From d782a95967c9eea753df3333cd1954b6ec73eba0 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 27 Dec 2022 08:50:55 -0500 Subject: Add Birch-san's sub-quadratic attention implementation --- modules/sd_hijack_optimizations.py | 124 +++++++++++++++++++++++++++++-------- 1 file changed, 99 insertions(+), 25 deletions(-) (limited to 'modules/sd_hijack_optimizations.py') diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 02c87f40..f5c153e8 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -1,7 +1,7 @@ import math import sys import traceback -import importlib +import psutil import torch from torch import einsum @@ -12,6 +12,8 @@ from einops import rearrange from modules import shared from modules.hypernetworks import hypernetwork +from .sub_quadratic_attention import efficient_dot_product_attention + if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: try: @@ -22,6 +24,19 @@ if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: print(traceback.format_exc(), file=sys.stderr) +def get_available_vram(): + if shared.device.type == 'cuda': + stats = torch.cuda.memory_stats(shared.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + return mem_free_total + else: + return psutil.virtual_memory().available + + # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion def split_cross_attention_forward_v1(self, x, context=None, mask=None): h = self.heads @@ -76,12 +91,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None): r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch + mem_free_total = get_available_vram() gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() @@ -118,19 +128,8 @@ def split_cross_attention_forward(self, x, context=None, mask=None): return self.to_out(r2) -def check_for_psutil(): - try: - spec = importlib.util.find_spec('psutil') - return spec is not None - except ModuleNotFoundError: - return False - -invokeAI_mps_available = check_for_psutil() - # -- Taken from https://github.com/invoke-ai/InvokeAI and modified -- -if invokeAI_mps_available: - import psutil - mem_total_gb = psutil.virtual_memory().total // (1 << 30) +mem_total_gb = psutil.virtual_memory().total // (1 << 30) def einsum_op_compvis(q, k, v): s = einsum('b i d, b j d -> b i j', q, k) @@ -215,6 +214,70 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): # -- End of code from https://github.com/invoke-ai/InvokeAI -- + +# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 +def sub_quad_attention_forward(self, x, context=None, mask=None): + assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." + + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) + k = self.to_k(context_k) + v = self.to_v(context_v) + del context, context_k, context_v, x + + q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) + + x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold_bytes=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + + x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) + + out_proj, dropout = self.to_out + x = out_proj(x) + x = dropout(x) + + return x + +def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold_bytes=None, use_checkpoint=True): + bytes_per_token = torch.finfo(q.dtype).bits//8 + batch_x_heads, q_tokens, _ = q.shape + _, k_tokens, _ = k.shape + qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens + + available_vram = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7) + + if chunk_threshold_bytes is None: + chunk_threshold_bytes = available_vram + elif chunk_threshold_bytes == 0: + chunk_threshold_bytes = None + + if kv_chunk_size_min is None: + kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2])) + elif kv_chunk_size_min == 0: + kv_chunk_size_min = None + + if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: + # the big matmul fits into our memory limit; do everything in 1 chunk, + # i.e. send it down the unchunked fast-path + query_chunk_size = q_tokens + kv_chunk_size = k_tokens + + return efficient_dot_product_attention( + q, + k, + v, + query_chunk_size=q_chunk_size, + kv_chunk_size=kv_chunk_size, + kv_chunk_size_min = kv_chunk_size_min, + use_checkpoint=use_checkpoint, + ) + + def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) @@ -252,12 +315,7 @@ def cross_attention_attnblock_forward(self, x): h_ = torch.zeros_like(k, device=q.device) - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch + mem_free_total = get_available_vram() tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() mem_required = tensor_size * 2.5 @@ -312,3 +370,19 @@ def xformers_attnblock_forward(self, x): return x + out except NotImplementedError: return cross_attention_attnblock_forward(self, x) + +def sub_quad_attnblock_forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + b, c, h, w = q.shape + q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold_bytes=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + out = rearrange(out, 'b (h w) c -> b c h w', h=h) + out = self.proj_out(out) + return x + out -- cgit v1.2.3 From b95a4c0ce5ab9c414e0494193bfff665f45e9e65 Mon Sep 17 00:00:00 2001 From: brkirch Date: Fri, 6 Jan 2023 01:01:51 -0500 Subject: Change sub-quad chunk threshold to use percentage --- modules/sd_hijack_optimizations.py | 18 +++++++++--------- modules/shared.py | 2 +- 2 files changed, 10 insertions(+), 10 deletions(-) (limited to 'modules/sd_hijack_optimizations.py') diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index f5c153e8..b416e9ac 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -233,7 +233,7 @@ def sub_quad_attention_forward(self, x, context=None, mask=None): k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) - x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold_bytes=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) @@ -243,20 +243,20 @@ def sub_quad_attention_forward(self, x, context=None, mask=None): return x -def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold_bytes=None, use_checkpoint=True): +def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True): bytes_per_token = torch.finfo(q.dtype).bits//8 batch_x_heads, q_tokens, _ = q.shape _, k_tokens, _ = k.shape qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens - available_vram = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7) - - if chunk_threshold_bytes is None: - chunk_threshold_bytes = available_vram - elif chunk_threshold_bytes == 0: + if chunk_threshold is None: + chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7) + elif chunk_threshold == 0: chunk_threshold_bytes = None + else: + chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram()) - if kv_chunk_size_min is None: + if kv_chunk_size_min is None and chunk_threshold_bytes is not None: kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2])) elif kv_chunk_size_min == 0: kv_chunk_size_min = None @@ -382,7 +382,7 @@ def sub_quad_attnblock_forward(self, x): q = q.contiguous() k = k.contiguous() v = v.contiguous() - out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold_bytes=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) + out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) out = rearrange(out, 'b (h w) c -> b c h w', h=h) out = self.proj_out(out) return x + out diff --git a/modules/shared.py b/modules/shared.py index cb1dc312..d7a81db1 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -59,7 +59,7 @@ parser.add_argument("--opt-split-attention", action='store_true', help="force-en parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization") parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024) parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None) -parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the size threshold in bytes for the sub-quadratic cross-attention layer optimization to use chunking", default=None) +parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None) parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") -- cgit v1.2.3 From c18add68ef7d2de3617cbbaff864b0c74cfdf6c0 Mon Sep 17 00:00:00 2001 From: brkirch Date: Fri, 6 Jan 2023 16:42:47 -0500 Subject: Added license --- html/licenses.html | 29 ++++++++++++++++++++++++++++- modules/sd_hijack_optimizations.py | 1 + modules/sub_quadratic_attention.py | 2 +- 3 files changed, 30 insertions(+), 2 deletions(-) (limited to 'modules/sd_hijack_optimizations.py') diff --git a/html/licenses.html b/html/licenses.html index 9eeaa072..570630eb 100644 --- a/html/licenses.html +++ b/html/licenses.html @@ -184,7 +184,7 @@ SOFTWARE.

SwinIR

-Code added by contirubtors, most likely copied from this repository. +Code added by contributors, most likely copied from this repository.
                                  Apache License
@@ -390,3 +390,30 @@ SOFTWARE.
    limitations under the License.
 
+

Memory Efficient Attention

+The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that. +
+MIT License
+
+Copyright (c) 2023 Alex Birch
+Copyright (c) 2023 Amin Rezaei
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+
+ diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index b416e9ac..cdc63ed7 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -216,6 +216,7 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 +# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface def sub_quad_attention_forward(self, x, context=None, mask=None): assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index 95924d24..fea7aaac 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -1,7 +1,7 @@ # original source: # https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py # license: -# unspecified +# MIT License (see Memory Efficient Attention under the Licenses section in the web UI interface for the full license) # credit: # Amin Rezaei (original author) # Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) -- cgit v1.2.3