of memory, but no encoder call. + # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. + return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) + + # The "masked-image" in this case will just be all zeros since the entire image is masked. + image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) + image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning)) + + # Add the fake full 1s mask to the first dimension. + image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) + image_conditioning = image_conditioning.to(x.dtype) + + return image_conditioning + + class StableDiffusionProcessing(): """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing @@ -139,26 +157,9 @@ class StableDiffusionProcessing(): self.iteration = 0 def txt2img_image_conditioning(self, x, width=None, height=None): - if self.sampler.conditioning_key not in {'hybrid', 'concat'}: - # Dummy zero conditioning if we're not using inpainting model. - # Still takes up a bit of memory, but no encoder call. - # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. - return x.new_zeros(x.shape[0], 5, 1, 1) + self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} - self.is_using_inpainting_conditioning = True - - height = height or self.height - width = width or self.width - - # The "masked-image" in this case will just be all zeros since the entire image is masked. - image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) - image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning)) - - # Add the fake full 1s mask to the first dimension. - image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) - image_conditioning = image_conditioning.to(x.dtype) - - return image_conditioning + return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height) def depth2img_image_conditioning(self, source_image): # Use the AddMiDaS helper to Format our source image to suit the MiDaS model diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 8731ea5d..2250e41b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -252,26 +252,6 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat assert log_directory, "Log directory is empty" -def create_dummy_mask(x, width=None, height=None): - if shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}: - - # The "masked-image" in this case will just be all zeros since the entire image is masked. - image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) - image_conditioning = shared.sd_model.get_first_stage_encoding(shared.sd_model.encode_first_stage(image_conditioning)) - - # Add the fake full 1s mask to the first dimension. - image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) - image_conditioning = image_conditioning.to(x.dtype) - - else: - # Dummy zero conditioning if we're not using inpainting model. - # Still takes up a bit of memory, but no encoder call. - # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. - image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) - - return image_conditioning - - def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 @@ -346,7 +326,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ else: print("No saved optimizer exists in checkpoint") - scaler = torch.cuda.amp.GradScaler() batch_size = ds.batch_size @@ -362,7 +341,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ forced_filename = "" embedding_yet_to_be_embedded = False + is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'} img_c = None + pbar = tqdm.tqdm(total=steps - initial_step) try: for i in range((steps-initial_step) * gradient_step): @@ -384,10 +365,14 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) c = shared.sd_model.cond_stage_model(batch.cond_text) - if img_c is None: - img_c = create_dummy_mask(c, training_width, training_height) + if is_training_inpainting_model: + if img_c is None: + img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height) + + cond = {"c_concat": [img_c], "c_crossattn": [c]} + else: + cond = c - cond = {"c_concat": [img_c], "c_crossattn": [c]} loss = shared.sd_model(x, cond)[0] / gradient_step del x -- cgit v1.2.3 From 097a90b88bb92878cf435c513b4757b5b82ae299 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 19:19:11 +0300 Subject: add XY plot parameters to grid image and do not add them to individual images --- modules/processing.py | 2 +- scripts/xy_grid.py | 38 ++++++++++++++++++++++++-------------- 2 files changed, 25 insertions(+), 15 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index c7264aff..47712159 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -422,7 +422,7 @@ def fix_seed(p): p.subseed = get_fixed_seed(p.subseed) -def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): +def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0): index = position_in_batch + iteration * p.batch_size clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers) diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 59907f0b..78ff12c5 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -10,7 +10,7 @@ import numpy as np import modules.scripts as scripts import gradio as gr -from modules import images, paths, sd_samplers +from modules import images, paths, sd_samplers, processing from modules.hypernetworks import hypernetwork from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img from modules.shared import opts, cmd_opts, state @@ -285,6 +285,7 @@ re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*") re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*") + class Script(scripts.Script): def title(self): return "X/Y plot" @@ -381,7 +382,7 @@ class Script(scripts.Script): ys = process_axis(y_opt, y_values) def fix_axis_seeds(axis_opt, axis_list): - if axis_opt.label in ['Seed','Var. seed']: + if axis_opt.label in ['Seed', 'Var. seed']: return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list] else: return axis_list @@ -403,24 +404,33 @@ class Script(scripts.Script): print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})") shared.total_tqdm.updateTotal(total_steps * p.n_iter) + grid_infotext = [None] + def cell(x, y): pc = copy(p) x_opt.apply(pc, x, xs) y_opt.apply(pc, y, ys) - return process_images(pc) + res = process_images(pc) + + if grid_infotext[0] is None: + pc.extra_generation_params = copy(pc.extra_generation_params) + + if x_opt.label != 'Nothing': + pc.extra_generation_params["X Type"] = x_opt.label + pc.extra_generation_params["X Values"] = x_values + if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds: + pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs]) + + if y_opt.label != 'Nothing': + pc.extra_generation_params["Y Type"] = y_opt.label + pc.extra_generation_params["Y Values"] = y_values + if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds: + pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys]) - if not x_opt.label == 'Nothing': - p.extra_generation_params["XY Plot X Type"] = x_opt.label - p.extra_generation_params["XY Plot X Values"] = '{' + x_values + '}' - if x_opt.label in ["Seed","Var. seed"] and not no_fixed_seeds: - p.extra_generation_params["XY Plot Fixed X Values"] = '{' + ", ".join([str(x) for x in xs])+ '}' + grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds) - if not y_opt.label == 'Nothing': - p.extra_generation_params["XY Plot Y Type"] = y_opt.label - p.extra_generation_params["XY Plot Y Values"] = '{' + y_values + '}' - if y_opt.label in ["Seed","Var. seed"] and not no_fixed_seeds: - p.extra_generation_params["XY Plot Fixed Y Values"] = '{' + ", ".join([str(y) for y in ys])+ '}' + return res with SharedSettingsStackHelper(): processed = draw_xy_grid( @@ -435,6 +445,6 @@ class Script(scripts.Script): ) if opts.grid_save: - images.save_image(processed.images[0], p.outpath_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p) + images.save_image(processed.images[0], p.outpath_grids, "xy_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p) return processed -- cgit v1.2.3 From 81490780949fffed77493b4bd741e96ec737fe27 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 22:04:40 +0300 Subject: added the option to specify target resolution with possibility of truncating for hires fix; also sampling steps --- javascript/hints.js | 11 ++++--- modules/generation_parameters_copypaste.py | 9 ++++-- modules/processing.py | 51 +++++++++++++++++++++++++++--- modules/txt2img.py | 5 ++- modules/ui.py | 24 ++++++++++---- 5 files changed, 81 insertions(+), 19 deletions(-) (limited to 'modules/processing.py') diff --git a/javascript/hints.js b/javascript/hints.js index 63e17e05..dda66e09 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -81,9 +81,6 @@ titles = { "vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).", - "Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", - "Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.", - "Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", "Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.", @@ -100,7 +97,13 @@ titles = { "Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.", "Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.", - "Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality." + "Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality.", + + "Hires. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", + "Hires steps": "Number of sampling steps for upscaled picture. If 0, uses same as for original.", + "Upscale by": "Adjusts the size of the image by multiplying the original width and height by the selected value. Ignored if either Resize width to or Resize height to are non-zero.", + "Resize width to": "Resizes image to this width. If 0, width is inferred from either of two nearby sliders.", + "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders." } diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 4baf4d9a..12a9de3d 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -212,11 +212,10 @@ def restore_old_hires_fix_params(res): firstpass_width = math.ceil(scale * width / 64) * 64 firstpass_height = math.ceil(scale * height / 64) * 64 - hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height - res['Size-1'] = firstpass_width res['Size-2'] = firstpass_height - res['Hires upscale'] = hr_scale + res['Hires resize-1'] = width + res['Hires resize-2'] = height def parse_generation_parameters(x: str): @@ -276,6 +275,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model hypernet_hash = res.get("Hypernet hash", None) res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash) + if "Hires resize-1" not in res: + res["Hires resize-1"] = 0 + res["Hires resize-2"] = 0 + restore_old_hires_fix_params(res) return res diff --git a/modules/processing.py b/modules/processing.py index 47712159..9cad05f2 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -662,12 +662,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None - def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs): + def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength self.hr_scale = hr_scale self.hr_upscaler = hr_upscaler + self.hr_second_pass_steps = hr_second_pass_steps + self.hr_resize_x = hr_resize_x + self.hr_resize_y = hr_resize_y + self.hr_upscale_to_x = hr_resize_x + self.hr_upscale_to_y = hr_resize_y if firstphase_width != 0 or firstphase_height != 0: print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr) @@ -675,6 +680,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.width = firstphase_width self.height = firstphase_height + self.truncate_x = 0 + self.truncate_y = 0 + def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: if state.job_count == -1: @@ -682,7 +690,38 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): else: state.job_count = state.job_count * 2 - self.extra_generation_params["Hires upscale"] = self.hr_scale + if self.hr_resize_x == 0 and self.hr_resize_y == 0: + self.extra_generation_params["Hires upscale"] = self.hr_scale + self.hr_upscale_to_x = int(self.width * self.hr_scale) + self.hr_upscale_to_y = int(self.height * self.hr_scale) + else: + self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}" + + if self.hr_resize_y == 0: + self.hr_upscale_to_x = self.hr_resize_x + self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width + elif self.hr_resize_x == 0: + self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height + self.hr_upscale_to_y = self.hr_resize_y + else: + target_w = self.hr_resize_x + target_h = self.hr_resize_y + src_ratio = self.width / self.height + dst_ratio = self.hr_resize_x / self.hr_resize_y + + if src_ratio < dst_ratio: + self.hr_upscale_to_x = self.hr_resize_x + self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width + else: + self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height + self.hr_upscale_to_y = self.hr_resize_y + + self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f + self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f + + if self.hr_second_pass_steps: + self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps + if self.hr_upscaler is not None: self.extra_generation_params["Hires upscaler"] = self.hr_upscaler @@ -699,8 +738,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if not self.enable_hr: return samples - target_width = int(self.width * self.hr_scale) - target_height = int(self.height * self.hr_scale) + target_width = self.hr_upscale_to_x + target_height = self.hr_upscale_to_y def save_intermediate(image, index): """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images""" @@ -755,13 +794,15 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) + samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] + noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) # GC now before running the next img2img to prevent running out of memory x = None devices.torch_gc() - samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning) + samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning) return samples diff --git a/modules/txt2img.py b/modules/txt2img.py index e189a899..38b5f591 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -8,7 +8,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html -def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, *args): +def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, *args): p = StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, @@ -35,6 +35,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: denoising_strength=denoising_strength if enable_hr else None, hr_scale=hr_scale, hr_upscaler=hr_upscaler, + hr_second_pass_steps=hr_second_pass_steps, + hr_resize_x=hr_resize_x, + hr_resize_y=hr_resize_y, ) p.scripts = modules.scripts.scripts_txt2img diff --git a/modules/ui.py b/modules/ui.py index 44f4f3a4..04091e67 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -637,10 +637,10 @@ def create_sampler_and_steps_selection(choices, tabname): with FormRow(elem_id=f"sampler_selection_{tabname}"): sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") sampler_index.save_to_config = True - steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20) + steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) else: with FormGroup(elem_id=f"sampler_selection_{tabname}"): - steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling Steps", value=20) + steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") return steps, sampler_index @@ -709,10 +709,16 @@ def create_ui(): enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") elif category == "hires_fix": - with FormRow(visible=False, elem_id="txt2img_hires_fix") as hr_options: - hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) - hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") - denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") + with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: + with FormRow(elem_id="txt2img_hires_fix_row1"): + hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") + + with FormRow(elem_id="txt2img_hires_fix_row2"): + hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") + hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") + hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") elif category == "batch": if not opts.dimensions_and_batch_together: @@ -753,6 +759,9 @@ def create_ui(): denoising_strength, hr_scale, hr_upscaler, + hr_second_pass_steps, + hr_resize_x, + hr_resize_y, ] + custom_inputs, outputs=[ @@ -804,6 +813,9 @@ def create_ui(): (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), (hr_scale, "Hires upscale"), (hr_upscaler, "Hires upscaler"), + (hr_second_pass_steps, "Hires steps"), + (hr_resize_x, "Hires resize-1"), + (hr_resize_y, "Hires resize-2"), *modules.scripts.scripts_txt2img.infotext_fields ] parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) -- cgit v1.2.3 From bc43293c640aef65df3136de9e5bd8b7e79eb3e0 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 23:56:43 +0300 Subject: fix incorrect display/calculation for number of steps for hires fix in progress bars --- modules/processing.py | 9 ++++++--- modules/sd_samplers.py | 5 +++-- modules/shared.py | 4 +++- 3 files changed, 12 insertions(+), 6 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 9cad05f2..f28e7212 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -685,10 +685,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: - if state.job_count == -1: - state.job_count = self.n_iter * 2 - else: + if not state.processing_has_refined_job_count: + if state.job_count == -1: + state.job_count = self.n_iter + + shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count) state.job_count = state.job_count * 2 + state.processing_has_refined_job_count = True if self.hr_resize_x == 0 and self.hr_resize_y == 0: self.extra_generation_params["Hires upscale"] = self.hr_scale diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index e904d860..3851a77f 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -97,8 +97,9 @@ sampler_extra_params = { def setup_img2img_steps(p, steps=None): if opts.img2img_fix_steps or steps is not None: - steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 - t_enc = p.steps - 1 + requested_steps = (steps or p.steps) + steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0 + t_enc = requested_steps - 1 else: steps = p.steps t_enc = int(min(p.denoising_strength, 0.999) * steps) diff --git a/modules/shared.py b/modules/shared.py index 54a6ba23..04c545ee 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -153,6 +153,7 @@ class State: job = "" job_no = 0 job_count = 0 + processing_has_refined_job_count = False job_timestamp = '0' sampling_step = 0 sampling_steps = 0 @@ -194,6 +195,7 @@ class State: def begin(self): self.sampling_step = 0 self.job_count = -1 + self.processing_has_refined_job_count = False self.job_no = 0 self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") self.current_latent = None @@ -608,7 +610,7 @@ class TotalTQDM: return if self._tqdm is None: self.reset() - self._tqdm.total=new_total + self._tqdm.total = new_total def clear(self): if self._tqdm is not None: -- cgit v1.2.3 From 99b67cff0b48c4a1ad6e14d9cc591b11db6e293c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 5 Jan 2023 01:25:52 +0300 Subject: make hires fix not do anything if the user chooses the second pass resolution to be the same as first pass resolution --- modules/processing.py | 25 +++++++++++++++++-------- 1 file changed, 17 insertions(+), 8 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index f28e7212..7e853287 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -683,16 +683,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = 0 self.truncate_y = 0 + def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: - if not state.processing_has_refined_job_count: - if state.job_count == -1: - state.job_count = self.n_iter - - shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count) - state.job_count = state.job_count * 2 - state.processing_has_refined_job_count = True - if self.hr_resize_x == 0 and self.hr_resize_y == 0: self.extra_generation_params["Hires upscale"] = self.hr_scale self.hr_upscale_to_x = int(self.width * self.hr_scale) @@ -722,6 +715,22 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f + # special case: the user has chosen to do nothing + if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height: + self.enable_hr = False + self.denoising_strength = None + self.extra_generation_params.pop("Hires upscale", None) + self.extra_generation_params.pop("Hires resize", None) + return + + if not state.processing_has_refined_job_count: + if state.job_count == -1: + state.job_count = self.n_iter + + shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count) + state.job_count = state.job_count * 2 + state.processing_has_refined_job_count = True + if self.hr_second_pass_steps: self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps -- cgit v1.2.3 From 2e30997450835ed8f80ab5e8f02f7d4c7f26dd3f Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 5 Jan 2023 10:21:17 +0300 Subject: move sd_model assignment to the place where we change the sd_model --- modules/processing.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index a12bd9e8..61e97077 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -466,12 +466,16 @@ def process_images(p: StableDiffusionProcessing) -> Processed: try: for k, v in p.override_settings.items(): setattr(opts, k, v) - if k == 'sd_hypernetwork': shared.reload_hypernetworks() # make onchange call for changing hypernet - if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model - if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE + if k == 'sd_hypernetwork': + shared.reload_hypernetworks() # make onchange call for changing hypernet + + if k == 'sd_model_checkpoint': + sd_models.reload_model_weights() # make onchange call for changing SD model + p.sd_model = shared.sd_model + + if k == 'sd_vae': + sd_vae.reload_vae_weights() # make onchange call for changing VAE - # Assign sd_model here to ensure that it reflects the model after any changes - p.sd_model = shared.sd_model res = process_images_inner(p) finally: -- cgit v1.2.3 From 847f869c67c7108e3e792fc193331d0e6acca29c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 5 Jan 2023 21:00:52 +0300 Subject: experimental optimization --- modules/processing.py | 28 +++++++++++++++++++++++++--- 1 file changed, 25 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 61e97077..a408d622 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -544,6 +544,29 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: infotexts = [] output_images = [] + cached_uc = [None, None] + cached_c = [None, None] + + def get_conds_with_caching(function, required_prompts, steps, cache): + """ + Returns the result of calling function(shared.sd_model, required_prompts, steps) + using a cache to store the result if the same arguments have been used before. + + cache is an array containing two elements. The first element is a tuple + representing the previously used arguments, or None if no arguments + have been used before. The second element is where the previously + computed result is stored. + """ + + if cache[0] is not None and (required_prompts, steps) == cache[0]: + return cache[1] + + with devices.autocast(): + cache[1] = function(shared.sd_model, required_prompts, steps) + + cache[0] = (required_prompts, steps) + return cache[1] + with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) @@ -571,9 +594,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds) - with devices.autocast(): - uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps) - c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps) + uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc) + c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c) if len(model_hijack.comments) > 0: for comment in model_hijack.comments: -- cgit v1.2.3 From b5253f0dab529707f1fe2e11211a10ce2f264617 Mon Sep 17 00:00:00 2001 From: noodleanon <122053346+noodleanon@users.noreply.github.com> Date: Thu, 5 Jan 2023 21:21:48 +0000 Subject: allow img2img api to run scripts --- modules/api/api.py | 27 ++++++++++++++++++++++++--- modules/api/models.py | 2 +- modules/processing.py | 4 ++-- 3 files changed, 27 insertions(+), 6 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/api/api.py b/modules/api/api.py index 2103709b..aa62a42e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -11,7 +11,7 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials from secrets import compare_digest import modules.shared as shared -from modules import sd_samplers, deepbooru, sd_hijack, images +from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images from modules.extras import run_extras @@ -28,8 +28,13 @@ def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) except: - raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") +def script_name_to_index(name, scripts): + try: + return [script.title().lower() for script in scripts].index(name.lower()) + except: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") def validate_sampler_name(name): config = sd_samplers.all_samplers_map.get(name, None) @@ -170,6 +175,14 @@ class Api: if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") + if img2imgreq.script_name is not None: + if scripts.scripts_img2img.scripts == []: + scripts.scripts_img2img.initialize_scripts(True) + ui.create_ui() + + script_idx = script_name_to_index(img2imgreq.script_name, scripts.scripts_img2img.selectable_scripts) + script = scripts.scripts_img2img.selectable_scripts[script_idx] + mask = img2imgreq.mask if mask: mask = decode_base64_to_image(mask) @@ -186,13 +199,21 @@ class Api: args = vars(populate) args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. + args.pop('script_name', None) with self.queue_lock: p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) p.init_images = [decode_base64_to_image(x) for x in init_images] shared.state.begin() - processed = process_images(p) + if 'script' in locals(): + p.outpath_grids = opts.outdir_img2img_grids + p.outpath_samples = opts.outdir_img2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) + else: + processed = process_images(p) + shared.state.end() b64images = list(map(encode_pil_to_base64, processed.images)) diff --git a/modules/api/models.py b/modules/api/models.py index d8198a27..862477e7 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -106,7 +106,7 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] ).generate_model() class TextToImageResponse(BaseModel): diff --git a/modules/processing.py b/modules/processing.py index a408d622..d5ac7eb1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -98,7 +98,7 @@ class StableDiffusionProcessing(): """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -149,7 +149,7 @@ class StableDiffusionProcessing(): self.seed_resize_from_w = 0 self.scripts = None - self.script_args = None + self.script_args = script_args self.all_prompts = None self.all_negative_prompts = None self.all_seeds = None -- cgit v1.2.3 From 1a5b86ad65fd738eadea1ad72f4abad3a4aabf17 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 7 Jan 2023 09:56:37 +0300 Subject: rework hires fix preview for #6437: movie it to where it takes less place, make it actually account for all relevant sliders and calculate dimensions correctly --- modules/processing.py | 1 - modules/ui.py | 40 +++++++++++++++++++++++++++------------- modules/ui_components.py | 8 ++++++++ style.css | 17 +++++++++++++++++ 4 files changed, 52 insertions(+), 14 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index a408d622..82157bc9 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -711,7 +711,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = 0 self.truncate_y = 0 - def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: if self.hr_resize_x == 0 and self.hr_resize_y == 0: diff --git a/modules/ui.py b/modules/ui.py index a18b9007..6c765262 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -20,7 +20,7 @@ from PIL import Image, PngImagePlugin from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru -from modules.ui_components import FormRow, FormGroup, ToolButton +from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path from modules.shared import opts, cmd_opts, restricted_opts @@ -255,12 +255,20 @@ def add_style(name: str, prompt: str, negative_prompt: str): return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(4)] -def calc_resolution_hires(x, y, scale): - #final res can only be a multiple of 8 - scaled_x = int(x * scale // 8) * 8 - scaled_y = int(y * scale // 8) * 8 - - return str(scaled_x)+"x"+str(scaled_y) + +def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y): + from modules import processing, devices + + if not enable: + return "" + + p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y) + + with devices.autocast(): + p.init([""], [0], [0]) + + return f"resize to: {p.hr_upscale_to_x}x{p.hr_upscale_to_y}" + def apply_styles(prompt, prompt_neg, style1_name, style2_name): prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, [style1_name, style2_name]) @@ -712,6 +720,7 @@ def create_ui(): restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") + hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) elif category == "hires_fix": with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: @@ -724,9 +733,6 @@ def create_ui(): hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") - - with FormRow(elem_id="txt2img_hires_fix_row3"): - hr_final_resolution = gr.Textbox(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) elif category == "batch": if not opts.dimensions_and_batch_together: @@ -738,9 +744,16 @@ def create_ui(): with FormGroup(elem_id="txt2img_script_container"): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() - hr_scale.change(fn=calc_resolution_hires, inputs=[width, height, hr_scale], outputs=hr_final_resolution, show_progress=False) - width.change(fn=calc_resolution_hires, inputs=[width, height, hr_scale], outputs=hr_final_resolution, show_progress=False) - height.change(fn=calc_resolution_hires, inputs=[width, height, hr_scale], outputs=hr_final_resolution, show_progress=False) + hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] + hr_resolution_preview_args = dict( + fn=calc_resolution_hires, + inputs=hr_resolution_preview_inputs, + outputs=[hr_final_resolution], + show_progress=False + ) + + for input in hr_resolution_preview_inputs: + input.change(**hr_resolution_preview_args) txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) @@ -803,6 +816,7 @@ def create_ui(): fn=lambda x: gr_show(x), inputs=[enable_hr], outputs=[hr_options], + show_progress = False, ) txt2img_paste_fields = [ diff --git a/modules/ui_components.py b/modules/ui_components.py index 91eb0e3d..cac001dc 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -23,3 +23,11 @@ class FormGroup(gr.Group, gr.components.FormComponent): def get_block_name(self): return "group" + + +class FormHTML(gr.HTML, gr.components.FormComponent): + """Same as gr.HTML but fits inside gradio forms""" + + def get_block_name(self): + return "html" + diff --git a/style.css b/style.css index f1b23b53..76721756 100644 --- a/style.css +++ b/style.css @@ -642,6 +642,23 @@ footer { opacity: 0.85; } +#txtimg_hr_finalres{ + min-height: 0 !important; + padding: .625rem .75rem; + margin-left: -0.75em + +} + +#txtimg_hr_finalres .resolution{ + font-weight: bold; +} + +#txt2img_checkboxes > div > div{ + flex: 0; + white-space: nowrap; + min-width: auto; +} + /* The following handles localization for right-to-left (RTL) languages like Arabic. The rtl media type will only be activated by the logic in javascript/localization.js. If you change anything above, you need to make sure it is RTL compliant by just running -- cgit v1.2.3 From d4fd2418efb0986a8226add0b800fb5c73ffb58c Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 9 Jan 2023 14:57:47 +0300 Subject: add an option to use old hiresfix width/height behavior add a visual effect to inactive hires fix elements --- javascript/hires_fix.js | 25 +++++++++++++++++++++++++ modules/generation_parameters_copypaste.py | 17 +++++++++++------ modules/processing.py | 26 ++++++++++++++++++++++++-- modules/shared.py | 1 + modules/ui.py | 23 ++++++++++++++--------- style.css | 4 ++++ 6 files changed, 79 insertions(+), 17 deletions(-) create mode 100644 javascript/hires_fix.js (limited to 'modules/processing.py') diff --git a/javascript/hires_fix.js b/javascript/hires_fix.js new file mode 100644 index 00000000..07fba549 --- /dev/null +++ b/javascript/hires_fix.js @@ -0,0 +1,25 @@ + +function setInactive(elem, inactive){ + console.log(elem) + if(inactive){ + elem.classList.add('inactive') + } else{ + elem.classList.remove('inactive') + } +} + +function onCalcResolutionHires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y){ + console.log(enable, width, height, hr_scale, hr_resize_x, hr_resize_y) + + hrUpscaleBy = gradioApp().getElementById('txt2img_hr_scale') + hrResizeX = gradioApp().getElementById('txt2img_hr_resize_x') + hrResizeY = gradioApp().getElementById('txt2img_hr_resize_y') + + gradioApp().getElementById('txt2img_hires_fix_row2').style.display = opts.use_old_hires_fix_width_height ? "none" : "" + + setInactive(hrUpscaleBy, opts.use_old_hires_fix_width_height || hr_resize_x > 0 || hr_resize_y > 0) + setInactive(hrResizeX, opts.use_old_hires_fix_width_height || hr_resize_x == 0) + setInactive(hrResizeY, opts.use_old_hires_fix_width_height || hr_resize_y == 0) + + return [enable, width, height, hr_scale, hr_resize_x, hr_resize_y] +} diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 12a9de3d..f7f68b67 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -197,6 +197,15 @@ def restore_old_hires_fix_params(res): firstpass_width = res.get('First pass size-1', None) firstpass_height = res.get('First pass size-2', None) + if shared.opts.use_old_hires_fix_width_height: + hires_width = int(res.get("Hires resize-1", None)) + hires_height = int(res.get("Hires resize-2", None)) + + if hires_width is not None and hires_height is not None: + res['Size-1'] = hires_width + res['Size-2'] = hires_height + return + if firstpass_width is None or firstpass_height is None: return @@ -205,12 +214,8 @@ def restore_old_hires_fix_params(res): height = int(res.get("Size-2", 512)) if firstpass_width == 0 or firstpass_height == 0: - # old algorithm for auto-calculating first pass size - desired_pixel_count = 512 * 512 - actual_pixel_count = width * height - scale = math.sqrt(desired_pixel_count / actual_pixel_count) - firstpass_width = math.ceil(scale * width / 64) * 64 - firstpass_height = math.ceil(scale * height / 64) * 64 + from modules import processing + firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height) res['Size-1'] = firstpass_width res['Size-2'] = firstpass_height diff --git a/modules/processing.py b/modules/processing.py index 1d23b15f..f04a0e1e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -687,6 +687,18 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: return res +def old_hires_fix_first_pass_dimensions(width, height): + """old algorithm for auto-calculating first pass size""" + + desired_pixel_count = 512 * 512 + actual_pixel_count = width * height + scale = math.sqrt(desired_pixel_count / actual_pixel_count) + width = math.ceil(scale * width / 64) * 64 + height = math.ceil(scale * height / 64) * 64 + + return width, height + + class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None @@ -703,16 +715,26 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.hr_upscale_to_y = hr_resize_y if firstphase_width != 0 or firstphase_height != 0: - print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr) - self.hr_scale = self.width / firstphase_width + self.hr_upscale_to_x = self.width + self.hr_upscale_to_y = self.height self.width = firstphase_width self.height = firstphase_height self.truncate_x = 0 self.truncate_y = 0 + self.applied_old_hires_behavior_to = None def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: + if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): + self.hr_resize_x = self.width + self.hr_resize_y = self.height + self.hr_upscale_to_x = self.width + self.hr_upscale_to_y = self.height + + self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height) + self.applied_old_hires_behavior_to = (self.width, self.height) + if self.hr_resize_x == 0 and self.hr_resize_y == 0: self.extra_generation_params["Hires upscale"] = self.hr_scale self.hr_upscale_to_x = int(self.width * self.hr_scale) diff --git a/modules/shared.py b/modules/shared.py index a6712dae..a1e10201 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -398,6 +398,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { options_templates.update(options_section(('compatibility', "Compatibility"), { "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."), + "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), })) options_templates.update(options_section(('interrogate', "Interrogate Options"), { diff --git a/modules/ui.py b/modules/ui.py index 99483130..719c26b3 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -267,7 +267,7 @@ def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resiz with devices.autocast(): p.init([""], [0], [0]) - return f"resize: from {width}x{height} to {p.hr_upscale_to_x}x{p.hr_upscale_to_y}" + return f"resize: from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}" def apply_styles(prompt, prompt_neg, style1_name, style2_name): @@ -745,15 +745,20 @@ def create_ui(): custom_inputs = modules.scripts.scripts_txt2img.setup_ui() hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] - hr_resolution_preview_args = dict( - fn=calc_resolution_hires, - inputs=hr_resolution_preview_inputs, - outputs=[hr_final_resolution], - show_progress=False - ) - for input in hr_resolution_preview_inputs: - input.change(**hr_resolution_preview_args) + input.change( + fn=calc_resolution_hires, + inputs=hr_resolution_preview_inputs, + outputs=[hr_final_resolution], + show_progress=False, + ) + input.change( + None, + _js="onCalcResolutionHires", + inputs=hr_resolution_preview_inputs, + outputs=[], + show_progress=False, + ) txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) diff --git a/style.css b/style.css index d796cbe9..ec5e4182 100644 --- a/style.css +++ b/style.css @@ -670,6 +670,10 @@ footer { min-width: auto; } +.inactive{ + opacity: 0.5; +} + /* The following handles localization for right-to-left (RTL) languages like Arabic. The rtl media type will only be activated by the logic in javascript/localization.js. If you change anything above, you need to make sure it is RTL compliant by just running -- cgit v1.2.3 From 88416ab5ff787eec3b9962b43b5e544bb75fbad6 Mon Sep 17 00:00:00 2001 From: space-nuko <24979496+space-nuko@users.noreply.github.com> Date: Thu, 12 Jan 2023 13:46:59 -0800 Subject: Fix extension parameters not being saved to last used parameters --- modules/processing.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index f04a0e1e..ae04cab7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -531,16 +531,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: def infotext(iteration=0, position_in_batch=0): return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch) - with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: - processed = Processed(p, [], p.seed, "") - file.write(processed.infotext(p, 0)) - if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() if p.scripts is not None: p.scripts.process(p) + with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: + processed = Processed(p, [], p.seed, "") + file.write(processed.infotext(p, 0)) + infotexts = [] output_images = [] -- cgit v1.2.3 From f9ac3352cb66ce2bc0aa4325130fc7267fb35e4f Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 10:25:21 +0300 Subject: change hypernets to use sha256 hashes --- modules/hypernetworks/hypernetwork.py | 40 ++++++++++++++++++++--------------- modules/processing.py | 2 +- modules/sd_models.py | 2 +- modules/shared.py | 1 + 4 files changed, 26 insertions(+), 19 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 9b5f2e79..3aebefa8 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm from einops import rearrange, repeat from ldm.util import default -from modules import devices, processing, sd_models, shared, sd_samplers +from modules import devices, processing, sd_models, shared, sd_samplers, hashes from modules.textual_inversion import textual_inversion, logging from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum @@ -225,7 +225,7 @@ class Hypernetwork: torch.save(state_dict, filename) if shared.opts.save_optimizer_state and self.optimizer_state_dict: - optimizer_saved_dict['hash'] = sd_models.model_hash(filename) + optimizer_saved_dict['hash'] = self.shorthash() optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict torch.save(optimizer_saved_dict, filename + '.optim') @@ -237,32 +237,33 @@ class Hypernetwork: state_dict = torch.load(filename, map_location='cpu') self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) - print(self.layer_structure) - optional_info = state_dict.get('optional_info', None) - if optional_info is not None: - print(f"INFO:\n {optional_info}\n") - self.optional_info = optional_info + self.optional_info = state_dict.get('optional_info', None) self.activation_func = state_dict.get('activation_func', None) - print(f"Activation function is {self.activation_func}") self.weight_init = state_dict.get('weight_initialization', 'Normal') - print(f"Weight initialization is {self.weight_init}") self.add_layer_norm = state_dict.get('is_layer_norm', False) - print(f"Layer norm is set to {self.add_layer_norm}") self.dropout_structure = state_dict.get('dropout_structure', None) self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) - print(f"Dropout usage is set to {self.use_dropout}" ) self.activate_output = state_dict.get('activate_output', True) - print(f"Activate last layer is set to {self.activate_output}") self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. if self.dropout_structure is None: - print("Using previous dropout structure") self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) - print(f"Dropout structure is set to {self.dropout_structure}") - optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {} + if shared.opts.print_hypernet_extra: + if self.optional_info is not None: + print(f" INFO:\n {self.optional_info}\n") - if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None): + print(f" Layer structure: {self.layer_structure}") + print(f" Activation function: {self.activation_func}") + print(f" Weight initialization: {self.weight_init}") + print(f" Layer norm: {self.add_layer_norm}") + print(f" Dropout usage: {self.use_dropout}" ) + print(f" Activate last layer: {self.activate_output}") + print(f" Dropout structure: {self.dropout_structure}") + + optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} + + if self.shorthash() == optimizer_saved_dict.get('hash', None): self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) else: self.optimizer_state_dict = None @@ -289,6 +290,11 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.eval() + def shorthash(self): + sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') + + return sha256[0:10] + def list_hypernetworks(path): res = {} @@ -296,7 +302,7 @@ def list_hypernetworks(path): name = os.path.splitext(os.path.basename(filename))[0] # Prevent a hypothetical "None.pt" from being listed. if name != "None": - res[name + f"({sd_models.model_hash(filename)})"] = filename + res[name] = filename return res diff --git a/modules/processing.py b/modules/processing.py index ae04cab7..849f6b19 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -437,7 +437,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name), - "Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)), + "Hypernet hash": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.shorthash()), "Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), diff --git a/modules/sd_models.py b/modules/sd_models.py index 7babb9ae..8f00191c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -125,7 +125,7 @@ def list_models(): def get_closet_checkpoint_match(search_string): checkpoint_info = checkpoint_alisases.get(search_string, None) if checkpoint_info is not None: - return + return checkpoint_info found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) if found: diff --git a/modules/shared.py b/modules/shared.py index d74c069d..a6c61db3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -361,6 +361,7 @@ options_templates.update(options_section(('system', "System"), { "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), + "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), })) options_templates.update(options_section(('training', "Training"), { -- cgit v1.2.3 From 9991967f40120b88a1dc925fdf7d747d5e016888 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 16 Jan 2023 22:59:46 +0300 Subject: Add a check and explanation for tensor with all NaNs. --- modules/devices.py | 28 ++++++++++++++++++++++++++++ modules/processing.py | 3 +++ modules/sd_samplers.py | 2 ++ 3 files changed, 33 insertions(+) (limited to 'modules/processing.py') diff --git a/modules/devices.py b/modules/devices.py index caeb0276..6f034948 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -106,6 +106,33 @@ def autocast(disable=False): return torch.autocast("cuda") +class NansException(Exception): + pass + + +def test_for_nans(x, where): + from modules import shared + + if not torch.all(torch.isnan(x)).item(): + return + + if where == "unet": + message = "A tensor with all NaNs was produced in Unet." + + if not shared.cmd_opts.no_half: + message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this." + + elif where == "vae": + message = "A tensor with all NaNs was produced in VAE." + + if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae: + message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." + else: + message = "A tensor with all NaNs was produced." + + raise NansException(message) + + # MPS workaround for https://github.com/pytorch/pytorch/issues/79383 orig_tensor_to = torch.Tensor.to def tensor_to_fix(self, *args, **kwargs): @@ -156,3 +183,4 @@ if has_mps(): torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) ) orig_narrow = torch.narrow torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() ) + diff --git a/modules/processing.py b/modules/processing.py index 849f6b19..ab7b3b7d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -608,6 +608,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] + for x in x_samples_ddim: + devices.test_for_nans(x, "vae") + x_samples_ddim = torch.stack(x_samples_ddim).float() x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 76e0e0d5..6261d1f7 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -351,6 +351,8 @@ class CFGDenoiser(torch.nn.Module): x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) + devices.test_for_nans(x_out, "unet") + if opts.live_preview_content == "Prompt": store_latent(x_out[0:uncond.shape[0]]) elif opts.live_preview_content == "Negative prompt": -- cgit v1.2.3 From e0e80050091ea7f58ae17c69f31d1b5de5e0ae20 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 16 Jan 2023 23:09:08 +0300 Subject: make StableDiffusionProcessing class not hold a reference to shared.sd_model object --- modules/processing.py | 9 +++++---- scripts/xy_grid.py | 1 - 2 files changed, 5 insertions(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index ab7b3b7d..9c3673de 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -94,7 +94,7 @@ def txt2img_image_conditioning(sd_model, x, width, height): return image_conditioning -class StableDiffusionProcessing(): +class StableDiffusionProcessing: """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ @@ -102,7 +102,6 @@ class StableDiffusionProcessing(): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) - self.sd_model = sd_model self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids self.prompt: str = prompt @@ -156,6 +155,10 @@ class StableDiffusionProcessing(): self.all_subseeds = None self.iteration = 0 + @property + def sd_model(self): + return shared.sd_model + def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} @@ -236,7 +239,6 @@ class StableDiffusionProcessing(): raise NotImplementedError() def close(self): - self.sd_model = None self.sampler = None @@ -471,7 +473,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model - p.sd_model = shared.sd_model if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index bf4ba92f..6629f5d5 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -86,7 +86,6 @@ def apply_checkpoint(p, x, xs): if info is None: raise RuntimeError(f"Unknown checkpoint: {x}") modules.sd_models.reload_model_weights(shared.sd_model, info) - p.sd_model = shared.sd_model def confirm_checkpoints(p, xs): -- cgit v1.2.3 From 5e15a0b422981c0b5484885d0b4d28af6913c76f Mon Sep 17 00:00:00 2001 From: EllangoK Date: Tue, 17 Jan 2023 11:42:44 -0500 Subject: Changed params.txt save to after manual init call --- modules/processing.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 9c3673de..4a1f033e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -538,10 +538,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.scripts is not None: p.scripts.process(p) - with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: - processed = Processed(p, [], p.seed, "") - file.write(processed.infotext(p, 0)) - infotexts = [] output_images = [] @@ -572,6 +568,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) + with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: + processed = Processed(p, [], p.seed, "") + file.write(processed.infotext(p, 0)) + if state.job_count == -1: state.job_count = p.n_iter -- cgit v1.2.3 From b186d44dcd0df9d127a663b297334a5bd8258b58 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 18 Jan 2023 23:20:23 +0300 Subject: use DDIM in hires fix is the sampler is PLMS --- modules/processing.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 9c3673de..8c18ac53 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -857,7 +857,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): shared.state.nextjob() - self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) + img2img_sampler_name = self.sampler_name if self.sampler_name != 'PLMS' else 'DDIM' # PLMS does not support img2img so we just silently switch ot DDIM + self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] -- cgit v1.2.3 From 40ff6db5325fc34ad4fa35e80cb1e7768d9f7e75 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 21 Jan 2023 08:36:07 +0300 Subject: extra networks UI rework of hypernets: rather than via settings, hypernets are added directly to prompt as --- html/card-no-preview.png | Bin 0 -> 84440 bytes html/extra-networks-card.html | 11 ++ html/extra-networks-no-cards.html | 8 ++ javascript/extraNetworks.js | 60 ++++++++ javascript/hints.js | 2 + javascript/ui.js | 9 +- modules/api/api.py | 7 +- modules/extra_networks.py | 147 +++++++++++++++++++ modules/extra_networks_hypernet.py | 21 +++ modules/generation_parameters_copypaste.py | 12 +- modules/hypernetworks/hypernetwork.py | 107 +++++++++----- modules/hypernetworks/ui.py | 5 +- modules/processing.py | 24 ++-- modules/sd_hijack_optimizations.py | 10 +- modules/shared.py | 21 ++- modules/textual_inversion/textual_inversion.py | 2 + modules/ui.py | 50 ++++--- modules/ui_components.py | 10 ++ modules/ui_extra_networks.py | 149 +++++++++++++++++++ modules/ui_extra_networks_hypernets.py | 34 +++++ modules/ui_extra_networks_textual_inversion.py | 32 +++++ script.js | 13 +- scripts/xy_grid.py | 29 ---- style.css | 190 +++++++++++++------------ webui.py | 26 +++- 25 files changed, 765 insertions(+), 214 deletions(-) create mode 100644 html/card-no-preview.png create mode 100644 html/extra-networks-card.html create mode 100644 html/extra-networks-no-cards.html create mode 100644 javascript/extraNetworks.js create mode 100644 modules/extra_networks.py create mode 100644 modules/extra_networks_hypernet.py create mode 100644 modules/ui_extra_networks.py create mode 100644 modules/ui_extra_networks_hypernets.py create mode 100644 modules/ui_extra_networks_textual_inversion.py (limited to 'modules/processing.py') diff --git a/html/card-no-preview.png b/html/card-no-preview.png new file mode 100644 index 00000000..e2beb269 Binary files /dev/null and b/html/card-no-preview.png differ diff --git a/html/extra-networks-card.html b/html/extra-networks-card.html new file mode 100644 index 00000000..7314b063 --- /dev/null +++ b/html/extra-networks-card.html @@ -0,0 +1,11 @@ +
+
+
+ +
+ {name} +
+
+ diff --git a/html/extra-networks-no-cards.html b/html/extra-networks-no-cards.html new file mode 100644 index 00000000..389358d6 --- /dev/null +++ b/html/extra-networks-no-cards.html @@ -0,0 +1,8 @@ +
+

Nothing here. Add some content to the following directories:

+ +
    +{dirs} +
+
+ diff --git a/javascript/extraNetworks.js b/javascript/extraNetworks.js new file mode 100644 index 00000000..71e522d1 --- /dev/null +++ b/javascript/extraNetworks.js @@ -0,0 +1,60 @@ + +function setupExtraNetworksForTab(tabname){ + gradioApp().querySelector('#'+tabname+'_extra_tabs').classList.add('extra-networks') + + gradioApp().querySelector('#'+tabname+'_extra_tabs > div').appendChild(gradioApp().getElementById(tabname+'_extra_refresh')) + gradioApp().querySelector('#'+tabname+'_extra_tabs > div').appendChild(gradioApp().getElementById(tabname+'_extra_close')) +} + +var activePromptTextarea = null; +var activePositivePromptTextarea = null; + +function setupExtraNetworks(){ + setupExtraNetworksForTab('txt2img') + setupExtraNetworksForTab('img2img') + + function registerPrompt(id, isNegative){ + var textarea = gradioApp().querySelector("#" + id + " > label > textarea"); + + if (activePromptTextarea == null){ + activePromptTextarea = textarea + } + if (activePositivePromptTextarea == null && ! isNegative){ + activePositivePromptTextarea = textarea + } + + textarea.addEventListener("focus", function(){ + activePromptTextarea = textarea; + if(! isNegative) activePositivePromptTextarea = textarea; + }); + } + + registerPrompt('txt2img_prompt') + registerPrompt('txt2img_neg_prompt', true) + registerPrompt('img2img_prompt') + registerPrompt('img2img_neg_prompt', true) +} + +onUiLoaded(setupExtraNetworks) + +function cardClicked(textToAdd, allowNegativePrompt){ + textarea = allowNegativePrompt ? activePromptTextarea : activePositivePromptTextarea + + textarea.value = textarea.value + " " + textToAdd + updateInput(textarea) + + return false +} + +function saveCardPreview(event, tabname, filename){ + textarea = gradioApp().querySelector("#" + tabname + '_preview_filename > label > textarea') + button = gradioApp().getElementById(tabname + '_save_preview') + + textarea.value = filename + updateInput(textarea) + + button.click() + + event.stopPropagation() + event.preventDefault() +} diff --git a/javascript/hints.js b/javascript/hints.js index e746e20d..f4079f96 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -21,6 +21,8 @@ titles = { "\U0001F5D1": "Clear prompt", "\u{1f4cb}": "Apply selected styles to current prompt", "\u{1f4d2}": "Paste available values into the field", + "\u{1f3b4}": "Show extra networks", + "Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt", "SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back", diff --git a/javascript/ui.js b/javascript/ui.js index 3ba90ca8..a7e75439 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -196,8 +196,6 @@ function confirm_clear_prompt(prompt, negative_prompt) { return [prompt, negative_prompt] } - - opts = {} onUiUpdate(function(){ if(Object.keys(opts).length != 0) return; @@ -239,11 +237,14 @@ onUiUpdate(function(){ return } + prompt.parentElement.insertBefore(counter, prompt) counter.classList.add("token-counter") prompt.parentElement.style.position = "relative" - textarea.addEventListener("input", () => update_token_counter(id_button)); + textarea.addEventListener("input", function(){ + update_token_counter(id_button); + }); } registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button') @@ -261,10 +262,8 @@ onUiUpdate(function(){ }) } } - }) - onOptionsChanged(function(){ elem = gradioApp().getElementById('sd_checkpoint_hash') sd_checkpoint_hash = opts.sd_checkpoint_hash || "" diff --git a/modules/api/api.py b/modules/api/api.py index 9814bbc2..2c371e6e 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -480,7 +480,7 @@ class Api: def train_hypernetwork(self, args: dict): try: shared.state.begin() - initial_hypernetwork = shared.loaded_hypernetwork + shared.loaded_hypernetworks = [] apply_optimizations = shared.opts.training_xattention_optimizations error = None filename = '' @@ -491,16 +491,15 @@ class Api: except Exception as e: error = e finally: - shared.loaded_hypernetwork = initial_hypernetwork shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device) if not apply_optimizations: sd_hijack.apply_optimizations() shared.state.end() - return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error)) + return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error)) except AssertionError as msg: shared.state.end() - return TrainResponse(info = "train embedding error: {error}".format(error = error)) + return TrainResponse(info="train embedding error: {error}".format(error=error)) def get_memory(self): try: diff --git a/modules/extra_networks.py b/modules/extra_networks.py new file mode 100644 index 00000000..1978673d --- /dev/null +++ b/modules/extra_networks.py @@ -0,0 +1,147 @@ +import re +from collections import defaultdict + +from modules import errors + +extra_network_registry = {} + + +def initialize(): + extra_network_registry.clear() + + +def register_extra_network(extra_network): + extra_network_registry[extra_network.name] = extra_network + + +class ExtraNetworkParams: + def __init__(self, items=None): + self.items = items or [] + + +class ExtraNetwork: + def __init__(self, name): + self.name = name + + def activate(self, p, params_list): + """ + Called by processing on every run. Whatever the extra network is meant to do should be activated here. + Passes arguments related to this extra network in params_list. + User passes arguments by specifying this in his prompt: + + + + Where name matches the name of this ExtraNetwork object, and arg1:arg2:arg3 are any natural number of text arguments + separated by colon. + + Even if the user does not mention this ExtraNetwork in his prompt, the call will stil be made, with empty params_list - + in this case, all effects of this extra networks should be disabled. + + Can be called multiple times before deactivate() - each new call should override the previous call completely. + + For example, if this ExtraNetwork's name is 'hypernet' and user's prompt is: + + > "1girl, " + + params_list will be: + + [ + ExtraNetworkParams(items=["agm", "1.1"]), + ExtraNetworkParams(items=["ray"]) + ] + + """ + raise NotImplementedError + + def deactivate(self, p): + """ + Called at the end of processing for housekeeping. No need to do anything here. + """ + + raise NotImplementedError + + +def activate(p, extra_network_data): + """call activate for extra networks in extra_network_data in specified order, then call + activate for all remaining registered networks with an empty argument list""" + + for extra_network_name, extra_network_args in extra_network_data.items(): + extra_network = extra_network_registry.get(extra_network_name, None) + if extra_network is None: + print(f"Skipping unknown extra network: {extra_network_name}") + continue + + try: + extra_network.activate(p, extra_network_args) + except Exception as e: + errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}") + + for extra_network_name, extra_network in extra_network_registry.items(): + args = extra_network_data.get(extra_network_name, None) + if args is not None: + continue + + try: + extra_network.activate(p, []) + except Exception as e: + errors.display(e, f"activating extra network {extra_network_name}") + + +def deactivate(p, extra_network_data): + """call deactivate for extra networks in extra_network_data in specified order, then call + deactivate for all remaining registered networks""" + + for extra_network_name, extra_network_args in extra_network_data.items(): + extra_network = extra_network_registry.get(extra_network_name, None) + if extra_network is None: + continue + + try: + extra_network.deactivate(p) + except Exception as e: + errors.display(e, f"deactivating extra network {extra_network_name}") + + for extra_network_name, extra_network in extra_network_registry.items(): + args = extra_network_data.get(extra_network_name, None) + if args is not None: + continue + + try: + extra_network.deactivate(p) + except Exception as e: + errors.display(e, f"deactivating unmentioned extra network {extra_network_name}") + + +re_extra_net = re.compile(r"<(\w+):([^>]+)>") + + +def parse_prompt(prompt): + res = defaultdict(list) + + def found(m): + name = m.group(1) + args = m.group(2) + + res[name].append(ExtraNetworkParams(items=args.split(":"))) + + return "" + + prompt = re.sub(re_extra_net, found, prompt) + + return prompt, res + + +def parse_prompts(prompts): + res = [] + extra_data = None + + for prompt in prompts: + updated_prompt, parsed_extra_data = parse_prompt(prompt) + + if extra_data is None: + extra_data = parsed_extra_data + + res.append(updated_prompt) + + return res, extra_data + diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py new file mode 100644 index 00000000..6a0c4ba8 --- /dev/null +++ b/modules/extra_networks_hypernet.py @@ -0,0 +1,21 @@ +from modules import extra_networks +from modules.hypernetworks import hypernetwork + + +class ExtraNetworkHypernet(extra_networks.ExtraNetwork): + def __init__(self): + super().__init__('hypernet') + + def activate(self, p, params_list): + names = [] + multipliers = [] + for params in params_list: + assert len(params.items) > 0 + + names.append(params.items[0]) + multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) + + hypernetwork.load_hypernetworks(names, multipliers) + + def deactivate(p, self): + pass diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index a381ff59..46e12dc6 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -79,8 +79,6 @@ def integrate_settings_paste_fields(component_dict): from modules import ui settings_map = { - 'sd_hypernetwork': 'Hypernet', - 'sd_hypernetwork_strength': 'Hypernet strength', 'CLIP_stop_at_last_layers': 'Clip skip', 'inpainting_mask_weight': 'Conditional mask weight', 'sd_model_checkpoint': 'Model hash', @@ -275,13 +273,9 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model if "Clip skip" not in res: res["Clip skip"] = "1" - if "Hypernet strength" not in res: - res["Hypernet strength"] = "1" - - if "Hypernet" in res: - hypernet_name = res["Hypernet"] - hypernet_hash = res.get("Hypernet hash", None) - res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash) + hypernet = res.get("Hypernet", None) + if hypernet is not None: + res["Prompt"] += f"""""" if "Hires resize-1" not in res: res["Hires resize-1"] = 0 diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 74e78582..80a47c79 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -25,7 +25,6 @@ from statistics import stdev, mean optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"} class HypernetworkModule(torch.nn.Module): - multiplier = 1.0 activation_dict = { "linear": torch.nn.Identity, "relu": torch.nn.ReLU, @@ -41,6 +40,8 @@ class HypernetworkModule(torch.nn.Module): add_layer_norm=False, activate_output=False, dropout_structure=None): super().__init__() + self.multiplier = 1.0 + assert layer_structure is not None, "layer_structure must not be None" assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" @@ -115,7 +116,7 @@ class HypernetworkModule(torch.nn.Module): state_dict[to] = x def forward(self, x): - return x + self.linear(x) * (HypernetworkModule.multiplier if not self.training else 1) + return x + self.linear(x) * (self.multiplier if not self.training else 1) def trainables(self): layer_structure = [] @@ -125,9 +126,6 @@ class HypernetworkModule(torch.nn.Module): return layer_structure -def apply_strength(value=None): - HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength - #param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check. def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout): if layer_structure is None: @@ -192,6 +190,20 @@ class Hypernetwork: for param in layer.parameters(): param.requires_grad = mode + def to(self, device): + for k, layers in self.layers.items(): + for layer in layers: + layer.to(device) + + return self + + def set_multiplier(self, multiplier): + for k, layers in self.layers.items(): + for layer in layers: + layer.multiplier = multiplier + + return self + def eval(self): for k, layers in self.layers.items(): for layer in layers: @@ -269,11 +281,13 @@ class Hypernetwork: self.optimizer_state_dict = None if self.optimizer_state_dict: self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW') - print("Loaded existing optimizer from checkpoint") - print(f"Optimizer name is {self.optimizer_name}") + if shared.opts.print_hypernet_extra: + print("Loaded existing optimizer from checkpoint") + print(f"Optimizer name is {self.optimizer_name}") else: self.optimizer_name = "AdamW" - print("No saved optimizer exists in checkpoint") + if shared.opts.print_hypernet_extra: + print("No saved optimizer exists in checkpoint") for size, sd in state_dict.items(): if type(size) == int: @@ -306,23 +320,43 @@ def list_hypernetworks(path): return res -def load_hypernetwork(filename): - path = shared.hypernetworks.get(filename, None) - # Prevent any file named "None.pt" from being loaded. - if path is not None and filename != "None": - print(f"Loading hypernetwork {filename}") - try: - shared.loaded_hypernetwork = Hypernetwork() - shared.loaded_hypernetwork.load(path) +def load_hypernetwork(name): + path = shared.hypernetworks.get(name, None) - except Exception: - print(f"Error loading hypernetwork {path}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - if shared.loaded_hypernetwork is not None: - print("Unloading hypernetwork") + if path is None: + return None + + hypernetwork = Hypernetwork() + + try: + hypernetwork.load(path) + except Exception: + print(f"Error loading hypernetwork {path}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + return None + + return hypernetwork + + +def load_hypernetworks(names, multipliers=None): + already_loaded = {} + + for hypernetwork in shared.loaded_hypernetworks: + if hypernetwork.name in names: + already_loaded[hypernetwork.name] = hypernetwork - shared.loaded_hypernetwork = None + shared.loaded_hypernetworks.clear() + + for i, name in enumerate(names): + hypernetwork = already_loaded.get(name, None) + if hypernetwork is None: + hypernetwork = load_hypernetwork(name) + + if hypernetwork is None: + continue + + hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0) + shared.loaded_hypernetworks.append(hypernetwork) def find_closest_hypernetwork_name(search: str): @@ -336,18 +370,27 @@ def find_closest_hypernetwork_name(search: str): return applicable[0] -def apply_hypernetwork(hypernetwork, context, layer=None): - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) +def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) if hypernetwork_layers is None: - return context, context + return context_k, context_v if layer is not None: layer.hyper_k = hypernetwork_layers[0] layer.hyper_v = hypernetwork_layers[1] - context_k = hypernetwork_layers[0](context) - context_v = hypernetwork_layers[1](context) + context_k = hypernetwork_layers[0](context_k) + context_v = hypernetwork_layers[1](context_v) + return context_k, context_v + + +def apply_hypernetworks(hypernetworks, context, layer=None): + context_k = context + context_v = context + for hypernetwork in hypernetworks: + context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer) + return context_k, context_v @@ -357,7 +400,7 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) - context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) + context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self) k = self.to_k(context_k) v = self.to_v(context_v) @@ -464,8 +507,9 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi template_file = template_file.path path = shared.hypernetworks.get(hypernetwork_name, None) - shared.loaded_hypernetwork = Hypernetwork() - shared.loaded_hypernetwork.load(path) + hypernetwork = Hypernetwork() + hypernetwork.load(path) + shared.loaded_hypernetworks = [hypernetwork] shared.state.job = "train-hypernetwork" shared.state.textinfo = "Initializing hypernetwork training..." @@ -489,7 +533,6 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi else: images_dir = None - hypernetwork = shared.loaded_hypernetwork checkpoint = sd_models.select_checkpoint() initial_step = hypernetwork.step or 0 diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index 81e3f519..76599f5a 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -9,6 +9,7 @@ from modules import devices, sd_hijack, shared not_available = ["hardswish", "multiheadattention"] keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) + def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure) @@ -16,8 +17,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, def train_hypernetwork(*args): - - initial_hypernetwork = shared.loaded_hypernetwork + shared.loaded_hypernetworks = [] assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' @@ -34,7 +34,6 @@ Hypernetwork saved to {html.escape(filename)} except Exception: raise finally: - shared.loaded_hypernetwork = initial_hypernetwork shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device) sd_hijack.apply_optimizations() diff --git a/modules/processing.py b/modules/processing.py index a3e9f709..b5deeacf 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List, Optional import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -438,9 +438,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), - "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name), - "Hypernet hash": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.shorthash()), - "Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), @@ -468,14 +465,12 @@ def process_images(p: StableDiffusionProcessing) -> Processed: try: for k, v in p.override_settings.items(): setattr(opts, k, v) - if k == 'sd_hypernetwork': - shared.reload_hypernetworks() # make onchange call for changing hypernet if k == 'sd_model_checkpoint': - sd_models.reload_model_weights() # make onchange call for changing SD model + sd_models.reload_model_weights() if k == 'sd_vae': - sd_vae.reload_vae_weights() # make onchange call for changing VAE + sd_vae.reload_vae_weights() res = process_images_inner(p) @@ -484,9 +479,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if p.override_settings_restore_afterwards: for k, v in stored_opts.items(): setattr(opts, k, v) - if k == 'sd_hypernetwork': shared.reload_hypernetworks() - if k == 'sd_model_checkpoint': sd_models.reload_model_weights() - if k == 'sd_vae': sd_vae.reload_vae_weights() + if k == 'sd_model_checkpoint': + sd_models.reload_model_weights() + + if k == 'sd_vae': + sd_vae.reload_vae_weights() return res @@ -564,10 +561,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: cache[0] = (required_prompts, steps) return cache[1] + p.all_prompts, extra_network_data = extra_networks.parse_prompts(p.all_prompts) + with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) + extra_networks.activate(p, extra_network_data) + with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, [], p.seed, "") file.write(processed.infotext(p, 0)) @@ -681,6 +682,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) + extra_networks.deactivate(p, extra_network_data) devices.torch_gc() res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts) diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index cdc63ed7..4fa54329 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -44,7 +44,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): q_in = self.to_q(x) context = default(context, x) - context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) del context, context_k, context_v, x @@ -78,7 +78,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): q_in = self.to_q(x) context = default(context, x) - context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) @@ -203,7 +203,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) - context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) k = self.to_k(context_k) * self.scale v = self.to_v(context_v) del context, context_k, context_v, x @@ -225,7 +225,7 @@ def sub_quad_attention_forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) - context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) k = self.to_k(context_k) v = self.to_v(context_v) del context, context_k, context_v, x @@ -284,7 +284,7 @@ def xformers_attention_forward(self, x, context=None, mask=None): q_in = self.to_q(x) context = default(context, x) - context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) diff --git a/modules/shared.py b/modules/shared.py index 2f366454..c0e11f18 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -23,6 +23,7 @@ demo = None sd_default_config = os.path.join(script_path, "configs/v1-inference.yaml") sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file + parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",) @@ -145,7 +146,7 @@ config_filename = cmd_opts.ui_settings_file os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = {} -loaded_hypernetwork = None +loaded_hypernetworks = [] def reload_hypernetworks(): @@ -153,8 +154,6 @@ def reload_hypernetworks(): global hypernetworks hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) - hypernetwork.load_hypernetwork(opts.sd_hypernetwork) - class State: @@ -399,8 +398,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), - "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), - "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01 }), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), @@ -661,3 +658,17 @@ mem_mon.start() def listfiles(dirname): filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname)) if not x.startswith(".")] return [file for file in filenames if os.path.isfile(file)] + + +def html_path(filename): + return os.path.join(script_path, "html", filename) + + +def html(filename): + path = html_path(filename) + + if os.path.exists(path): + with open(path, encoding="utf8") as file: + return file.read() + + return "" diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5a7be422..4e90f690 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -50,6 +50,7 @@ class Embedding: self.sd_checkpoint = None self.sd_checkpoint_name = None self.optimizer_state_dict = None + self.filename = None def save(self, filename): embedding_data = { @@ -182,6 +183,7 @@ class EmbeddingDatabase: embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) embedding.vectors = vec.shape[0] embedding.shape = vec.shape[-1] + embedding.filename = path if self.expected_shape == -1 or self.expected_shape == embedding.shape: self.register_embedding(embedding, shared.sd_model) diff --git a/modules/ui.py b/modules/ui.py index 06c11848..d23b2b8e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -20,7 +20,7 @@ import numpy as np from PIL import Image, PngImagePlugin from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call -from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae +from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path @@ -90,6 +90,7 @@ refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 apply_style_symbol = '\U0001f4cb' # 📋 clear_prompt_symbol = '\U0001F5D1' # 🗑️ +extra_networks_symbol = '\U0001F3B4' # 🎴 def plaintext_to_html(text): @@ -324,6 +325,8 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: def update_token_counter(text, steps): try: + text, _ = extra_networks.parse_prompt(text) + _, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text]) prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps) @@ -354,10 +357,10 @@ def create_toprow(is_img2img): negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)") with gr.Column(scale=1, elem_id="roll_col"): - paste = gr.Button(value=paste_symbol, elem_id="paste") - save_style = gr.Button(value=save_style_symbol, elem_id="style_create") - prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply") - clear_prompt_button = gr.Button(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt") + paste = ToolButton(value=paste_symbol, elem_id="paste") + clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt") + extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks") + token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") negative_token_counter = gr.HTML(value="", elem_id=f"{id_part}_negative_token_counter") @@ -395,11 +398,14 @@ def create_toprow(is_img2img): outputs=[], ) - with gr.Row(): + with gr.Row(elem_id=f"{id_part}_styles_row"): prompt_styles = gr.Dropdown(label="Styles", elem_id=f"{id_part}_styles", choices=[k for k, v in shared.prompt_styles.styles.items()], value=[], multiselect=True) create_refresh_button(prompt_styles, shared.prompt_styles.reload, lambda: {"choices": [k for k, v in shared.prompt_styles.styles.items()]}, f"refresh_{id_part}_styles") - return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button, negative_token_counter, negative_token_button + prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id="style_apply") + save_style = ToolButton(value=save_style_symbol, elem_id="style_create") + + return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button def setup_progressbar(*args, **kwargs): @@ -616,11 +622,15 @@ def create_ui(): modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False) with gr.Blocks(analytics_enabled=False) as txt2img_interface: - txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=False) + txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=False) dummy_component = gr.Label(visible=False) txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="binary", visible=False) + with FormRow(variant='compact', elem_id="txt2img_extra_networks", visible=False) as extra_networks: + from modules import ui_extra_networks + extra_networks_ui = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'txt2img') + with gr.Row().style(equal_height=False): with gr.Column(variant='compact', elem_id="txt2img_settings"): for category in ordered_ui_categories(): @@ -794,14 +804,20 @@ def create_ui(): token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter]) negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter]) + ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery) + modules.scripts.scripts_current = modules.scripts.scripts_img2img modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True) with gr.Blocks(analytics_enabled=False) as img2img_interface: - img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=True) + img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button = create_toprow(is_img2img=True) img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="binary", visible=False) + with FormRow(variant='compact', elem_id="img2img_extra_networks", visible=False) as extra_networks: + from modules import ui_extra_networks + extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'img2img') + with FormRow().style(equal_height=False): with gr.Column(variant='compact', elem_id="img2img_settings"): copy_image_buttons = [] @@ -1064,6 +1080,8 @@ def create_ui(): token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter]) + ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery) + img2img_paste_fields = [ (img2img_prompt, "Prompt"), (img2img_negative_prompt, "Negative prompt"), @@ -1666,10 +1684,8 @@ def create_ui(): download_localization = gr.Button(value='Download localization template', elem_id="download_localization") reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") - if os.path.exists("html/licenses.html"): - with open("html/licenses.html", encoding="utf8") as file: - with gr.TabItem("Licenses"): - gr.HTML(file.read(), elem_id="licenses") + with gr.TabItem("Licenses"): + gr.HTML(shared.html("licenses.html"), elem_id="licenses") gr.Button(value="Show all pages", elem_id="settings_show_all_pages") @@ -1756,11 +1772,9 @@ def create_ui(): if os.path.exists(os.path.join(script_path, "notification.mp3")): audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) - if os.path.exists("html/footer.html"): - with open("html/footer.html", encoding="utf8") as file: - footer = file.read() - footer = footer.format(versions=versions_html()) - gr.HTML(footer, elem_id="footer") + footer = shared.html("footer.html") + footer = footer.format(versions=versions_html()) + gr.HTML(footer, elem_id="footer") text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False) settings_submit.click( diff --git a/modules/ui_components.py b/modules/ui_components.py index 97acff06..46324425 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -11,6 +11,16 @@ class ToolButton(gr.Button, gr.components.FormComponent): return "button" +class ToolButtonTop(gr.Button, gr.components.FormComponent): + """Small button with single emoji as text, with extra margin at top, fits inside gradio forms""" + + def __init__(self, **kwargs): + super().__init__(variant="tool-top", **kwargs) + + def get_block_name(self): + return "button" + + class FormRow(gr.Row, gr.components.FormComponent): """Same as gr.Row but fits inside gradio forms""" diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py new file mode 100644 index 00000000..253e90f7 --- /dev/null +++ b/modules/ui_extra_networks.py @@ -0,0 +1,149 @@ +import os.path + +from modules import shared +import gradio as gr +import json + +from modules.generation_parameters_copypaste import image_from_url_text + +extra_pages = [] + + +def register_page(page): + """registers extra networks page for the UI; recommend doing it in on_app_started() callback for extensions""" + + extra_pages.append(page) + + +class ExtraNetworksPage: + def __init__(self, title): + self.title = title + self.card_page = shared.html("extra-networks-card.html") + self.allow_negative_prompt = False + + def refresh(self): + pass + + def create_html(self, tabname): + items_html = '' + + for item in self.list_items(): + items_html += self.create_html_for_item(item, tabname) + + if items_html == '': + dirs = "".join([f"
  • {x}
  • " for x in self.allowed_directories_for_previews()]) + items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs) + + res = "
    " + items_html + "
    " + + return res + + def list_items(self): + raise NotImplementedError() + + def allowed_directories_for_previews(self): + return [] + + def create_html_for_item(self, item, tabname): + preview = item.get("preview", None) + + args = { + "preview_html": "style='background-image: url(" + json.dumps(preview) + ")'" if preview else '', + "prompt": json.dumps(item["prompt"]), + "tabname": json.dumps(tabname), + "local_preview": json.dumps(item["local_preview"]), + "name": item["name"], + "allow_negative_prompt": "true" if self.allow_negative_prompt else "false", + } + + return self.card_page.format(**args) + + +def intialize(): + extra_pages.clear() + + +class ExtraNetworksUi: + def __init__(self): + self.pages = None + self.stored_extra_pages = None + + self.button_save_preview = None + self.preview_target_filename = None + + self.tabname = None + + +def create_ui(container, button, tabname): + ui = ExtraNetworksUi() + ui.pages = [] + ui.stored_extra_pages = extra_pages.copy() + ui.tabname = tabname + + with gr.Tabs(elem_id=tabname+"_extra_tabs") as tabs: + button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh") + button_close = gr.Button('Close', elem_id=tabname+"_extra_close") + + for page in ui.stored_extra_pages: + with gr.Tab(page.title): + page_elem = gr.HTML(page.create_html(ui.tabname)) + ui.pages.append(page_elem) + + ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False) + ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False) + + button.click(fn=lambda: gr.update(visible=True), inputs=[], outputs=[container]) + button_close.click(fn=lambda: gr.update(visible=False), inputs=[], outputs=[container]) + + def refresh(): + res = [] + + for pg in ui.stored_extra_pages: + pg.refresh() + res.append(pg.create_html(ui.tabname)) + + return res + + button_refresh.click(fn=refresh, inputs=[], outputs=ui.pages) + + return ui + + +def path_is_parent(parent_path, child_path): + parent_path = os.path.abspath(parent_path) + child_path = os.path.abspath(child_path) + + return os.path.commonpath([parent_path]) == os.path.commonpath([parent_path, child_path]) + + +def setup_ui(ui, gallery): + def save_preview(index, images, filename): + if len(images) == 0: + print("There is no image in gallery to save as a preview.") + return [page.create_html(ui.tabname) for page in ui.stored_extra_pages] + + index = int(index) + index = 0 if index < 0 else index + index = len(images) - 1 if index >= len(images) else index + + img_info = images[index if index >= 0 else 0] + image = image_from_url_text(img_info) + + is_allowed = False + for extra_page in ui.stored_extra_pages: + if any([path_is_parent(x, filename) for x in extra_page.allowed_directories_for_previews()]): + is_allowed = True + break + + assert is_allowed, f'writing to {filename} is not allowed' + + image.save(filename) + + return [page.create_html(ui.tabname) for page in ui.stored_extra_pages] + + ui.button_save_preview.click( + fn=save_preview, + _js="function(x, y, z){console.log(x, y, z); return [selected_gallery_index(), y, z]}", + inputs=[ui.preview_target_filename, gallery, ui.preview_target_filename], + outputs=[*ui.pages] + ) diff --git a/modules/ui_extra_networks_hypernets.py b/modules/ui_extra_networks_hypernets.py new file mode 100644 index 00000000..312dbaf0 --- /dev/null +++ b/modules/ui_extra_networks_hypernets.py @@ -0,0 +1,34 @@ +import os + +from modules import shared, ui_extra_networks + + +class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage): + def __init__(self): + super().__init__('Hypernetworks') + + def refresh(self): + shared.reload_hypernetworks() + + def list_items(self): + for name, path in shared.hypernetworks.items(): + path, ext = os.path.splitext(path) + previews = [path + ".png", path + ".preview.png"] + + preview = None + for file in previews: + if os.path.isfile(file): + preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file)) + break + + yield { + "name": name, + "filename": path, + "preview": preview, + "prompt": f"", + "local_preview": path + ".png", + } + + def allowed_directories_for_previews(self): + return [shared.cmd_opts.hypernetwork_dir] + diff --git a/modules/ui_extra_networks_textual_inversion.py b/modules/ui_extra_networks_textual_inversion.py new file mode 100644 index 00000000..e4a6e3bf --- /dev/null +++ b/modules/ui_extra_networks_textual_inversion.py @@ -0,0 +1,32 @@ +import os + +from modules import ui_extra_networks, sd_hijack + + +class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage): + def __init__(self): + super().__init__('Textual Inversion') + self.allow_negative_prompt = True + + def refresh(self): + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) + + def list_items(self): + for embedding in sd_hijack.model_hijack.embedding_db.word_embeddings.values(): + path, ext = os.path.splitext(embedding.filename) + preview_file = path + ".preview.png" + + preview = None + if os.path.isfile(preview_file): + preview = "./file=" + preview_file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(preview_file)) + + yield { + "name": embedding.name, + "filename": embedding.filename, + "preview": preview, + "prompt": embedding.name, + "local_preview": path + ".preview.png", + } + + def allowed_directories_for_previews(self): + return list(sd_hijack.model_hijack.embedding_db.embedding_dirs) diff --git a/script.js b/script.js index 3345e32b..97e0bfcf 100644 --- a/script.js +++ b/script.js @@ -13,6 +13,7 @@ function get_uiCurrentTabContent() { } uiUpdateCallbacks = [] +uiLoadedCallbacks = [] uiTabChangeCallbacks = [] optionsChangedCallbacks = [] let uiCurrentTab = null @@ -20,6 +21,9 @@ let uiCurrentTab = null function onUiUpdate(callback){ uiUpdateCallbacks.push(callback) } +function onUiLoaded(callback){ + uiLoadedCallbacks.push(callback) +} function onUiTabChange(callback){ uiTabChangeCallbacks.push(callback) } @@ -38,8 +42,15 @@ function executeCallbacks(queue, m) { queue.forEach(function(x){runCallback(x, m)}) } +var executedOnLoaded = false; + document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ + if(!executedOnLoaded && gradioApp().querySelector('#txt2img_prompt')){ + executedOnLoaded = true; + executeCallbacks(uiLoadedCallbacks); + } + executeCallbacks(uiUpdateCallbacks, m); const newTab = get_uiCurrentTab(); if ( newTab && ( newTab !== uiCurrentTab ) ) { @@ -53,7 +64,7 @@ document.addEventListener("DOMContentLoaded", function() { /** * Add a ctrl+enter as a shortcut to start a generation */ - document.addEventListener('keydown', function(e) { +document.addEventListener('keydown', function(e) { var handled = false; if (e.key !== undefined) { if((e.key == "Enter" && (e.metaKey || e.ctrlKey || e.altKey))) handled = true; diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 6629f5d5..b1badec9 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -11,7 +11,6 @@ import modules.scripts as scripts import gradio as gr from modules import images, paths, sd_samplers, processing, sd_models, sd_vae -from modules.hypernetworks import hypernetwork from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -94,28 +93,6 @@ def confirm_checkpoints(p, xs): raise RuntimeError(f"Unknown checkpoint: {x}") -def apply_hypernetwork(p, x, xs): - if x.lower() in ["", "none"]: - name = None - else: - name = hypernetwork.find_closest_hypernetwork_name(x) - if not name: - raise RuntimeError(f"Unknown hypernetwork: {x}") - hypernetwork.load_hypernetwork(name) - - -def apply_hypernetwork_strength(p, x, xs): - hypernetwork.apply_strength(x) - - -def confirm_hypernetworks(p, xs): - for x in xs: - if x.lower() in ["", "none"]: - continue - if not hypernetwork.find_closest_hypernetwork_name(x): - raise RuntimeError(f"Unknown hypernetwork: {x}") - - def apply_clip_skip(p, x, xs): opts.data["CLIP_stop_at_last_layers"] = x @@ -208,8 +185,6 @@ axis_options = [ AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list), AxisOption("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]), AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)), - AxisOption("Hypernetwork", str, apply_hypernetwork, format_value=format_value, confirm=confirm_hypernetworks, cost=0.2, choices=lambda: list(shared.hypernetworks)), - AxisOption("Hypernet str.", float, apply_hypernetwork_strength), AxisOption("Sigma Churn", float, apply_field("s_churn")), AxisOption("Sigma min", float, apply_field("s_tmin")), AxisOption("Sigma max", float, apply_field("s_tmax")), @@ -291,7 +266,6 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_ class SharedSettingsStackHelper(object): def __enter__(self): self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers - self.hypernetwork = opts.sd_hypernetwork self.vae = opts.sd_vae def __exit__(self, exc_type, exc_value, tb): @@ -299,9 +273,6 @@ class SharedSettingsStackHelper(object): modules.sd_models.reload_model_weights() modules.sd_vae.reload_vae_weights() - hypernetwork.load_hypernetwork(self.hypernetwork) - hypernetwork.apply_strength() - opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers diff --git a/style.css b/style.css index 3a515ebd..5e8bc2ca 100644 --- a/style.css +++ b/style.css @@ -132,13 +132,6 @@ } #roll_col > button { - min-width: 2em; - min-height: 2em; - max-width: 2em; - max-height: 2em; - flex-grow: 0; - padding-left: 0.25em; - padding-right: 0.25em; margin: 0.1em 0; } @@ -146,9 +139,10 @@ min-width: 0 !important; max-width: 8em !important; margin-right: 1em; + gap: 0; } #interrogate, #deepbooru{ - margin: 0em 0.25em 0.9em 0.25em; + margin: 0em 0.25em 0.5em 0.25em; min-width: 8em; max-width: 8em; } @@ -157,8 +151,17 @@ min-width: 8em !important; } +#txt2img_styles_row, #img2img_styles_row{ + gap: 0.25em; + margin-top: 0.5em; +} + +#txt2img_styles_row > button, #img2img_styles_row > button{ + margin: 0; +} + #txt2img_styles, #img2img_styles{ - margin-top: 1em; + padding: 0; } #txt2img_styles ul, #img2img_styles ul{ @@ -635,17 +638,21 @@ canvas[key="mask"] { background-color: rgb(31 41 55 / var(--tw-bg-opacity)); } -.gr-button-tool{ +.gr-button-tool, .gr-button-tool-top{ max-width: 2.5em; min-width: 2.5em !important; height: 2.4em; - margin: 1.6em 0.7em 0.55em 0; } -#tab_modelmerger .gr-button-tool{ +.gr-button-tool{ margin: 0.6em 0em 0.55em 0; } +.gr-button-tool-top, #settings .gr-button-tool{ + margin: 1.6em 0.7em 0.55em 0; +} + + #modelmerger_results_container{ margin-top: 1em; overflow: visible; @@ -763,81 +770,88 @@ footer { line-height: 2.4em; } -/* The following handles localization for right-to-left (RTL) languages like Arabic. -The rtl media type will only be activated by the logic in javascript/localization.js. -If you change anything above, you need to make sure it is RTL compliant by just running -your changes through converters like https://cssjanus.github.io/ or https://rtlcss.com/. -Then, you will need to add the RTL counterpart only if needed in the rtl section below.*/ -@media rtl { - /* this part was added manually */ - :host { - direction: rtl; - } - select, .file-preview, .gr-text-input, .output-html:has(.performance), #ti_progress { - direction: ltr; - } - #script_list > label > select, - #x_type > label > select, - #y_type > label > select { - direction: rtl; - } - .gr-radio, .gr-checkbox{ - margin-left: 0.25em; - } +#txt2img_extra_networks, #img2img_extra_networks{ + margin-top: -1em; +} - /* automatically generated with few manual modifications */ - .performance .time { - margin-right: unset; - margin-left: 0; - } - .justify-center.overflow-x-scroll { - justify-content: right; - } - .justify-center.overflow-x-scroll button:first-of-type { - margin-left: unset; - margin-right: auto; - } - .justify-center.overflow-x-scroll button:last-of-type { - margin-right: unset; - margin-left: auto; - } - #settings fieldset span.text-gray-500, #settings .gr-block.gr-box span.text-gray-500, #settings label.block span{ - margin-right: unset; - margin-left: 8em; - } - #txt2img_progressbar, #img2img_progressbar, #ti_progressbar{ - right: unset; - left: 0; - } - .progressDiv .progress{ - padding: 0 0 0 8px; - text-align: left; - } - #lightboxModal{ - left: unset; - right: 0; - } - .modalPrev, .modalNext{ - border-radius: 3px 0 0 3px; - } - .modalNext { - right: unset; - left: 0; - border-radius: 0 3px 3px 0; - } - #imageARPreview{ - left:unset; - right:0px; - } - #txt2img_skip, #img2img_skip{ - right: unset; - left: 0px; - } - #context-menu{ - box-shadow:-1px 1px 2px #CE6400; - } - .gr-box > div > div > input.gr-text-input{ - right: unset; - left: 0.5em; - } +.extra-networks > div > [id *= '_extra_']{ + margin: 0.3em; } + +.extra-network-cards .nocards{ + margin: 1.25em 0.5em 0.5em 0.5em; +} + +.extra-network-cards .nocards h1{ + font-size: 1.5em; + margin-bottom: 1em; +} + +.extra-network-cards .nocards li{ + margin-left: 0.5em; +} + +.extra-network-cards .card{ + display: inline-block; + margin: 0.5em; + width: 16em; + height: 24em; + box-shadow: 0 0 5px rgba(128, 128, 128, 0.5); + border-radius: 0.2em; + position: relative; + + background-size: auto 100%; + background-position: center; + overflow: hidden; + cursor: pointer; + + background-image: url('./file=html/card-no-preview.png') +} + +.extra-network-cards .card:hover{ + box-shadow: 0 0 2px 0.3em rgba(0, 128, 255, 0.35); +} + +.extra-network-cards .card .actions .additional{ + display: none; +} + +.extra-network-cards .card .actions{ + position: absolute; + bottom: 0; + left: 0; + right: 0; + padding: 0.5em; + color: white; + background: rgba(0,0,0,0.5); + box-shadow: 0 0 0.25em 0.25em rgba(0,0,0,0.5); + text-shadow: 0 0 0.2em black; +} + +.extra-network-cards .card .actions:hover{ + box-shadow: 0 0 0.75em 0.75em rgba(0,0,0,0.5) !important; +} + +.extra-network-cards .card .actions .name{ + font-size: 1.7em; + font-weight: bold; + line-break: anywhere; +} + +.extra-network-cards .card .actions:hover .additional{ + display: block; +} + +.extra-network-cards .card ul{ + margin: 0.25em 0 0.75em 0.25em; + cursor: unset; +} + +.extra-network-cards .card ul a{ + cursor: pointer; +} + +.extra-network-cards .card ul a:hover{ + color: red; +} + diff --git a/webui.py b/webui.py index 865a7300..e8dd822a 100644 --- a/webui.py +++ b/webui.py @@ -9,16 +9,18 @@ from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.gzip import GZipMiddleware -from modules import import_hook, errors +from modules import import_hook, errors, extra_networks +from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call from modules.paths import script_path import torch + # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors if ".dev" in torch.__version__ or "+git" in torch.__version__: torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) -from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir +from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks import modules.codeformer_model as codeformer import modules.extras import modules.face_restoration @@ -84,10 +86,17 @@ def initialize(): shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) - shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: shared.reload_hypernetworks())) - shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed) + shared.reload_hypernetworks() + + ui_extra_networks.intialize() + ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion()) + ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks()) + + extra_networks.initialize() + extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet()) + if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None: try: @@ -209,6 +218,15 @@ def webui(): modules.sd_models.list_models() + shared.reload_hypernetworks() + + ui_extra_networks.intialize() + ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion()) + ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks()) + + extra_networks.initialize() + extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet()) + if __name__ == "__main__": if cmd_opts.nowebui: -- cgit v1.2.3 From 92fb1096dbf6403e109a8eb7bc5d18ce487ae9b5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 21 Jan 2023 16:41:25 +0300 Subject: make it so that extra networks are not removed from infotext --- modules/processing.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index b5deeacf..241961ac 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -561,7 +561,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: cache[0] = (required_prompts, steps) return cache[1] - p.all_prompts, extra_network_data = extra_networks.parse_prompts(p.all_prompts) + _, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1]) with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): @@ -593,6 +593,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if len(prompts) == 0: break + prompts, _ = extra_networks.parse_prompts(prompts) + if p.scripts is not None: p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds) -- cgit v1.2.3 From 3deea3413575db0ff71f20f4265f3bdc08e35453 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 21 Jan 2023 19:36:08 +0300 Subject: extract extra network data from prompt earlier --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 241961ac..6e6371a1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -532,6 +532,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() + _, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1]) + if p.scripts is not None: p.scripts.process(p) @@ -561,8 +563,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: cache[0] = (required_prompts, steps) return cache[1] - _, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1]) - with torch.no_grad(), p.sd_model.ema_scope(): with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) -- cgit v1.2.3 From 78f59a4e014d090bce7df3b218bfbcd7f11e0894 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 21 Jan 2023 23:40:13 +0300 Subject: enable compact view for train tab prevent previews from ruining hypernetwork training --- modules/hypernetworks/hypernetwork.py | 2 ++ modules/processing.py | 8 ++++++-- modules/ui.py | 2 +- 3 files changed, 9 insertions(+), 3 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 80a47c79..503534e2 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -715,6 +715,8 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi do_not_save_samples=True, ) + p.disable_extra_networks = True + if preview_from_txt2img: p.prompt = preview_prompt p.negative_prompt = preview_negative_prompt diff --git a/modules/processing.py b/modules/processing.py index 6e6371a1..bc541e2f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -140,6 +140,7 @@ class StableDiffusionProcessing: self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} self.override_settings_restore_afterwards = override_settings_restore_afterwards self.is_using_inpainting_conditioning = False + self.disable_extra_networks = False if not seed_enable_extras: self.subseed = -1 @@ -567,7 +568,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) - extra_networks.activate(p, extra_network_data) + if not p.disable_extra_networks: + extra_networks.activate(p, extra_network_data) with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, [], p.seed, "") @@ -684,7 +686,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.grid_save: images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) - extra_networks.deactivate(p, extra_network_data) + if not p.disable_extra_networks: + extra_networks.deactivate(p, extra_network_data) + devices.torch_gc() res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts) diff --git a/modules/ui.py b/modules/ui.py index daebbc9f..af6dfb21 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1259,7 +1259,7 @@ def create_ui(): with gr.Row().style(equal_height=False): gr.HTML(value="

    See wiki for detailed explanation.

    ") - with gr.Row().style(equal_height=False): + with gr.Row(variant="compact").style(equal_height=False): with gr.Tabs(elem_id="train_tabs"): with gr.Tab(label="Create embedding"): -- cgit v1.2.3 From f64af77adcd20fabe00e1e642512db9c6742ed23 Mon Sep 17 00:00:00 2001 From: brkirch Date: Mon, 23 Jan 2023 22:49:20 -0500 Subject: Fix different first gen with Approx NN previews The loading of the model for approx nn live previews can change the internal state of PyTorch, resulting in a different image. This can be avoided by preloading the approx nn model in advance. --- modules/processing.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index bc541e2f..3bd590ba 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List, Optional import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -568,6 +568,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) + if shared.opts.live_previews_enable and sd_samplers.approximation_indexes.get(shared.opts.show_progress_type, 0) == 1: + # preload approx nn model before sampling for a more deterministic result + sd_vae_approx.model() + if not p.disable_extra_networks: extra_networks.activate(p, extra_network_data) -- cgit v1.2.3 From 84d9ce30cb427759547bc7876ed80ab91787d175 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 24 Jan 2023 23:51:45 -0500 Subject: Add option for float32 sampling with float16 UNet This also handles type casting so that ROCm and MPS torch devices work correctly without --no-half. One cast is required for deepbooru in deepbooru_model.py, some explicit casting is required for img2img and inpainting. depth_model can't be converted to float16 or it won't work correctly on some systems (it's known to have issues on MPS) so in sd_models.py model.depth_model is removed for model.half(). --- README.md | 1 + modules/deepbooru_model.py | 4 +++- modules/devices.py | 2 ++ modules/processing.py | 15 ++++++++------- modules/sd_hijack_unet.py | 29 +++++++++++++++++++++++++++++ modules/sd_hijack_utils.py | 28 ++++++++++++++++++++++++++++ modules/sd_models.py | 10 ++++++++++ modules/shared.py | 1 + 8 files changed, 82 insertions(+), 8 deletions(-) create mode 100644 modules/sd_hijack_utils.py (limited to 'modules/processing.py') diff --git a/README.md b/README.md index 9c0cd1ef..a5611671 100644 --- a/README.md +++ b/README.md @@ -157,4 +157,5 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Security advice - RyotaK - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. +- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - (You) diff --git a/modules/deepbooru_model.py b/modules/deepbooru_model.py index edd40c81..83d2ff09 100644 --- a/modules/deepbooru_model.py +++ b/modules/deepbooru_model.py @@ -2,6 +2,8 @@ import torch import torch.nn as nn import torch.nn.functional as F +from modules import devices + # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more @@ -196,7 +198,7 @@ class DeepDanbooruModel(nn.Module): t_358, = inputs t_359 = t_358.permute(*[0, 3, 1, 2]) t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0) - t_360 = self.n_Conv_0(t_359_padded) + t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded) t_361 = F.relu(t_360) t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf')) t_362 = self.n_MaxPool_0(t_361) diff --git a/modules/devices.py b/modules/devices.py index 524ec7af..0981ef80 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -79,6 +79,8 @@ cpu = torch.device("cpu") device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None dtype = torch.float16 dtype_vae = torch.float16 +dtype_unet = torch.float16 +unet_needs_upcast = False def randn(seed, shape): diff --git a/modules/processing.py b/modules/processing.py index bc541e2f..2d186ba0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -172,7 +172,8 @@ class StableDiffusionProcessing: midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image)) + conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), size=conditioning_image.shape[2:], @@ -203,7 +204,7 @@ class StableDiffusionProcessing: # Create another latent image, this time with a masked version of the original input. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. - conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype) + conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype) conditioning_image = torch.lerp( source_image, source_image * (1.0 - conditioning_mask), @@ -211,7 +212,7 @@ class StableDiffusionProcessing: ) # Encode the new masked image using first stage of network. - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) @@ -225,10 +226,10 @@ class StableDiffusionProcessing: # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # identify itself with a field common to all models. The conditioning_key is also hybrid. if isinstance(self.sd_model, LatentDepth2ImageDiffusion): - return self.depth2img_image_conditioning(source_image) + return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: - return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) + return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) @@ -610,7 +611,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" - with devices.autocast(): + with devices.autocast(disable=devices.unet_needs_upcast): samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] @@ -988,7 +989,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(shared.device) + image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index 18daf8c1..88c94e54 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -1,4 +1,8 @@ import torch +from packaging import version + +from modules import devices +from modules.sd_hijack_utils import CondFunc class TorchHijackForUnet: @@ -28,3 +32,28 @@ class TorchHijackForUnet: th = TorchHijackForUnet() + + +# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling +def apply_model(orig_func, self, x_noisy, t, cond, **kwargs): + for y in cond.keys(): + cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] + with devices.autocast(): + return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float() + +class GELUHijack(torch.nn.GELU, torch.nn.Module): + def __init__(self, *args, **kwargs): + torch.nn.GELU.__init__(self, *args, **kwargs) + def forward(self, x): + if devices.unet_needs_upcast: + return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet) + else: + return torch.nn.GELU.forward(self, x) + +unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast +CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast) +CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).to(devices.dtype_unet), unet_needs_upcast) +if version.parse(torch.__version__) <= version.parse("1.13.1"): + CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast) + CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast) + CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU) diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py new file mode 100644 index 00000000..f81b169a --- /dev/null +++ b/modules/sd_hijack_utils.py @@ -0,0 +1,28 @@ +import importlib + +class CondFunc: + def __new__(cls, orig_func, sub_func, cond_func): + self = super(CondFunc, cls).__new__(cls) + if isinstance(orig_func, str): + func_path = orig_func.split('.') + for i in range(len(func_path)-2, -1, -1): + try: + resolved_obj = importlib.import_module('.'.join(func_path[:i])) + break + except ImportError: + pass + for attr_name in func_path[i:-1]: + resolved_obj = getattr(resolved_obj, attr_name) + orig_func = getattr(resolved_obj, func_path[-1]) + setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) + self.__init__(orig_func, sub_func, cond_func) + return lambda *args, **kwargs: self(*args, **kwargs) + def __init__(self, orig_func, sub_func, cond_func): + self.__orig_func = orig_func + self.__sub_func = sub_func + self.__cond_func = cond_func + def __call__(self, *args, **kwargs): + if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs): + return self.__sub_func(self.__orig_func, *args, **kwargs) + else: + return self.__orig_func(*args, **kwargs) diff --git a/modules/sd_models.py b/modules/sd_models.py index 12083848..7c98991a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -257,16 +257,24 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo): if not shared.cmd_opts.no_half: vae = model.first_stage_model + depth_model = getattr(model, 'depth_model', None) # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 if shared.cmd_opts.no_half_vae: model.first_stage_model = None + # with --upcast-sampling, don't convert the depth model weights to float16 + if shared.cmd_opts.upcast_sampling and depth_model: + model.depth_model = None model.half() model.first_stage_model = vae + if depth_model: + model.depth_model = depth_model devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + devices.dtype_unet = model.model.diffusion_model.dtype + devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 model.first_stage_model.to(devices.dtype_vae) @@ -372,6 +380,8 @@ def load_model(checkpoint_info=None): if shared.cmd_opts.no_half: sd_config.model.params.unet_config.params.use_fp16 = False + elif shared.cmd_opts.upcast_sampling: + sd_config.model.params.unet_config.params.use_fp16 = True timer = Timer() diff --git a/modules/shared.py b/modules/shared.py index 5f713bee..4ce1209b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -45,6 +45,7 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram") parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") +parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site") parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None) parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us") -- cgit v1.2.3 From e3b53fd295aca784253dfc8668ec87b537a72f43 Mon Sep 17 00:00:00 2001 From: brkirch Date: Wed, 25 Jan 2023 00:23:10 -0500 Subject: Add UI setting for upcasting attention to float32 Adds "Upcast cross attention layer to float32" option in Stable Diffusion settings. This allows for generating images using SD 2.1 models without --no-half or xFormers. In order to make upcasting cross attention layer optimizations possible it is necessary to indent several sections of code in sd_hijack_optimizations.py so that a context manager can be used to disable autocast. Also, even though Stable Diffusion (and Diffusers) only upcast q and k, unfortunately my findings were that most of the cross attention layer optimizations could not function unless v is upcast also. --- modules/devices.py | 6 +- modules/processing.py | 2 +- modules/sd_hijack_optimizations.py | 159 +++++++++++++++++++++++-------------- modules/shared.py | 1 + modules/sub_quadratic_attention.py | 4 +- 5 files changed, 108 insertions(+), 64 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/devices.py b/modules/devices.py index 0981ef80..6b36622c 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -108,6 +108,10 @@ def autocast(disable=False): return torch.autocast("cuda") +def without_autocast(disable=False): + return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() + + class NansException(Exception): pass @@ -125,7 +129,7 @@ def test_for_nans(x, where): message = "A tensor with all NaNs was produced in Unet." if not shared.cmd_opts.no_half: - message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this." + message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." elif where == "vae": message = "A tensor with all NaNs was produced in VAE." diff --git a/modules/processing.py b/modules/processing.py index 2d186ba0..a850082d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -611,7 +611,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" - with devices.autocast(disable=devices.unet_needs_upcast): + with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 74452709..c02d954c 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -9,7 +9,7 @@ from torch import einsum from ldm.util import default from einops import rearrange -from modules import shared, errors +from modules import shared, errors, devices from modules.hypernetworks import hypernetwork from .sub_quadratic_attention import efficient_dot_product_attention @@ -52,18 +52,25 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None): q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) - for i in range(0, q.shape[0], 2): - end = i + 2 - s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) - s1 *= self.scale + dtype = q.dtype + if shared.opts.upcast_attn: + q, k, v = q.float(), k.float(), v.float() - s2 = s1.softmax(dim=-1) - del s1 + with devices.without_autocast(disable=not shared.opts.upcast_attn): + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + for i in range(0, q.shape[0], 2): + end = i + 2 + s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) + s1 *= self.scale + + s2 = s1.softmax(dim=-1) + del s1 + + r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) + del s2 + del q, k, v - r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) - del s2 - del q, k, v + r1 = r1.to(dtype) r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 @@ -82,45 +89,52 @@ def split_cross_attention_forward(self, x, context=None, mask=None): k_in = self.to_k(context_k) v_in = self.to_v(context_v) - k_in *= self.scale - - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in - - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - - mem_free_total = get_available_vram() - - gb = 1024 ** 3 - tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() - modifier = 3 if q.element_size() == 2 else 2.5 - mem_required = tensor_size * modifier - steps = 1 - - if mem_required > mem_free_total: - steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) - # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " - # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + dtype = q_in.dtype + if shared.opts.upcast_attn: + q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float() - if steps > 64: - max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 - raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' - f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') - - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) - - s2 = s1.softmax(dim=-1, dtype=q.dtype) - del s1 - - r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) - del s2 + with devices.without_autocast(disable=not shared.opts.upcast_attn): + k_in = k_in * self.scale + + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + + mem_free_total = get_available_vram() + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() + modifier = 3 if q.element_size() == 2 else 2.5 + mem_required = tensor_size * modifier + steps = 1 + + if mem_required > mem_free_total: + steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) + # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " + # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + + if steps > 64: + max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 + raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' + f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') + + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) + + s2 = s1.softmax(dim=-1, dtype=q.dtype) + del s1 + + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) + del s2 + + del q, k, v - del q, k, v + r1 = r1.to(dtype) r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 @@ -204,12 +218,20 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): context = default(context, x) context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) - k = self.to_k(context_k) * self.scale + k = self.to_k(context_k) v = self.to_v(context_v) del context, context_k, context_v, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - r = einsum_op(q, k, v) + dtype = q.dtype + if shared.opts.upcast_attn: + q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float() + + with devices.without_autocast(disable=not shared.opts.upcast_attn): + k = k * self.scale + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + r = einsum_op(q, k, v) + r = r.to(dtype) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) # -- End of code from https://github.com/invoke-ai/InvokeAI -- @@ -234,8 +256,14 @@ def sub_quad_attention_forward(self, x, context=None, mask=None): k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + dtype = q.dtype + if shared.opts.upcast_attn: + q, k = q.float(), k.float() + x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + x = x.to(dtype) + x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) out_proj, dropout = self.to_out @@ -268,15 +296,16 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_ query_chunk_size = q_tokens kv_chunk_size = k_tokens - return efficient_dot_product_attention( - q, - k, - v, - query_chunk_size=q_chunk_size, - kv_chunk_size=kv_chunk_size, - kv_chunk_size_min = kv_chunk_size_min, - use_checkpoint=use_checkpoint, - ) + with devices.without_autocast(disable=q.dtype == v.dtype): + return efficient_dot_product_attention( + q, + k, + v, + query_chunk_size=q_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min = kv_chunk_size_min, + use_checkpoint=use_checkpoint, + ) def get_xformers_flash_attention_op(q, k, v): @@ -306,8 +335,14 @@ def xformers_attention_forward(self, x, context=None, mask=None): q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in + dtype = q.dtype + if shared.opts.upcast_attn: + q, k = q.float(), k.float() + out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v)) + out = out.to(dtype) + out = rearrange(out, 'b n h d -> b n (h d)', h=h) return self.to_out(out) @@ -378,10 +413,14 @@ def xformers_attnblock_forward(self, x): v = self.v(h_) b, c, h, w = q.shape q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + dtype = q.dtype + if shared.opts.upcast_attn: + q, k = q.float(), k.float() q = q.contiguous() k = k.contiguous() v = v.contiguous() out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v)) + out = out.to(dtype) out = rearrange(out, 'b (h w) c -> b c h w', h=h) out = self.proj_out(out) return x + out diff --git a/modules/shared.py b/modules/shared.py index 4ce1209b..6a0b96cb 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -410,6 +410,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), })) options_templates.update(options_section(('compatibility', "Compatibility"), { diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index 55052815..05595323 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -67,7 +67,7 @@ def _summarize_chunk( max_score, _ = torch.max(attn_weights, -1, keepdim=True) max_score = max_score.detach() exp_weights = torch.exp(attn_weights - max_score) - exp_values = torch.bmm(exp_weights, value) + exp_values = torch.bmm(exp_weights, value) if query.device.type == 'mps' else torch.bmm(exp_weights, value.to(exp_weights.dtype)).to(value.dtype) max_score = max_score.squeeze(-1) return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) @@ -129,7 +129,7 @@ def _get_attention_scores_no_kv_chunking( ) attn_probs = attn_scores.softmax(dim=-1) del attn_scores - hidden_states_slice = torch.bmm(attn_probs, value) + hidden_states_slice = torch.bmm(attn_probs, value) if query.device.type == 'mps' else torch.bmm(attn_probs, value.to(attn_probs.dtype)).to(value.dtype) return hidden_states_slice -- cgit v1.2.3 From 57c1baa774d07060af0abbd2974c5f36c8cb63ac Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 25 Jan 2023 18:56:23 +0300 Subject: change to code for live preview fix on OSX to be bit more obvious --- modules/processing.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 3bd590ba..57c3db1b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -568,8 +568,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: with devices.autocast(): p.init(p.all_prompts, p.all_seeds, p.all_subseeds) - if shared.opts.live_previews_enable and sd_samplers.approximation_indexes.get(shared.opts.show_progress_type, 0) == 1: - # preload approx nn model before sampling for a more deterministic result + # for OSX, loading the model during sampling changes the generated picture, so it is loaded here + if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN": sd_vae_approx.model() if not p.disable_extra_networks: -- cgit v1.2.3 From d1d6ce29831d1b067801c3206f314258de88f683 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 25 Jan 2023 23:25:25 +0300 Subject: add edit_image_conditioning from my earlier edits in case there's an attempt to inegrate pix2pix properly this allows to use pix2pix model in img2img though it won't work well this way --- modules/processing.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 9e5a2f38..cb41288a 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -185,7 +185,12 @@ class StableDiffusionProcessing: conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. return conditioning - def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None): + def edit_image_conditioning(self, source_image): + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + + return conditioning_image + + def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None): self.is_using_inpainting_conditioning = True # Handle the different mask inputs @@ -228,6 +233,9 @@ class StableDiffusionProcessing: if isinstance(self.sd_model, LatentDepth2ImageDiffusion): return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image) + if self.sd_model.cond_stage_key == "edit": + return self.edit_image_conditioning(source_image) + if self.sampler.conditioning_key in {'hybrid', 'concat'}: return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask) -- cgit v1.2.3 From 10421f93c3f7f7ce88cb40391b46d4e6664eff74 Mon Sep 17 00:00:00 2001 From: brkirch Date: Thu, 26 Jan 2023 00:34:38 -0500 Subject: Fix full previews, --no-half-vae --- modules/processing.py | 8 ++++---- modules/sd_hijack_utils.py | 2 +- 2 files changed, 5 insertions(+), 5 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index cb41288a..92894d67 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -172,7 +172,7 @@ class StableDiffusionProcessing: midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_vae) if devices.unet_needs_upcast else source_image)) conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), @@ -217,7 +217,7 @@ class StableDiffusionProcessing: ) # Encode the new masked image using first stage of network. - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_vae) if devices.unet_needs_upcast else conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) @@ -417,7 +417,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see def decode_first_stage(model, x): with devices.autocast(disable=x.dtype == devices.dtype_vae): - x = model.decode_first_stage(x) + x = model.decode_first_stage(x.to(devices.dtype_vae) if devices.unet_needs_upcast else x) return x @@ -1001,7 +1001,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None) + image = image.to(device=shared.device, dtype=devices.dtype_vae if devices.unet_needs_upcast else None) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py index f81b169a..f8684475 100644 --- a/modules/sd_hijack_utils.py +++ b/modules/sd_hijack_utils.py @@ -5,7 +5,7 @@ class CondFunc: self = super(CondFunc, cls).__new__(cls) if isinstance(orig_func, str): func_path = orig_func.split('.') - for i in range(len(func_path)-2, -1, -1): + for i in range(len(func_path)-1, -1, -1): try: resolved_obj = importlib.import_module('.'.join(func_path[:i])) break -- cgit v1.2.3 From 7a14c8ab45da8a681792a6331d48a88dd684a0a9 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 26 Jan 2023 23:29:27 +0300 Subject: add an option to enable sections from extras tab in txt2img/img2img fix some style inconsistenices --- modules/processing.py | 7 +++++- modules/scripts.py | 32 ++++++++++++++++++++++---- modules/scripts_auto_postprocessing.py | 42 ++++++++++++++++++++++++++++++++++ modules/scripts_postprocessing.py | 11 ++++++--- modules/shared.py | 15 ++++-------- modules/shared_items.py | 10 ++++++++ modules/ui_components.py | 8 +++++++ scripts/postprocessing_upscale.py | 25 ++++++++++++++++++++ style.css | 6 +---- 9 files changed, 133 insertions(+), 23 deletions(-) create mode 100644 modules/scripts_auto_postprocessing.py create mode 100644 modules/shared_items.py (limited to 'modules/processing.py') diff --git a/modules/processing.py b/modules/processing.py index 92894d67..262806a1 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -13,7 +13,7 @@ from skimage import exposure from typing import Any, Dict, List, Optional import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared @@ -658,6 +658,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: image = Image.fromarray(x_sample) + if p.scripts is not None: + pp = scripts.PostprocessImageArgs(image) + p.scripts.postprocess_image(p, pp) + image = pp.image + if p.color_corrections is not None and i < len(p.color_corrections): if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) diff --git a/modules/scripts.py b/modules/scripts.py index 03907a63..6e9dc0c0 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -6,12 +6,16 @@ from collections import namedtuple import gradio as gr -from modules.processing import StableDiffusionProcessing from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing AlwaysVisible = object() +class PostprocessImageArgs: + def __init__(self, image): + self.image = image + + class Script: filename = None args_from = None @@ -65,7 +69,7 @@ class Script: args contains all values returned by components from ui() """ - raise NotImplementedError() + pass def process(self, p, *args): """ @@ -100,6 +104,13 @@ class Script: pass + def postprocess_image(self, p, pp: PostprocessImageArgs, *args): + """ + Called for every image after it has been generated. + """ + + pass + def postprocess(self, p, processed, *args): """ This function is called after processing ends for AlwaysVisible scripts. @@ -247,11 +258,15 @@ class ScriptRunner: self.infotext_fields = [] def initialize_scripts(self, is_img2img): + from modules import scripts_auto_postprocessing + self.scripts.clear() self.alwayson_scripts.clear() self.selectable_scripts.clear() - for script_class, path, basedir, script_module in scripts_data: + auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data() + + for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data: script = script_class() script.filename = path script.is_txt2img = not is_img2img @@ -332,7 +347,7 @@ class ScriptRunner: return inputs - def run(self, p: StableDiffusionProcessing, *args): + def run(self, p, *args): script_index = args[0] if script_index == 0: @@ -386,6 +401,15 @@ class ScriptRunner: print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) + def postprocess_image(self, p, pp: PostprocessImageArgs): + for script in self.alwayson_scripts: + try: + script_args = p.script_args[script.args_from:script.args_to] + script.postprocess_image(p, pp, *script_args) + except Exception: + print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + def before_component(self, component, **kwargs): for script in self.scripts: try: diff --git a/modules/scripts_auto_postprocessing.py b/modules/scripts_auto_postprocessing.py new file mode 100644 index 00000000..30d6d658 --- /dev/null +++ b/modules/scripts_auto_postprocessing.py @@ -0,0 +1,42 @@ +from modules import scripts, scripts_postprocessing, shared + + +class ScriptPostprocessingForMainUI(scripts.Script): + def __init__(self, script_postproc): + self.script: scripts_postprocessing.ScriptPostprocessing = script_postproc + self.postprocessing_controls = None + + def title(self): + return self.script.name + + def show(self, is_img2img): + return scripts.AlwaysVisible + + def ui(self, is_img2img): + self.postprocessing_controls = self.script.ui() + return self.postprocessing_controls.values() + + def postprocess_image(self, p, script_pp, *args): + args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)} + + pp = scripts_postprocessing.PostprocessedImage(script_pp.image) + pp.info = {} + self.script.process(pp, **args_dict) + p.extra_generation_params.update(pp.info) + script_pp.image = pp.image + + +def create_auto_preprocessing_script_data(): + from modules import scripts + + res = [] + + for name in shared.opts.postprocessing_enable_in_main_ui: + script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None) + if script is None: + continue + + constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class()) + res.append(scripts.ScriptClassData(script_class=constructor, path=script.path, basedir=script.basedir, module=script.module)) + + return res diff --git a/modules/scripts_postprocessing.py b/modules/scripts_postprocessing.py index 25de02d0..ce0ebb61 100644 --- a/modules/scripts_postprocessing.py +++ b/modules/scripts_postprocessing.py @@ -46,6 +46,8 @@ class ScriptPostprocessing: pass + + def wrap_call(func, filename, funcname, *args, default=None, **kwargs): try: res = func(*args, **kwargs) @@ -68,6 +70,9 @@ class ScriptPostprocessingRunner: script: ScriptPostprocessing = script_class() script.filename = path + if script.name == "Simple Upscale": + continue + self.scripts.append(script) def create_script_ui(self, script, inputs): @@ -87,12 +92,11 @@ class ScriptPostprocessingRunner: import modules.scripts self.initialize_scripts(modules.scripts.postprocessing_scripts_data) - scripts_order = [x.lower().strip() for x in shared.opts.postprocessing_scipts_order.split(",")] + scripts_order = shared.opts.postprocessing_operation_order def script_score(name): - name = name.lower() for i, possible_match in enumerate(scripts_order): - if possible_match in name: + if possible_match == name: return i return len(self.scripts) @@ -145,3 +149,4 @@ class ScriptPostprocessingRunner: def image_changed(self): for script in self.scripts_in_preferred_order(): script.image_changed() + diff --git a/modules/shared.py b/modules/shared.py index 6a0b96cb..cdeed55d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,8 +13,8 @@ import modules.interrogate import modules.memmon import modules.styles import modules.devices as devices -from modules import localization, sd_vae, extensions, script_loading, errors, ui_components -from modules.paths import models_path, script_path, sd_path +from modules import localization, sd_vae, extensions, script_loading, errors, ui_components, shared_items +from modules.paths import models_path, script_path demo = None @@ -264,12 +264,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] - -def realesrgan_models_names(): - import modules.realesrgan_model - return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)] - - class OptionInfo: def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None): self.default = default @@ -360,7 +354,7 @@ options_templates.update(options_section(('saving-to-dirs', "Saving to a directo options_templates.update(options_section(('upscaling', "Upscaling"), { "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), + "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), })) @@ -483,7 +477,8 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" })) options_templates.update(options_section(('postprocessing', "Postprocessing"), { - 'postprocessing_scipts_order': OptionInfo("upscale, gfpgan, codeformer", "Postprocessing operation order"), + 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), + 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), })) diff --git a/modules/shared_items.py b/modules/shared_items.py new file mode 100644 index 00000000..b5d480c9 --- /dev/null +++ b/modules/shared_items.py @@ -0,0 +1,10 @@ + + +def realesrgan_models_names(): + import modules.realesrgan_model + return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)] + +def postprocessing_scripts(): + import modules.scripts + + return modules.scripts.scripts_postproc.scripts \ No newline at end of file diff --git a/modules/ui_components.py b/modules/ui_components.py index 9aec3097..284ca0cf 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -48,3 +48,11 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent): def get_block_name(self): return "colorpicker" + +class DropdownMulti(gr.Dropdown): + """Same as gr.Dropdown but always multiselect""" + def __init__(self, **kwargs): + super().__init__(multiselect=True, **kwargs) + + def get_block_name(self): + return "dropdown" diff --git a/scripts/postprocessing_upscale.py b/scripts/postprocessing_upscale.py index 095d29b2..8842bd91 100644 --- a/scripts/postprocessing_upscale.py +++ b/scripts/postprocessing_upscale.py @@ -104,3 +104,28 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing): def image_changed(self): upscale_cache.clear() + + +class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale): + name = "Simple Upscale" + order = 900 + + def ui(self): + with FormRow(): + upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name) + upscale_by = gr.Slider(minimum=0.05, maximum=8.0, step=0.05, label="Upscale by", value=2) + + return { + "upscale_by": upscale_by, + "upscaler_name": upscaler_name, + } + + def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None): + if upscaler_name is None or upscaler_name == "None": + return + + upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_name]), None) + assert upscaler1, f'could not find upscaler named {upscaler_name}' + + pp.image = self.upscale(pp.image, pp.info, upscaler1, 0, upscale_by, 0, 0, False) + pp.info[f"Postprocess upscaler"] = upscaler1.name diff --git a/style.css b/style.css index ec046f78..dd914104 100644 --- a/style.css +++ b/style.css @@ -164,7 +164,7 @@ min-height: 3.2em; } -#txt2img_styles ul, #img2img_styles ul{ +ul.list-none{ max-height: 35em; z-index: 2000; } @@ -714,9 +714,6 @@ footer { white-space: nowrap; min-width: auto; } -#txt2img_hires_fix{ - margin-left: -0.8em; -} #img2img_copy_to_img2img, #img2img_copy_to_sketch, #img2img_copy_to_inpaint, #img2img_copy_to_inpaint_sketch{ margin-left: 0em; @@ -744,7 +741,6 @@ footer { .dark .gr-compact{ background-color: rgb(31 41 55 / var(--tw-bg-opacity)); - margin-left: 0.8em; } .gr-compact{ -- cgit v1.2.3 From 5eee2ac39863f9e44591b50d0710dd2615416a13 Mon Sep 17 00:00:00 2001 From: Max Audron Date: Wed, 25 Jan 2023 17:15:42 +0100 Subject: add data-dir flag and set all user data directories based on it --- modules/extensions.py | 2 +- modules/generation_parameters_copypaste.py | 4 ++-- modules/gfpgan_model.py | 5 ++--- modules/hashes.py | 4 +++- modules/interrogate.py | 2 +- modules/paths.py | 10 +++++++++- modules/processing.py | 3 ++- modules/sd_models.py | 6 +++--- modules/sd_vae.py | 5 ++--- modules/shared.py | 11 ++++++----- modules/textual_inversion/preprocess.py | 5 ++--- modules/ui.py | 6 +++--- modules/ui_extensions.py | 2 +- modules/upscaler.py | 5 ++--- 14 files changed, 39 insertions(+), 31 deletions(-) (limited to 'modules/processing.py') diff --git a/modules/extensions.py b/modules/extensions.py index b522125c..92ee8144 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -7,7 +7,7 @@ import git from modules import paths, shared extensions = [] -extensions_dir = os.path.join(paths.script_path, "extensions") +extensions_dir = os.path.join(paths.data_path, "extensions") extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin") diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 46e12dc6..35f72808 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -6,7 +6,7 @@ import re from pathlib import Path import gradio as gr -from modules.shared import script_path +from modules.paths import data_path, script_path from modules import shared, ui_tempdir, script_callbacks import tempfile from PIL import Image @@ -289,7 +289,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model def connect_paste(button, paste_fields, input_comp, jsfunc=None): def paste_func(prompt): if not prompt and not shared.cmd_opts.hide_ui_dir_config: - filename = os.path.join(script_path, "params.txt") + filename = os.path.join(data_path, "params.txt") if os.path.exists(filename): with open(filename, "r", encoding="utf8") as file: prompt = file.read() diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index 1e2dbc32..fbe6215a 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -6,12 +6,11 @@ import facexlib import gfpgan import modules.face_restoration -from modules import shared, devices, modelloader -from modules.paths import models_path +from modules import paths, shared, devices, modelloader model_dir = "GFPGAN" user_path = None -model_path = os.path.join(models_path, model_dir) +model_path = os.path.join(paths.models_path, model_dir) model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" have_gfpgan = False loaded_gfpgan_model = None diff --git a/modules/hashes.py b/modules/hashes.py index b85a7580..819362a3 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -4,8 +4,10 @@ import os.path import filelock +from modules.paths import data_path -cache_filename = "cache.json" + +cache_filename = os.path.join(data_path, "cache.json") cache_data = None diff --git a/modules/interrogate.py b/modules/interrogate.py index c72ff694..cbb80683 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -12,7 +12,7 @@ from torchvision import transforms from torchvision.transforms.functional import InterpolationMode import modules.shared as shared -from modules import devices, paths, lowvram, modelloader, errors +from modules import devices, paths, shared, lowvram, modelloader, errors blip_image_eval_size = 384 clip_model_name = 'ViT-L/14' diff --git a/modules/paths.py b/modules/paths.py index 20b3e4d8..08e6f9b9 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -4,7 +4,15 @@ import sys import modules.safe script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) -models_path = os.path.join(script_path, "models") + +# Parse the --data-dir flag first so we can use it as a base for our other argument default values +parser = argparse.ArgumentParser() +parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",) +cmd_opts_pre = parser.parse_known_args()[0] +data_path = cmd_opts_pre.data_dir +models_path = os.path.join(data_path, "models") + +# data_path = cmd_opts_pre.data sys.path.insert(0, script_path) # search for directory of stable diffusion in following places diff --git a/modules/processing.py b/modules/processing.py index 262806a1..5072fc40 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -17,6 +17,7 @@ from modules import devices, prompt_parser, masking, sd_samplers, lowvram, gener from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared +import modules.paths as paths import modules.face_restoration import modules.images as images import modules.styles @@ -584,7 +585,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not p.disable_extra_networks: extra_networks.activate(p, extra_network_data) - with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: + with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, [], p.seed, "") file.write(processed.infotext(p, 0)) diff --git a/modules/sd_models.py b/modules/sd_models.py index 37dad18d..b2d48a51 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -12,13 +12,13 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config +from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.timer import Timer model_dir = "Stable-diffusion" -model_path = os.path.abspath(os.path.join(models_path, model_dir)) +model_path = os.path.abspath(os.path.join(paths.models_path, model_dir)) checkpoints_list = {} checkpoint_alisases = {} @@ -307,7 +307,7 @@ def enable_midas_autodownload(): location automatically. """ - midas_path = os.path.join(models_path, 'midas') + midas_path = os.path.join(paths.models_path, 'midas') # stable-diffusion-stability-ai hard-codes the midas model path to # a location that differs from where other scripts using this model look. diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 4ce238b8..9b00f76e 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -3,13 +3,12 @@ import safetensors.torch import os import collections from collections import namedtuple -from modules import shared, devices, script_callbacks, sd_models -from modules.paths import models_path +from modules import paths, shared, devices, script_callbacks, sd_models import glob from copy import deepcopy -vae_path = os.path.abspath(os.path.join(models_path, "VAE")) +vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE")) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_dict = {} diff --git a/modules/shared.py b/modules/shared.py index 14be993d..474fcc42 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.memmon import modules.styles import modules.devices as devices from modules import localization, extensions, script_loading, errors, ui_components, shared_items -from modules.paths import models_path, script_path +from modules.paths import models_path, script_path, data_path demo = None @@ -25,6 +25,7 @@ sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file parser = argparse.ArgumentParser() +parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",) parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",) parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints") @@ -35,7 +36,7 @@ parser.add_argument("--no-half", action='store_true', help="do not switch the mo parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") -parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates") parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory") @@ -74,16 +75,16 @@ parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for sp parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) -parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json')) +parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json')) parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False) parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False) -parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json')) +parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json')) parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything') parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything") parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last") -parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) +parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv')) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None) parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index c0ac11d3..2239cb84 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -6,8 +6,7 @@ import sys import tqdm import time -from modules import shared, images, deepbooru -from modules.paths import models_path +from modules import paths, shared, images, deepbooru from modules.shared import opts, cmd_opts from modules.textual_inversion import autocrop @@ -199,7 +198,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre dnn_model_path = None try: - dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) + dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv")) except Exception as e: print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) diff --git a/modules/ui.py b/modules/ui.py index 85ae62c7..0117df3e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -21,7 +21,7 @@ from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_grad from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML -from modules.paths import script_path +from modules.paths import script_path, data_path from modules.shared import opts, cmd_opts, restricted_opts @@ -1497,8 +1497,8 @@ def create_ui(): with open(cssfile, "r", encoding="utf8") as file: css += file.read() + "\n" - if os.path.exists(os.path.join(script_path, "user.css")): - with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: + if os.path.exists(os.path.join(data_path, "user.css")): + with open(os.path.join(data_path, "user.css"), "r", encoding="utf8") as file: css += file.read() + "\n" if not cmd_opts.no_progressbar_hiding: diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 742e745e..66a41865 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -132,7 +132,7 @@ def install_extension_from_url(dirname, url): normalized_url = normalize_git_url(url) assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed' - tmpdir = os.path.join(paths.script_path, "tmp", dirname) + tmpdir = os.path.join(paths.data_path, "tmp", dirname) try: shutil.rmtree(tmpdir, True) diff --git a/modules/upscaler.py b/modules/upscaler.py index a5bf5acb..e2eaa730 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -11,7 +11,6 @@ from modules import modelloader, shared LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) NEAREST = (Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST) -from modules.paths import models_path class Upscaler: @@ -39,7 +38,7 @@ class Upscaler: self.mod_scale = None if self.model_path is None and self.name: - self.model_path = os.path.join(models_path, self.name) + self.model_path = os.path.join(shared.models_path, self.name) if self.model_path and create_dirs: os.makedirs(self.model_path, exist_ok=True) @@ -143,4 +142,4 @@ class UpscalerNearest(Upscaler): def __init__(self, dirname=None): super().__init__(False) self.name = "Nearest" - self.scalers = [UpscalerData("Nearest", None, self)] \ No newline at end of file + self.scalers = [UpscalerData("Nearest", None, self)] -- cgit v1.2.3