From 948533950c9db5069a874d925fadd50bac00fdb5 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 11:09:51 +0300
Subject: replace duplicate code with a function
---
modules/sd_hijack_optimizations.py | 44 +++++++++++++-------------------------
1 file changed, 15 insertions(+), 29 deletions(-)
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 18408e62..25cb67a4 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -8,7 +8,8 @@ from torch import einsum
from ldm.util import default
from einops import rearrange
-from modules import shared
+from modules import shared, hypernetwork
+
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try:
@@ -26,16 +27,10 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
q_in = self.to_q(x)
context = default(context, x)
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is not None:
- k_in = self.to_k(hypernetwork_layers[0](context))
- v_in = self.to_v(hypernetwork_layers[1](context))
- else:
- k_in = self.to_k(context)
- v_in = self.to_v(context)
- del context, x
+ context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
+ k_in = self.to_k(context_k)
+ v_in = self.to_v(context_v)
+ del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
@@ -59,22 +54,16 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
return self.to_out(r2)
-# taken from https://github.com/Doggettx/stable-diffusion
+# taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is not None:
- k_in = self.to_k(hypernetwork_layers[0](context))
- v_in = self.to_v(hypernetwork_layers[1](context))
- else:
- k_in = self.to_k(context)
- v_in = self.to_v(context)
+ context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
+ k_in = self.to_k(context_k)
+ v_in = self.to_v(context_v)
k_in *= self.scale
@@ -130,14 +119,11 @@ def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
- if hypernetwork_layers is not None:
- k_in = self.to_k(hypernetwork_layers[0](context))
- v_in = self.to_v(hypernetwork_layers[1](context))
- else:
- k_in = self.to_k(context)
- v_in = self.to_v(context)
+
+ context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
+ k_in = self.to_k(context_k)
+ v_in = self.to_v(context_v)
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
--
cgit v1.2.3
From 530103b586109c11fd068eb70ef09503ec6a4caf Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 14:53:02 +0300
Subject: fixes related to merge
---
modules/hypernetwork.py | 103 -------------------------
modules/hypernetwork/hypernetwork.py | 74 +++++++++++-------
modules/hypernetwork/ui.py | 10 +--
modules/sd_hijack_optimizations.py | 3 +-
modules/shared.py | 13 +++-
modules/textual_inversion/textual_inversion.py | 12 +--
modules/ui.py | 5 +-
scripts/xy_grid.py | 3 +-
webui.py | 15 +---
9 files changed, 78 insertions(+), 160 deletions(-)
delete mode 100644 modules/hypernetwork.py
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py
deleted file mode 100644
index 7bbc443e..00000000
--- a/modules/hypernetwork.py
+++ /dev/null
@@ -1,103 +0,0 @@
-import glob
-import os
-import sys
-import traceback
-
-import torch
-
-from ldm.util import default
-from modules import devices, shared
-import torch
-from torch import einsum
-from einops import rearrange, repeat
-
-
-class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict):
- super().__init__()
-
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
-
- self.load_state_dict(state_dict, strict=True)
- self.to(devices.device)
-
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
-
-
-class Hypernetwork:
- filename = None
- name = None
-
- def __init__(self, filename):
- self.filename = filename
- self.name = os.path.splitext(os.path.basename(filename))[0]
- self.layers = {}
-
- state_dict = torch.load(filename, map_location='cpu')
- for size, sd in state_dict.items():
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
-
-
-def list_hypernetworks(path):
- res = {}
- for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
- name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
- return res
-
-
-def load_hypernetwork(filename):
- path = shared.hypernetworks.get(filename, None)
- if path is not None:
- print(f"Loading hypernetwork {filename}")
- try:
- shared.loaded_hypernetwork = Hypernetwork(path)
- except Exception:
- print(f"Error loading hypernetwork {path}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- else:
- if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
-
- shared.loaded_hypernetwork = None
-
-
-def apply_hypernetwork(hypernetwork, context):
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is None:
- return context, context
-
- context_k = hypernetwork_layers[0](context)
- context_v = hypernetwork_layers[1](context)
- return context_k, context_v
-
-
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
-
- q = self.to_q(x)
- context = default(context, x)
-
- context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
-
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py
index a3d6a47e..aa701bda 100644
--- a/modules/hypernetwork/hypernetwork.py
+++ b/modules/hypernetwork/hypernetwork.py
@@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module):
if state_dict is not None:
self.load_state_dict(state_dict, strict=True)
else:
- self.linear1.weight.data.fill_(0.0001)
- self.linear1.bias.data.fill_(0.0001)
- self.linear2.weight.data.fill_(0.0001)
- self.linear2.bias.data.fill_(0.0001)
+
+ self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear1.bias.data.zero_()
+ self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear2.bias.data.zero_()
self.to(devices.device)
@@ -92,41 +93,54 @@ class Hypernetwork:
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
-def load_hypernetworks(path):
+def list_hypernetworks(path):
res = {}
+ for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ name = os.path.splitext(os.path.basename(filename))[0]
+ res[name] = filename
+ return res
- for filename in glob.iglob(path + '**/*.pt', recursive=True):
+
+def load_hypernetwork(filename):
+ path = shared.hypernetworks.get(filename, None)
+ if path is not None:
+ print(f"Loading hypernetwork {filename}")
try:
- hn = Hypernetwork()
- hn.load(filename)
- res[hn.name] = hn
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
except Exception:
- print(f"Error loading hypernetwork {filename}", file=sys.stderr)
+ print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ else:
+ if shared.loaded_hypernetwork is not None:
+ print(f"Unloading hypernetwork")
- return res
+ shared.loaded_hypernetwork = None
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
+def apply_hypernetwork(hypernetwork, context, layer=None):
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
- q = self.to_q(x)
- context = default(context, x)
+ if hypernetwork_layers is None:
+ return context, context
- hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
+ if layer is not None:
+ layer.hyper_k = hypernetwork_layers[0]
+ layer.hyper_v = hypernetwork_layers[1]
- if hypernetwork_layers is not None:
- hypernetwork_k, hypernetwork_v = hypernetwork_layers
+ context_k = hypernetwork_layers[0](context)
+ context_v = hypernetwork_layers[1](context)
+ return context_k, context_v
- self.hypernetwork_k = hypernetwork_k
- self.hypernetwork_v = hypernetwork_v
- context_k = hypernetwork_k(context)
- context_v = hypernetwork_v(context)
- else:
- context_k = context
- context_v = context
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
k = self.to_k(context_k)
v = self.to_v(context_v)
@@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None):
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'embedding not selected'
- shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
+ path = shared.hypernetworks.get(hypernetwork_name, None)
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
@@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
- hypernetwork = shared.hypernetworks[hypernetwork_name]
+ hypernetwork = shared.loaded_hypernetwork
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
@@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory,
if ititial_step > steps:
return hypernetwork, filename
- pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+ pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, (x, text) in pbar:
hypernetwork.step = i + ititial_step
diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py
index 525f978c..f6d1d0a3 100644
--- a/modules/hypernetwork/ui.py
+++ b/modules/hypernetwork/ui.py
@@ -6,24 +6,24 @@ import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
+from modules.hypernetwork import hypernetwork
def create_hypernetwork(name):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists"
- hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
- hypernetwork.save(fn)
+ hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
+ hypernet.save(fn)
shared.reload_hypernetworks()
- shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
def train_hypernetwork(*args):
- initial_hypernetwork = shared.hypernetwork
+ initial_hypernetwork = shared.loaded_hypernetwork
try:
sd_hijack.undo_optimizations()
@@ -38,6 +38,6 @@ Hypernetwork saved to {html.escape(filename)}
except Exception:
raise
finally:
- shared.hypernetwork = initial_hypernetwork
+ shared.loaded_hypernetwork = initial_hypernetwork
sd_hijack.apply_optimizations()
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 25cb67a4..27e571fc 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -8,7 +8,8 @@ from torch import einsum
from ldm.util import default
from einops import rearrange
-from modules import shared, hypernetwork
+from modules import shared
+from modules.hypernetwork import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
diff --git a/modules/shared.py b/modules/shared.py
index 14b40d70..8753015e 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -13,7 +13,8 @@ import modules.memmon
import modules.sd_models
import modules.styles
import modules.devices as devices
-from modules import sd_samplers, hypernetwork
+from modules import sd_samplers
+from modules.hypernetwork import hypernetwork
from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
@@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
+parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage")
@@ -82,10 +84,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
xformers_available = False
config_filename = cmd_opts.ui_settings_file
-hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks'))
+hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
+def reload_hypernetworks():
+ global hypernetworks
+
+ hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+ hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
+
+
class State:
skipped = False
interrupted = False
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 5965c5a0..d6977950 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file):
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -238,12 +238,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
+ preview_text = text if preview_image_prompt == "" else preview_image_prompt
+
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
- prompt=text,
+ prompt=preview_text,
steps=20,
- height=training_height,
- width=training_width,
+ height=training_height,
+ width=training_width,
do_not_save_grid=True,
do_not_save_samples=True,
)
@@ -254,7 +256,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.current_image = image
image.save(last_saved_image)
- last_saved_image += f", prompt: {text}"
+ last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = embedding.step
diff --git a/modules/ui.py b/modules/ui.py
index 10b1ee3a..df653059 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1023,7 +1023,7 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="")
with gr.Column():
- create_embedding = gr.Button(value="Create", variant='primary')
+ create_embedding = gr.Button(value="Create embedding", variant='primary')
with gr.Group():
gr.HTML(value="
Create a new hypernetwork
")
@@ -1035,7 +1035,7 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="")
with gr.Column():
- create_hypernetwork = gr.Button(value="Create", variant='primary')
+ create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary')
with gr.Group():
gr.HTML(value="Preprocess images
")
@@ -1147,6 +1147,7 @@ def create_ui(wrap_gradio_gpu_call):
create_image_every,
save_embedding_every,
template_file,
+ preview_image_prompt,
],
outputs=[
ti_output,
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 42e1489c..0af5993c 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -10,7 +10,8 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
-from modules import images, hypernetwork
+from modules import images
+from modules.hypernetwork import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
diff --git a/webui.py b/webui.py
index 7c200551..ba2156c8 100644
--- a/webui.py
+++ b/webui.py
@@ -29,6 +29,7 @@ from modules import devices
from modules import modelloader
from modules.paths import script_path
from modules.shared import cmd_opts
+import modules.hypernetwork.hypernetwork
modelloader.cleanup_models()
modules.sd_models.setup_model()
@@ -77,22 +78,12 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
-def set_hypernetwork():
- shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None)
-
-
-shared.reload_hypernetworks()
-shared.opts.onchange("sd_hypernetwork", set_hypernetwork)
-set_hypernetwork()
-
-
modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
shared.sd_model = modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
-loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)
-shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
+shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
def webui():
@@ -117,7 +108,7 @@ def webui():
prevent_thread_lock=True
)
- app.add_middleware(GZipMiddleware,minimum_size=1000)
+ app.add_middleware(GZipMiddleware, minimum_size=1000)
while 1:
time.sleep(0.5)
--
cgit v1.2.3
From 873efeed49bb5197a42da18272115b326c5d68f3 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Tue, 11 Oct 2022 15:51:22 +0300
Subject: rename hypernetwork dir to hypernetworks to prevent clash with an old
filename that people who use zip instead of git clone will have
---
modules/hypernetwork/hypernetwork.py | 283 ----------------------------------
modules/hypernetwork/ui.py | 43 ------
modules/hypernetworks/hypernetwork.py | 283 ++++++++++++++++++++++++++++++++++
modules/hypernetworks/ui.py | 43 ++++++
modules/sd_hijack.py | 2 +-
modules/sd_hijack_optimizations.py | 2 +-
modules/shared.py | 2 +-
modules/ui.py | 2 +-
scripts/xy_grid.py | 2 +-
webui.py | 2 +-
10 files changed, 332 insertions(+), 332 deletions(-)
delete mode 100644 modules/hypernetwork/hypernetwork.py
delete mode 100644 modules/hypernetwork/ui.py
create mode 100644 modules/hypernetworks/hypernetwork.py
create mode 100644 modules/hypernetworks/ui.py
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py
deleted file mode 100644
index aa701bda..00000000
--- a/modules/hypernetwork/hypernetwork.py
+++ /dev/null
@@ -1,283 +0,0 @@
-import datetime
-import glob
-import html
-import os
-import sys
-import traceback
-import tqdm
-
-import torch
-
-from ldm.util import default
-from modules import devices, shared, processing, sd_models
-import torch
-from torch import einsum
-from einops import rearrange, repeat
-import modules.textual_inversion.dataset
-
-
-class HypernetworkModule(torch.nn.Module):
- def __init__(self, dim, state_dict=None):
- super().__init__()
-
- self.linear1 = torch.nn.Linear(dim, dim * 2)
- self.linear2 = torch.nn.Linear(dim * 2, dim)
-
- if state_dict is not None:
- self.load_state_dict(state_dict, strict=True)
- else:
-
- self.linear1.weight.data.normal_(mean=0.0, std=0.01)
- self.linear1.bias.data.zero_()
- self.linear2.weight.data.normal_(mean=0.0, std=0.01)
- self.linear2.bias.data.zero_()
-
- self.to(devices.device)
-
- def forward(self, x):
- return x + (self.linear2(self.linear1(x)))
-
-
-class Hypernetwork:
- filename = None
- name = None
-
- def __init__(self, name=None):
- self.filename = None
- self.name = name
- self.layers = {}
- self.step = 0
- self.sd_checkpoint = None
- self.sd_checkpoint_name = None
-
- for size in [320, 640, 768, 1280]:
- self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
-
- def weights(self):
- res = []
-
- for k, layers in self.layers.items():
- for layer in layers:
- layer.train()
- res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
-
- return res
-
- def save(self, filename):
- state_dict = {}
-
- for k, v in self.layers.items():
- state_dict[k] = (v[0].state_dict(), v[1].state_dict())
-
- state_dict['step'] = self.step
- state_dict['name'] = self.name
- state_dict['sd_checkpoint'] = self.sd_checkpoint
- state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
-
- torch.save(state_dict, filename)
-
- def load(self, filename):
- self.filename = filename
- if self.name is None:
- self.name = os.path.splitext(os.path.basename(filename))[0]
-
- state_dict = torch.load(filename, map_location='cpu')
-
- for size, sd in state_dict.items():
- if type(size) == int:
- self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
-
- self.name = state_dict.get('name', self.name)
- self.step = state_dict.get('step', 0)
- self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
- self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
-
-
-def list_hypernetworks(path):
- res = {}
- for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
- name = os.path.splitext(os.path.basename(filename))[0]
- res[name] = filename
- return res
-
-
-def load_hypernetwork(filename):
- path = shared.hypernetworks.get(filename, None)
- if path is not None:
- print(f"Loading hypernetwork {filename}")
- try:
- shared.loaded_hypernetwork = Hypernetwork()
- shared.loaded_hypernetwork.load(path)
-
- except Exception:
- print(f"Error loading hypernetwork {path}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
- else:
- if shared.loaded_hypernetwork is not None:
- print(f"Unloading hypernetwork")
-
- shared.loaded_hypernetwork = None
-
-
-def apply_hypernetwork(hypernetwork, context, layer=None):
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is None:
- return context, context
-
- if layer is not None:
- layer.hyper_k = hypernetwork_layers[0]
- layer.hyper_v = hypernetwork_layers[1]
-
- context_k = hypernetwork_layers[0](context)
- context_v = hypernetwork_layers[1](context)
- return context_k, context_v
-
-
-def attention_CrossAttention_forward(self, x, context=None, mask=None):
- h = self.heads
-
- q = self.to_q(x)
- context = default(context, x)
-
- context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
-
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
-
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
-
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
-
-
-def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
- assert hypernetwork_name, 'embedding not selected'
-
- path = shared.hypernetworks.get(hypernetwork_name, None)
- shared.loaded_hypernetwork = Hypernetwork()
- shared.loaded_hypernetwork.load(path)
-
- shared.state.textinfo = "Initializing hypernetwork training..."
- shared.state.job_count = steps
-
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
-
- log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
-
- if save_hypernetwork_every > 0:
- hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
- os.makedirs(hypernetwork_dir, exist_ok=True)
- else:
- hypernetwork_dir = None
-
- if create_image_every > 0:
- images_dir = os.path.join(log_directory, "images")
- os.makedirs(images_dir, exist_ok=True)
- else:
- images_dir = None
-
- cond_model = shared.sd_model.cond_stage_model
-
- shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
-
- hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
- optimizer = torch.optim.AdamW(weights, lr=learn_rate)
-
- losses = torch.zeros((32,))
-
- last_saved_file = ""
- last_saved_image = ""
-
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, (x, text) in pbar:
- hypernetwork.step = i + ititial_step
-
- if hypernetwork.step > steps:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = cond_model([text])
-
- x = x.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), c)[0]
- del x
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- pbar.set_description(f"loss: {losses.mean():.7f}")
-
- if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
- hypernetwork.save(last_saved_file)
-
- if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
-
- preview_text = text if preview_image_prompt == "" else preview_image_prompt
-
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- prompt=preview_text,
- steps=20,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
-
- processed = processing.process_images(p)
- image = processed.images[0]
-
- shared.state.current_image = image
- image.save(last_saved_image)
-
- last_saved_image += f", prompt: {preview_text}"
-
- shared.state.job_no = hypernetwork.step
-
- shared.state.textinfo = f"""
-
-Loss: {losses.mean():.7f}
-Step: {hypernetwork.step}
-Last prompt: {html.escape(text)}
-Last saved embedding: {html.escape(last_saved_file)}
-Last saved image: {html.escape(last_saved_image)}
-
-"""
-
- checkpoint = sd_models.select_checkpoint()
-
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- hypernetwork.save(filename)
-
- return hypernetwork, filename
-
-
diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py
deleted file mode 100644
index f6d1d0a3..00000000
--- a/modules/hypernetwork/ui.py
+++ /dev/null
@@ -1,43 +0,0 @@
-import html
-import os
-
-import gradio as gr
-
-import modules.textual_inversion.textual_inversion
-import modules.textual_inversion.preprocess
-from modules import sd_hijack, shared
-from modules.hypernetwork import hypernetwork
-
-
-def create_hypernetwork(name):
- fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- assert not os.path.exists(fn), f"file {fn} already exists"
-
- hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
- hypernet.save(fn)
-
- shared.reload_hypernetworks()
-
- return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
-
-
-def train_hypernetwork(*args):
-
- initial_hypernetwork = shared.loaded_hypernetwork
-
- try:
- sd_hijack.undo_optimizations()
-
- hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args)
-
- res = f"""
-Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
-Hypernetwork saved to {html.escape(filename)}
-"""
- return res, ""
- except Exception:
- raise
- finally:
- shared.loaded_hypernetwork = initial_hypernetwork
- sd_hijack.apply_optimizations()
-
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
new file mode 100644
index 00000000..aa701bda
--- /dev/null
+++ b/modules/hypernetworks/hypernetwork.py
@@ -0,0 +1,283 @@
+import datetime
+import glob
+import html
+import os
+import sys
+import traceback
+import tqdm
+
+import torch
+
+from ldm.util import default
+from modules import devices, shared, processing, sd_models
+import torch
+from torch import einsum
+from einops import rearrange, repeat
+import modules.textual_inversion.dataset
+
+
+class HypernetworkModule(torch.nn.Module):
+ def __init__(self, dim, state_dict=None):
+ super().__init__()
+
+ self.linear1 = torch.nn.Linear(dim, dim * 2)
+ self.linear2 = torch.nn.Linear(dim * 2, dim)
+
+ if state_dict is not None:
+ self.load_state_dict(state_dict, strict=True)
+ else:
+
+ self.linear1.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear1.bias.data.zero_()
+ self.linear2.weight.data.normal_(mean=0.0, std=0.01)
+ self.linear2.bias.data.zero_()
+
+ self.to(devices.device)
+
+ def forward(self, x):
+ return x + (self.linear2(self.linear1(x)))
+
+
+class Hypernetwork:
+ filename = None
+ name = None
+
+ def __init__(self, name=None):
+ self.filename = None
+ self.name = name
+ self.layers = {}
+ self.step = 0
+ self.sd_checkpoint = None
+ self.sd_checkpoint_name = None
+
+ for size in [320, 640, 768, 1280]:
+ self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
+
+ def weights(self):
+ res = []
+
+ for k, layers in self.layers.items():
+ for layer in layers:
+ layer.train()
+ res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
+
+ return res
+
+ def save(self, filename):
+ state_dict = {}
+
+ for k, v in self.layers.items():
+ state_dict[k] = (v[0].state_dict(), v[1].state_dict())
+
+ state_dict['step'] = self.step
+ state_dict['name'] = self.name
+ state_dict['sd_checkpoint'] = self.sd_checkpoint
+ state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
+
+ torch.save(state_dict, filename)
+
+ def load(self, filename):
+ self.filename = filename
+ if self.name is None:
+ self.name = os.path.splitext(os.path.basename(filename))[0]
+
+ state_dict = torch.load(filename, map_location='cpu')
+
+ for size, sd in state_dict.items():
+ if type(size) == int:
+ self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
+
+ self.name = state_dict.get('name', self.name)
+ self.step = state_dict.get('step', 0)
+ self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
+ self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
+
+
+def list_hypernetworks(path):
+ res = {}
+ for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
+ name = os.path.splitext(os.path.basename(filename))[0]
+ res[name] = filename
+ return res
+
+
+def load_hypernetwork(filename):
+ path = shared.hypernetworks.get(filename, None)
+ if path is not None:
+ print(f"Loading hypernetwork {filename}")
+ try:
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ except Exception:
+ print(f"Error loading hypernetwork {path}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+ else:
+ if shared.loaded_hypernetwork is not None:
+ print(f"Unloading hypernetwork")
+
+ shared.loaded_hypernetwork = None
+
+
+def apply_hypernetwork(hypernetwork, context, layer=None):
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
+
+ if hypernetwork_layers is None:
+ return context, context
+
+ if layer is not None:
+ layer.hyper_k = hypernetwork_layers[0]
+ layer.hyper_v = hypernetwork_layers[1]
+
+ context_k = hypernetwork_layers[0](context)
+ context_v = hypernetwork_layers[1](context)
+ return context_k, context_v
+
+
+def attention_CrossAttention_forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+
+ context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
+ k = self.to_k(context_k)
+ v = self.to_v(context_v)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if mask is not None:
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
+ assert hypernetwork_name, 'embedding not selected'
+
+ path = shared.hypernetworks.get(hypernetwork_name, None)
+ shared.loaded_hypernetwork = Hypernetwork()
+ shared.loaded_hypernetwork.load(path)
+
+ shared.state.textinfo = "Initializing hypernetwork training..."
+ shared.state.job_count = steps
+
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+
+ log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
+
+ if save_hypernetwork_every > 0:
+ hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
+ os.makedirs(hypernetwork_dir, exist_ok=True)
+ else:
+ hypernetwork_dir = None
+
+ if create_image_every > 0:
+ images_dir = os.path.join(log_directory, "images")
+ os.makedirs(images_dir, exist_ok=True)
+ else:
+ images_dir = None
+
+ cond_model = shared.sd_model.cond_stage_model
+
+ shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
+ with torch.autocast("cuda"):
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+
+ hypernetwork = shared.loaded_hypernetwork
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
+
+ optimizer = torch.optim.AdamW(weights, lr=learn_rate)
+
+ losses = torch.zeros((32,))
+
+ last_saved_file = ""
+ last_saved_image = ""
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step > steps:
+ return hypernetwork, filename
+
+ pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
+ for i, (x, text) in pbar:
+ hypernetwork.step = i + ititial_step
+
+ if hypernetwork.step > steps:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = cond_model([text])
+
+ x = x.to(devices.device)
+ loss = shared.sd_model(x.unsqueeze(0), c)[0]
+ del x
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ pbar.set_description(f"loss: {losses.mean():.7f}")
+
+ if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
+ hypernetwork.save(last_saved_file)
+
+ if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
+ last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+
+ preview_text = text if preview_image_prompt == "" else preview_image_prompt
+
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ prompt=preview_text,
+ steps=20,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
+
+ processed = processing.process_images(p)
+ image = processed.images[0]
+
+ shared.state.current_image = image
+ image.save(last_saved_image)
+
+ last_saved_image += f", prompt: {preview_text}"
+
+ shared.state.job_no = hypernetwork.step
+
+ shared.state.textinfo = f"""
+
+Loss: {losses.mean():.7f}
+Step: {hypernetwork.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+
+"""
+
+ checkpoint = sd_models.select_checkpoint()
+
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.save(filename)
+
+ return hypernetwork, filename
+
+
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
new file mode 100644
index 00000000..811bc31e
--- /dev/null
+++ b/modules/hypernetworks/ui.py
@@ -0,0 +1,43 @@
+import html
+import os
+
+import gradio as gr
+
+import modules.textual_inversion.textual_inversion
+import modules.textual_inversion.preprocess
+from modules import sd_hijack, shared
+from modules.hypernetworks import hypernetwork
+
+
+def create_hypernetwork(name):
+ fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
+ assert not os.path.exists(fn), f"file {fn} already exists"
+
+ hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name)
+ hypernet.save(fn)
+
+ shared.reload_hypernetworks()
+
+ return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", ""
+
+
+def train_hypernetwork(*args):
+
+ initial_hypernetwork = shared.loaded_hypernetwork
+
+ try:
+ sd_hijack.undo_optimizations()
+
+ hypernetwork, filename = modules.hypernetwork.hypernetwork.train_hypernetwork(*args)
+
+ res = f"""
+Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
+Hypernetwork saved to {html.escape(filename)}
+"""
+ return res, ""
+ except Exception:
+ raise
+ finally:
+ shared.loaded_hypernetwork = initial_hypernetwork
+ sd_hijack.apply_optimizations()
+
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index f873049a..f07ec041 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -37,7 +37,7 @@ def apply_optimizations():
def undo_optimizations():
- from modules.hypernetwork import hypernetwork
+ from modules.hypernetworks import hypernetwork
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 27e571fc..3349b9c3 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -9,7 +9,7 @@ from ldm.util import default
from einops import rearrange
from modules import shared
-from modules.hypernetwork import hypernetwork
+from modules.hypernetworks import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
diff --git a/modules/shared.py b/modules/shared.py
index 375e3afb..1dc2ccf2 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -14,7 +14,7 @@ import modules.sd_models
import modules.styles
import modules.devices as devices
from modules import sd_samplers
-from modules.hypernetwork import hypernetwork
+from modules.hypernetworks import hypernetwork
from modules.paths import models_path, script_path, sd_path
sd_model_file = os.path.join(script_path, 'model.ckpt')
diff --git a/modules/ui.py b/modules/ui.py
index f57f32db..42e5d866 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -39,7 +39,7 @@ import modules.generation_parameters_copypaste
from modules import prompt_parser
from modules.images import save_image
import modules.textual_inversion.ui
-import modules.hypernetwork.ui
+import modules.hypernetworks.ui
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 16918c99..cddb192a 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -11,7 +11,7 @@ import modules.scripts as scripts
import gradio as gr
from modules import images
-from modules.hypernetwork import hypernetwork
+from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
diff --git a/webui.py b/webui.py
index ba2156c8..faa38a0d 100644
--- a/webui.py
+++ b/webui.py
@@ -29,7 +29,7 @@ from modules import devices
from modules import modelloader
from modules.paths import script_path
from modules.shared import cmd_opts
-import modules.hypernetwork.hypernetwork
+import modules.hypernetworks.hypernetwork
modelloader.cleanup_models()
modules.sd_models.setup_model()
--
cgit v1.2.3
From c0484f1b986ce7acb0e3596f6089a191279f5442 Mon Sep 17 00:00:00 2001
From: brkirch
Date: Mon, 10 Oct 2022 22:48:54 -0400
Subject: Add cross-attention optimization from InvokeAI
* Add cross-attention optimization from InvokeAI (~30% speed improvement on MPS)
* Add command line option for it
* Make it default when CUDA is unavailable
---
modules/sd_hijack.py | 5 ++-
modules/sd_hijack_optimizations.py | 79 ++++++++++++++++++++++++++++++++++++++
modules/shared.py | 5 ++-
3 files changed, 86 insertions(+), 3 deletions(-)
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index f07ec041..5a1b167f 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -30,8 +30,11 @@ def apply_optimizations():
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
+ elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
+ print("Applying cross attention optimization (InvokeAI).")
+ ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
- print("Applying cross attention optimization.")
+ print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 3349b9c3..870226c5 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -1,6 +1,7 @@
import math
import sys
import traceback
+import psutil
import torch
from torch import einsum
@@ -116,6 +117,84 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2)
+# -- From https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py (with hypernetworks support added) --
+
+mem_total_gb = psutil.virtual_memory().total // (1 << 30)
+
+def einsum_op_compvis(q, k, v):
+ s = einsum('b i d, b j d -> b i j', q, k)
+ s = s.softmax(dim=-1, dtype=s.dtype)
+ return einsum('b i j, b j d -> b i d', s, v)
+
+def einsum_op_slice_0(q, k, v, slice_size):
+ r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
+ for i in range(0, q.shape[0], slice_size):
+ end = i + slice_size
+ r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
+ return r
+
+def einsum_op_slice_1(q, k, v, slice_size):
+ r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
+ for i in range(0, q.shape[1], slice_size):
+ end = i + slice_size
+ r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
+ return r
+
+def einsum_op_mps_v1(q, k, v):
+ if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
+ return einsum_op_compvis(q, k, v)
+ else:
+ slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
+ return einsum_op_slice_1(q, k, v, slice_size)
+
+def einsum_op_mps_v2(q, k, v):
+ if mem_total_gb > 8 and q.shape[1] <= 4096:
+ return einsum_op_compvis(q, k, v)
+ else:
+ return einsum_op_slice_0(q, k, v, 1)
+
+def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
+ size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
+ if size_mb <= max_tensor_mb:
+ return einsum_op_compvis(q, k, v)
+ div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
+ if div <= q.shape[0]:
+ return einsum_op_slice_0(q, k, v, q.shape[0] // div)
+ return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
+
+def einsum_op(q, k, v):
+ if q.device.type == 'mps':
+ if mem_total_gb >= 32:
+ return einsum_op_mps_v1(q, k, v)
+ return einsum_op_mps_v2(q, k, v)
+
+ # Smaller slices are faster due to L2/L3/SLC caches.
+ # Tested on i7 with 8MB L3 cache.
+ return einsum_op_tensor_mem(q, k, v, 32)
+
+def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+
+ hypernetwork = shared.loaded_hypernetwork
+ hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
+
+ if hypernetwork_layers is not None:
+ k = self.to_k(hypernetwork_layers[0](context)) * self.scale
+ v = self.to_v(hypernetwork_layers[1](context))
+ else:
+ k = self.to_k(context) * self.scale
+ v = self.to_v(context)
+ del context, x
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+ r = einsum_op(q, k, v)
+ return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
+
+# -- End of code from https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py --
+
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
diff --git a/modules/shared.py b/modules/shared.py
index 1dc2ccf2..20b45f23 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -50,9 +50,10 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
-parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
-parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
+parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
+parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
+parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--use-cpu", nargs='+',choices=['SD', 'GFPGAN', 'BSRGAN', 'ESRGAN', 'SCUNet', 'CodeFormer'], help="use CPU as torch device for specified modules", default=[])
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
--
cgit v1.2.3
From 98fd5cde72d5bda1620ab78416c7828fdc3dc10b Mon Sep 17 00:00:00 2001
From: brkirch
Date: Mon, 10 Oct 2022 23:55:48 -0400
Subject: Add check for psutil
---
modules/sd_hijack.py | 10 ++++++++--
modules/sd_hijack_optimizations.py | 19 +++++++++++++++----
2 files changed, 23 insertions(+), 6 deletions(-)
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 5a1b167f..ac70f876 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -10,6 +10,7 @@ from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules.shared import opts, device, cmd_opts
+from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
@@ -31,8 +32,13 @@ def apply_optimizations():
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
- print("Applying cross attention optimization (InvokeAI).")
- ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
+ if not invokeAI_mps_available and shared.device.type == 'mps':
+ print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
+ print("Applying v1 cross attention optimization.")
+ ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
+ else:
+ print("Applying cross attention optimization (InvokeAI).")
+ ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 870226c5..2a4ac7e0 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -1,7 +1,7 @@
import math
import sys
import traceback
-import psutil
+import importlib
import torch
from torch import einsum
@@ -117,9 +117,20 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2)
-# -- From https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py (with hypernetworks support added) --
-mem_total_gb = psutil.virtual_memory().total // (1 << 30)
+def check_for_psutil():
+ try:
+ spec = importlib.util.find_spec('psutil')
+ return spec is not None
+ except ModuleNotFoundError:
+ return False
+
+invokeAI_mps_available = check_for_psutil()
+
+# -- Taken from https://github.com/invoke-ai/InvokeAI --
+if invokeAI_mps_available:
+ import psutil
+ mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
@@ -193,7 +204,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
r = einsum_op(q, k, v)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
-# -- End of code from https://github.com/invoke-ai/InvokeAI/blob/main/ldm/modules/attention.py --
+# -- End of code from https://github.com/invoke-ai/InvokeAI --
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
--
cgit v1.2.3
From 574c8e554a5371eca2cbf344764cb241c6ec4efc Mon Sep 17 00:00:00 2001
From: brkirch
Date: Tue, 11 Oct 2022 03:32:11 -0400
Subject: Add InvokeAI and lstein to credits, add back CUDA support
---
README.md | 1 +
modules/sd_hijack_optimizations.py | 13 +++++++++++++
2 files changed, 14 insertions(+)
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/README.md b/README.md
index a10faa01..859a91b6 100644
--- a/README.md
+++ b/README.md
@@ -123,6 +123,7 @@ The documentation was moved from this README over to the project's [wiki](https:
- LDSR - https://github.com/Hafiidz/latent-diffusion
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
+- InvokeAI, lstein - Cross Attention layer optimization - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Rinon Gal - Textual Inversion - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index 2a4ac7e0..f006427f 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -173,7 +173,20 @@ def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
+def einsum_op_cuda(q, k, v):
+ stats = torch.cuda.memory_stats(q.device)
+ mem_active = stats['active_bytes.all.current']
+ mem_reserved = stats['reserved_bytes.all.current']
+ mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
+ mem_free_torch = mem_reserved - mem_active
+ mem_free_total = mem_free_cuda + mem_free_torch
+ # Divide factor of safety as there's copying and fragmentation
+ return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
+
def einsum_op(q, k, v):
+ if q.device.type == 'cuda':
+ return einsum_op_cuda(q, k, v)
+
if q.device.type == 'mps':
if mem_total_gb >= 32:
return einsum_op_mps_v1(q, k, v)
--
cgit v1.2.3
From 861db783c7acfcb93cf0b5191db3d50f9a9bc531 Mon Sep 17 00:00:00 2001
From: brkirch
Date: Tue, 11 Oct 2022 05:13:17 -0400
Subject: Use apply_hypernetwork function
---
modules/sd_hijack_optimizations.py | 14 ++++----------
1 file changed, 4 insertions(+), 10 deletions(-)
(limited to 'modules/sd_hijack_optimizations.py')
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index f006427f..79405525 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -202,16 +202,10 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
q = self.to_q(x)
context = default(context, x)
- hypernetwork = shared.loaded_hypernetwork
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
-
- if hypernetwork_layers is not None:
- k = self.to_k(hypernetwork_layers[0](context)) * self.scale
- v = self.to_v(hypernetwork_layers[1](context))
- else:
- k = self.to_k(context) * self.scale
- v = self.to_v(context)
- del context, x
+ context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
+ k = self.to_k(context_k) * self.scale
+ v = self.to_v(context_v)
+ del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
--
cgit v1.2.3