From cb31abcf58ea1f64266e6d821937eed058c35f4d Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 21:54:31 +0700 Subject: Settings to select VAE --- modules/sd_models.py | 31 ++++++++++--------------------- 1 file changed, 10 insertions(+), 21 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index f86dc3ed..91ad4b5e 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -8,7 +8,7 @@ from omegaconf import OmegaConf from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks +from modules import shared, modelloader, devices, script_callbacks, sd_vae from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -160,12 +160,11 @@ def get_state_dict_from_checkpoint(pl_sd): vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - -def load_model_weights(model, checkpoint_info): +def load_model_weights(model, checkpoint_info, force=False): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if checkpoint_info not in checkpoints_loaded: + if force or checkpoint_info not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -186,17 +185,7 @@ def load_model_weights(model, checkpoint_info): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt" - - if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None: - vae_file = shared.cmd_opts.vae_path - - if os.path.exists(vae_file): - print(f"Loading VAE weights from: {vae_file}") - vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) - vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - model.first_stage_model.load_state_dict(vae_dict) - + sd_vae.load_vae(model, checkpoint_file) model.first_stage_model.to(devices.dtype_vae) if shared.opts.sd_checkpoint_cache > 0: @@ -213,7 +202,7 @@ def load_model_weights(model, checkpoint_info): model.sd_checkpoint_info = checkpoint_info -def load_model(checkpoint_info=None): +def load_model(checkpoint_info=None, force=False): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -234,7 +223,7 @@ def load_model(checkpoint_info=None): do_inpainting_hijack() sd_model = instantiate_from_config(sd_config.model) - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, force=force) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) @@ -252,16 +241,16 @@ def load_model(checkpoint_info=None): return sd_model -def reload_model_weights(sd_model, info=None): +def reload_model_weights(sd_model, info=None, force=False): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() - if sd_model.sd_model_checkpoint == checkpoint_info.filename: + if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: return if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - load_model(checkpoint_info) + load_model(checkpoint_info, force=force) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -271,7 +260,7 @@ def reload_model_weights(sd_model, info=None): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, force=force) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) -- cgit v1.2.3 From 726769da35970f4c100fa7edf11850f9dc059c41 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 15:19:34 +0700 Subject: Checkpoint cache by combination key of checkpoint and vae --- modules/sd_models.py | 27 ++++++++++++++++----------- modules/sd_vae.py | 8 +++++++- 2 files changed, 23 insertions(+), 12 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 91ad4b5e..850f7b7b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -160,11 +160,15 @@ def get_state_dict_from_checkpoint(pl_sd): vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -def load_model_weights(model, checkpoint_info, force=False): +def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if force or checkpoint_info not in checkpoints_loaded: + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + + checkpoint_key = (checkpoint_info, vae_file) + + if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -185,24 +189,25 @@ def load_model_weights(model, checkpoint_info, force=False): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, checkpoint_file) + sd_vae.load_vae(model, vae_file) model.first_stage_model.to(devices.dtype_vae) if shared.opts.sd_checkpoint_cache > 0: - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU else: - print(f"Loading weights [{sd_model_hash}] from cache") - checkpoints_loaded.move_to_end(checkpoint_info) - model.load_state_dict(checkpoints_loaded[checkpoint_info]) + vae_name = sd_vae.get_filename(vae_file) + print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") + checkpoints_loaded.move_to_end(checkpoint_key) + model.load_state_dict(checkpoints_loaded[checkpoint_key]) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info -def load_model(checkpoint_info=None, force=False): +def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -223,7 +228,7 @@ def load_model(checkpoint_info=None, force=False): do_inpainting_hijack() sd_model = instantiate_from_config(sd_config.model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) @@ -250,7 +255,7 @@ def reload_model_weights(sd_model, info=None, force=False): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): checkpoints_loaded.clear() - load_model(checkpoint_info, force=force) + load_model(checkpoint_info) return shared.sd_model if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -260,7 +265,7 @@ def reload_model_weights(sd_model, info=None, force=False): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info, force=force) + load_model_weights(sd_model, checkpoint_info) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 2ce44d5f..e9239326 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -43,7 +43,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list -def load_vae(model, checkpoint_file, vae_file="auto"): +def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -94,6 +94,12 @@ def load_vae(model, checkpoint_file, vae_file="auto"): if vae_file and not os.path.exists(vae_file): vae_file = None + return vae_file + +def load_vae(model, vae_file): + global first_load, vae_dict, vae_list + # save_settings = False + if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) -- cgit v1.2.3 From 36966e3200943dbf890b5338cfa939df552d3c47 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 15:38:58 +0700 Subject: Fix #4035 --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index f86dc3ed..a29c8c1a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -201,7 +201,7 @@ def load_model_weights(model, checkpoint_info): if shared.opts.sd_checkpoint_cache > 0: checkpoints_loaded[checkpoint_info] = model.state_dict().copy() - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: checkpoints_loaded.popitem(last=False) # LRU else: print(f"Loading weights [{sd_model_hash}] from cache") -- cgit v1.2.3 From bf7a699845675eefdabb9cfa40c55398976274ae Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Mon, 31 Oct 2022 16:27:27 +0700 Subject: Fix #4035 for real now --- modules/sd_models.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index a29c8c1a..b2dd005a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -165,6 +165,9 @@ def load_model_weights(model, checkpoint_info): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash + if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"): + checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy() + if checkpoint_info not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") @@ -198,16 +201,14 @@ def load_model_weights(model, checkpoint_info): model.first_stage_model.load_state_dict(vae_dict) model.first_stage_model.to(devices.dtype_vae) - - if shared.opts.sd_checkpoint_cache > 0: - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: - checkpoints_loaded.popitem(last=False) # LRU else: print(f"Loading weights [{sd_model_hash}] from cache") - checkpoints_loaded.move_to_end(checkpoint_info) model.load_state_dict(checkpoints_loaded[checkpoint_info]) + if shared.opts.sd_checkpoint_cache > 0: + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + checkpoints_loaded.popitem(last=False) # LRU + model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info -- cgit v1.2.3 From 056f06d3738c267b1014e6e8e1ef5bd97af1fb45 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Wed, 2 Nov 2022 12:51:46 +0700 Subject: Reload VAE without reloading sd checkpoint --- modules/sd_models.py | 15 ++++---- modules/sd_vae.py | 97 ++++++++++++++++++++++++++++++++++++++++++++++++---- webui.py | 4 +-- 3 files changed, 98 insertions(+), 18 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 6ab85b65..883639d1 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd): return pl_sd -vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - checkpoint_key = (checkpoint_info, vae_file) + checkpoint_key = checkpoint_info if checkpoint_key not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") @@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - sd_vae.load_vae(model, vae_file) - model.first_stage_model.to(devices.dtype_vae) - if shared.opts.sd_checkpoint_cache > 0: + # if PR #4035 were to get merged, restore base VAE first before caching checkpoints_loaded[checkpoint_key] = model.state_dict().copy() while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU + else: vae_name = sd_vae.get_filename(vae_file) print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") @@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.load_vae(model, vae_file) + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack @@ -254,14 +253,14 @@ def load_model(checkpoint_info=None): return sd_model -def reload_model_weights(sd_model=None, info=None, force=False): +def reload_model_weights(sd_model=None, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() if not sd_model: sd_model = shared.sd_model - if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force: + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): diff --git a/modules/sd_vae.py b/modules/sd_vae.py index e9239326..78e14e8a 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,26 +1,65 @@ import torch import os from collections import namedtuple -from modules import shared, devices +from modules import shared, devices, script_callbacks from modules.paths import models_path import glob + model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) vae_dir = "VAE" vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) + vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} + + default_vae_dict = {"auto": "auto", "None": "None"} default_vae_list = ["auto", "None"] + + default_vae_values = [default_vae_dict[x] for x in default_vae_list] vae_dict = dict(default_vae_dict) vae_list = list(default_vae_list) first_load = True + +base_vae = None +loaded_vae_file = None +checkpoint_info = None + + +def get_base_vae(model): + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: + return base_vae + return None + + +def store_base_vae(model): + global base_vae, checkpoint_info + if checkpoint_info != model.sd_checkpoint_info: + base_vae = model.first_stage_model.state_dict().copy() + checkpoint_info = model.sd_checkpoint_info + + +def delete_base_vae(): + global base_vae, checkpoint_info + base_vae = None + checkpoint_info = None + + +def restore_base_vae(model): + global base_vae, checkpoint_info + if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: + load_vae_dict(model, base_vae) + delete_base_vae() + + def get_filename(filepath): return os.path.splitext(os.path.basename(filepath))[0] + def refresh_vae_list(vae_path=vae_path, model_path=model_path): global vae_dict, vae_list res = {} @@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): vae_dict.update(res) return vae_list + def resolve_vae(checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False @@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"): return vae_file -def load_vae(model, vae_file): - global first_load, vae_dict, vae_list + +def load_vae(model, vae_file=None): + global first_load, vae_dict, vae_list, loaded_vae_file # save_settings = False if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - model.first_stage_model.load_state_dict(vae_dict_1) + load_vae_dict(model, vae_dict_1) - # If vae used is not in dict, update it - # It will be removed on refresh though - if vae_file is not None: + # If vae used is not in dict, update it + # It will be removed on refresh though vae_opt = get_filename(vae_file) if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) + loaded_vae_file = vae_file + """ # Save current VAE to VAE settings, maybe? will it work? if save_settings: @@ -124,4 +166,45 @@ def load_vae(model, vae_file): """ first_load = False + + +# don't call this from outside +def load_vae_dict(model, vae_dict_1=None): + if vae_dict_1: + store_base_vae(model) + model.first_stage_model.load_state_dict(vae_dict_1) + else: + restore_base_vae() model.first_stage_model.to(devices.dtype_vae) + + +def reload_vae_weights(sd_model=None, vae_file="auto"): + from modules import lowvram, devices, sd_hijack + + if not sd_model: + sd_model = shared.sd_model + + checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_file = checkpoint_info.filename + vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) + + if loaded_vae_file == vae_file: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + sd_hijack.model_hijack.undo_hijack(sd_model) + + load_vae(sd_model, vae_file) + + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print(f"VAE Weights loaded.") + return sd_model diff --git a/webui.py b/webui.py index 7cb4691b..034777a2 100644 --- a/webui.py +++ b/webui.py @@ -81,9 +81,7 @@ def initialize(): modules.sd_vae.refresh_vae_list() modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) - # I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram, - # so for now this reloads the whole model too - shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(force=True)), call=False) + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) -- cgit v1.2.3 From f2a5cbe6f55592c4c5527b8e0bf99ea8d658f057 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 2 Nov 2022 14:41:29 +0300 Subject: fix #3986 breaking --no-half-vae --- modules/sd_models.py | 9 +++++++++ 1 file changed, 9 insertions(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 883639d1..5075fadb 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -183,11 +183,20 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.to(memory_format=torch.channels_last) if not shared.cmd_opts.no_half: + vae = model.first_stage_model + + # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 + if shared.cmd_opts.no_half_vae: + model.first_stage_model = None + model.half() + model.first_stage_model = vae devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + model.first_stage_model.to(devices.dtype_vae) + if shared.opts.sd_checkpoint_cache > 0: # if PR #4035 were to get merged, restore base VAE first before caching checkpoints_loaded[checkpoint_key] = model.state_dict().copy() -- cgit v1.2.3 From 3780ad3ad837dd406da39eebd5d91009b5a58445 Mon Sep 17 00:00:00 2001 From: digburn Date: Fri, 4 Nov 2022 00:40:21 +0000 Subject: fix: loading models without vae from cache --- modules/sd_models.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 5075fadb..ae427a5c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -204,8 +204,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoints_loaded.popitem(last=False) # LRU else: - vae_name = sd_vae.get_filename(vae_file) - print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache") + vae_name = sd_vae.get_filename(vae_file) if vae_file else None + vae_message = f" with {vae_name} VAE" if vae_name else "" + print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") checkpoints_loaded.move_to_end(checkpoint_key) model.load_state_dict(checkpoints_loaded[checkpoint_key]) -- cgit v1.2.3 From 99043f33606d3057f83ea52a403e10cd29d1f7e7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 4 Nov 2022 11:20:42 +0300 Subject: fix one of previous merges breaking the program --- modules/sd_models.py | 2 ++ 1 file changed, 2 insertions(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 63e07a12..34c57bfa 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -167,6 +167,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): sd_vae.restore_base_vae(model) checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy() + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + if checkpoint_info not in checkpoints_loaded: print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") -- cgit v1.2.3 From 3b51d239ac9201228c6032fc109111e347e8e6b0 Mon Sep 17 00:00:00 2001 From: cluder <1590330+cluder@users.noreply.github.com> Date: Wed, 9 Nov 2022 04:54:21 +0100 Subject: - do not use ckpt cache, if disabled - cache model after is has been loaded from file --- modules/sd_models.py | 27 +++++++++++++++++---------- 1 file changed, 17 insertions(+), 10 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 34c57bfa..720c2a96 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -163,13 +163,21 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"): + cache_enabled = shared.opts.sd_checkpoint_cache > 0 + + if cache_enabled: sd_vae.restore_base_vae(model) - checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy() vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - if checkpoint_info not in checkpoints_loaded: + if cache_enabled and checkpoint_info in checkpoints_loaded: + # use checkpoint cache + vae_name = sd_vae.get_filename(vae_file) if vae_file else None + vae_message = f" with {vae_name} VAE" if vae_name else "" + print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") + model.load_state_dict(checkpoints_loaded[checkpoint_info]) + else: + # load from file print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -180,6 +188,10 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): del pl_sd model.load_state_dict(sd, strict=False) del sd + + if cache_enabled: + # cache newly loaded model + checkpoints_loaded[checkpoint_info] = model.state_dict().copy() if shared.cmd_opts.opt_channelslast: model.to(memory_format=torch.channels_last) @@ -199,13 +211,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.first_stage_model.to(devices.dtype_vae) - else: - vae_name = sd_vae.get_filename(vae_file) if vae_file else None - vae_message = f" with {vae_name} VAE" if vae_name else "" - print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") - model.load_state_dict(checkpoints_loaded[checkpoint_info]) - - if shared.opts.sd_checkpoint_cache > 0: + # clean up cache if limit is reached + if cache_enabled: while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: checkpoints_loaded.popitem(last=False) # LRU -- cgit v1.2.3 From eebf49592ad2c0933e58b06a098b92e48d47e4fe Mon Sep 17 00:00:00 2001 From: cluder <1590330+cluder@users.noreply.github.com> Date: Wed, 9 Nov 2022 07:17:09 +0100 Subject: restore #4035 behavior - if checkpoint cache is set to 1, keep 2 models in cache (current +1 more) --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 720c2a96..80addf03 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -213,7 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): # clean up cache if limit is reached if cache_enabled: - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model checkpoints_loaded.popitem(last=False) # LRU model.sd_model_hash = sd_model_hash -- cgit v1.2.3 From abc1e79a5da24a1ea0f4bceedcdf225f32010aa8 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Thu, 3 Nov 2022 11:10:53 +0700 Subject: Fix base VAE caching was done after loading VAE, also add safeguard --- modules/sd_models.py | 1 + modules/sd_vae.py | 19 ++++++++----------- 2 files changed, 9 insertions(+), 11 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 80addf03..e4dba62c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -220,6 +220,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.clear_loaded_vae() sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 7a79239f..dd69a5e6 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -15,7 +15,7 @@ vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -default_vae_dict = {"auto": "auto", "None": "None"} +default_vae_dict = {"auto": "auto", "None": None, None: None} default_vae_list = ["auto", "None"] @@ -39,6 +39,7 @@ def get_base_vae(model): def store_base_vae(model): global base_vae, checkpoint_info if checkpoint_info != model.sd_checkpoint_info: + assert not loaded_vae_file, "Trying to store non-base VAE!" base_vae = model.first_stage_model.state_dict().copy() checkpoint_info = model.sd_checkpoint_info @@ -50,9 +51,11 @@ def delete_base_vae(): def restore_base_vae(model): + global loaded_vae_file if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: print("Restoring base VAE") load_vae_dict(model, base_vae) + loaded_vae_file = None delete_base_vae() @@ -140,10 +143,10 @@ def load_vae(model, vae_file=None): if vae_file: print(f"Loading VAE weights from: {vae_file}") + store_base_vae(model) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} load_vae_dict(model, vae_dict_1) - store_base_vae(model) # If vae used is not in dict, update it # It will be removed on refresh though @@ -157,15 +160,6 @@ def load_vae(model, vae_file=None): loaded_vae_file = vae_file - """ - # Save current VAE to VAE settings, maybe? will it work? - if save_settings: - if vae_file is None: - vae_opt = "None" - - # shared.opts.sd_vae = vae_opt - """ - first_load = False @@ -174,6 +168,9 @@ def load_vae_dict(model, vae_dict_1): model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.to(devices.dtype_vae) +def clear_loaded_vae(): + global loaded_vae_file + loaded_vae_file = None def reload_vae_weights(sd_model=None, vae_file="auto"): from modules import lowvram, devices, sd_hijack -- cgit v1.2.3 From c7be83bf0240498d9382e2afeaa3f0677d26c7f6 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 13 Nov 2022 11:11:14 +0700 Subject: Misc Misc --- modules/sd_models.py | 1 + modules/sd_vae.py | 3 +-- modules/shared.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index e4dba62c..cd7fe37a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -220,6 +220,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index dd69a5e6..13bf3d31 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -154,8 +154,7 @@ def load_vae(model, vae_file=None): if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) - # shared.opts.data['sd_vae'] = vae_opt - else: + elif loaded_vae_file: restore_base_vae(model) loaded_vae_file = vae_file diff --git a/modules/shared.py b/modules/shared.py index 17132e42..a9daf800 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -335,7 +335,7 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list), + "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), -- cgit v1.2.3 From 2c5ca706a7e624d268545ba3318ba230b7b33477 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 13 Nov 2022 10:55:47 +0700 Subject: Remove no longer necessary parts and add vae_file safeguard --- modules/sd_models.py | 10 ++-------- modules/sd_vae.py | 1 + 2 files changed, 3 insertions(+), 8 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 80addf03..c59151e0 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -165,16 +165,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): cache_enabled = shared.opts.sd_checkpoint_cache > 0 - if cache_enabled: - sd_vae.restore_base_vae(model) - - vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - if cache_enabled and checkpoint_info in checkpoints_loaded: # use checkpoint cache - vae_name = sd_vae.get_filename(vae_file) if vae_file else None - vae_message = f" with {vae_name} VAE" if vae_name else "" - print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") + print(f"Loading weights [{sd_model_hash}] from cache") model.load_state_dict(checkpoints_loaded[checkpoint_info]) else: # load from file @@ -220,6 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 71e7a6e6..8bdb2c17 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -139,6 +139,7 @@ def load_vae(model, vae_file=None): # save_settings = False if vae_file: + assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} -- cgit v1.2.3 From 0efffbb407a9d07eae6850374099775385ce176c Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Mon, 21 Nov 2022 14:04:25 +0100 Subject: Supporting `*.safetensors` format. If a model file exists with extension `.safetensors` then we can load it more safely than with PyTorch weights. --- modules/sd_models.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 80addf03..0164cc1b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -45,7 +45,7 @@ def checkpoint_tiles(): def list_models(): checkpoints_list.clear() - model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"]) + model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"]) def modeltitle(path, shorthash): abspath = os.path.abspath(path) @@ -180,7 +180,14 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): # load from file print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") - pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) + if checkpoint_file.endswith(".safetensors"): + try: + from safetensors.torch import load_file + except ImportError as e: + raise ImportError(f"The model is in safetensors format and it is not installed, use `pip install safetensors`: {e}") + pl_sd = load_file(checkpoint_file, device=shared.weight_load_location) + else: + pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") -- cgit v1.2.3 From 1e506657e1cb732a5f0e567ba2585fba2bbb1327 Mon Sep 17 00:00:00 2001 From: MrCheeze Date: Sat, 26 Nov 2022 13:28:44 -0500 Subject: no-half support for SD 2.0 --- modules/sd_models.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index c59151e0..0e0bd79e 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -244,6 +244,9 @@ def load_model(checkpoint_info=None): do_inpainting_hijack() + if shared.cmd_opts.no_half: + sd_config.model.params.unet_config.params.use_fp16 = False + sd_model = instantiate_from_config(sd_config.model) load_model_weights(sd_model, checkpoint_info) -- cgit v1.2.3 From 6074175faa751dde933aa8e15cd687ca4e4b4a23 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 27 Nov 2022 14:46:40 +0300 Subject: add safetensors to requirements --- modules/sd_models.py | 11 +++++------ requirements.txt | 1 + requirements_versions.txt | 1 + 3 files changed, 7 insertions(+), 6 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ae36841a..77236480 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -5,6 +5,7 @@ import gc from collections import namedtuple import torch import re +import safetensors.torch from omegaconf import OmegaConf from ldm.util import instantiate_from_config @@ -173,14 +174,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): # load from file print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") - if checkpoint_file.endswith(".safetensors"): - try: - from safetensors.torch import load_file - except ImportError as e: - raise ImportError(f"The model is in safetensors format and it is not installed, use `pip install safetensors`: {e}") - pl_sd = load_file(checkpoint_file, device=shared.weight_load_location) + _, extension = os.path.splitext(checkpoint_file) + if extension.lower() == ".safetensors": + pl_sd = safetensors.torch.load_file(checkpoint_file, device=shared.weight_load_location) else: pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) + if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") diff --git a/requirements.txt b/requirements.txt index e4e5ec64..5f3d9623 100644 --- a/requirements.txt +++ b/requirements.txt @@ -29,3 +29,4 @@ lark inflection GitPython torchsde +safetensors diff --git a/requirements_versions.txt b/requirements_versions.txt index 8d557fe3..035fa82f 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -26,3 +26,4 @@ lark==1.1.2 inflection==0.5.1 GitPython==3.1.27 torchsde==0.2.5 +safetensors==0.2.5 -- cgit v1.2.3 From dac9b6f15de5e675053d9490a20e0457dcd1a23e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 27 Nov 2022 15:51:29 +0300 Subject: add safetensors support for model merging #4869 --- modules/extras.py | 26 ++++++++++++++------------ modules/sd_models.py | 26 +++++++++++++++----------- modules/ui.py | 7 ++++++- 3 files changed, 35 insertions(+), 24 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/extras.py b/modules/extras.py index 71b93a06..3d65d90a 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -20,6 +20,7 @@ import modules.codeformer_model import piexif import piexif.helper import gradio as gr +import safetensors.torch class LruCache(OrderedDict): @@ -249,7 +250,7 @@ def run_pnginfo(image): return '', geninfo, info -def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name): +def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format): def weighted_sum(theta0, theta1, alpha): return ((1 - alpha) * theta0) + (alpha * theta1) @@ -264,19 +265,15 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None) print(f"Loading {primary_model_info.filename}...") - primary_model = torch.load(primary_model_info.filename, map_location='cpu') - theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model) + theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') print(f"Loading {secondary_model_info.filename}...") - secondary_model = torch.load(secondary_model_info.filename, map_location='cpu') - theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model) + theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') if teritary_model_info is not None: print(f"Loading {teritary_model_info.filename}...") - teritary_model = torch.load(teritary_model_info.filename, map_location='cpu') - theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model) + theta_2 = sd_models.read_state_dict(teritary_model_info.filename, map_location='cpu') else: - teritary_model = None theta_2 = None theta_funcs = { @@ -295,7 +292,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam theta_1[key] = theta_func1(theta_1[key], t2) else: theta_1[key] = torch.zeros_like(theta_1[key]) - del theta_2, teritary_model + del theta_2 for key in tqdm.tqdm(theta_0.keys()): if 'model' in key and key in theta_1: @@ -314,12 +311,17 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path - filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' - filename = filename if custom_name == '' else (custom_name + '.ckpt') + filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.' + checkpoint_format + filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format) output_modelname = os.path.join(ckpt_dir, filename) print(f"Saving to {output_modelname}...") - torch.save(primary_model, output_modelname) + + _, extension = os.path.splitext(output_modelname) + if extension.lower() == ".safetensors": + safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"}) + else: + torch.save(theta_0, output_modelname) sd_models.list_models() diff --git a/modules/sd_models.py b/modules/sd_models.py index 77236480..a1ea5611 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -160,6 +160,20 @@ def get_state_dict_from_checkpoint(pl_sd): return pl_sd +def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): + _, extension = os.path.splitext(checkpoint_file) + if extension.lower() == ".safetensors": + pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location) + else: + pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) + + if print_global_state and "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + + sd = get_state_dict_from_checkpoint(pl_sd) + return sd + + def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash @@ -174,17 +188,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): # load from file print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") - _, extension = os.path.splitext(checkpoint_file) - if extension.lower() == ".safetensors": - pl_sd = safetensors.torch.load_file(checkpoint_file, device=shared.weight_load_location) - else: - pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) - - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - - sd = get_state_dict_from_checkpoint(pl_sd) - del pl_sd + sd = read_state_dict(checkpoint_file) model.load_state_dict(sd, strict=False) del sd diff --git a/modules/ui.py b/modules/ui.py index de2b5544..aa13978d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1164,7 +1164,11 @@ def create_ui(wrap_gradio_gpu_call): custom_name = gr.Textbox(label="Custom Name (Optional)") interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3) interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method") - save_as_half = gr.Checkbox(value=False, label="Save as float16") + + with gr.Row(): + checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format") + save_as_half = gr.Checkbox(value=False, label="Save as float16") + modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') with gr.Column(variant='panel'): @@ -1692,6 +1696,7 @@ def create_ui(wrap_gradio_gpu_call): interp_amount, save_as_half, custom_name, + checkpoint_format, ], outputs=[ submit_result, -- cgit v1.2.3 From 0376da180c81a11880a2587903d69d85541051e7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 28 Nov 2022 08:39:59 +0300 Subject: make it possible to save nai model using safetensors --- modules/sd_models.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index a1ea5611..283cf1cd 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -144,8 +144,8 @@ def transform_checkpoint_dict_key(k): def get_state_dict_from_checkpoint(pl_sd): - if "state_dict" in pl_sd: - pl_sd = pl_sd["state_dict"] + pl_sd = pl_sd.pop("state_dict", pl_sd) + pl_sd.pop("state_dict", None) sd = {} for k, v in pl_sd.items(): -- cgit v1.2.3 From 1ed4f0e22807f3afef925210182cbbee51f0cb2c Mon Sep 17 00:00:00 2001 From: Jay Smith Date: Thu, 8 Dec 2022 18:14:35 -0600 Subject: Depth2img model support --- README.md | 1 + modules/processing.py | 38 ++++++++++++++++++++++++++++++++++---- modules/sd_models.py | 46 ++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 81 insertions(+), 4 deletions(-) (limited to 'modules/sd_models.py') diff --git a/README.md b/README.md index 8a4ffade..55990581 100644 --- a/README.md +++ b/README.md @@ -135,6 +135,7 @@ The documentation was moved from this README over to the project's [wiki](https: - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion +- MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) diff --git a/modules/processing.py b/modules/processing.py index 3d2c4dc9..0417ffc5 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -21,7 +21,10 @@ import modules.face_restoration import modules.images as images import modules.styles import logging +from ldm.data.util import AddMiDaS +from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion +from einops import repeat, rearrange # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 @@ -150,11 +153,26 @@ class StableDiffusionProcessing(): return image_conditioning - def img2img_image_conditioning(self, source_image, latent_image, image_mask = None): - if self.sampler.conditioning_key not in {'hybrid', 'concat'}: - # Dummy zero conditioning if we're not using inpainting model. - return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) + def depth2img_image_conditioning(self, source_image): + # Use the AddMiDaS helper to Format our source image to suit the MiDaS model + transformer = AddMiDaS(model_type="dpt_hybrid") + transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")}) + midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) + midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) + + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning = torch.nn.functional.interpolate( + self.sd_model.depth_model(midas_in), + size=conditioning_image.shape[2:], + mode="bicubic", + align_corners=False, + ) + + (depth_min, depth_max) = torch.aminmax(conditioning) + conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1. + return conditioning + def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None): self.is_using_inpainting_conditioning = True # Handle the different mask inputs @@ -191,6 +209,18 @@ class StableDiffusionProcessing(): return image_conditioning + def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): + # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely + # identify itself with a field common to all models. The conditioning_key is also hybrid. + if isinstance(self.sd_model, LatentDepth2ImageDiffusion): + return self.depth2img_image_conditioning(source_image) + + if self.sampler.conditioning_key in {'hybrid', 'concat'}: + return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) + + # Dummy zero conditioning if we're not using inpainting or depth model. + return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) + def init(self, all_prompts, all_seeds, all_subseeds): pass diff --git a/modules/sd_models.py b/modules/sd_models.py index 283cf1cd..139952ba 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -7,6 +7,9 @@ import torch import re import safetensors.torch from omegaconf import OmegaConf +from os import mkdir +from urllib import request +import ldm.modules.midas as midas from ldm.util import instantiate_from_config @@ -36,6 +39,7 @@ def setup_model(): os.makedirs(model_path) list_models() + enable_midas_autodownload() def checkpoint_tiles(): @@ -227,6 +231,48 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): sd_vae.load_vae(model, vae_file) +def enable_midas_autodownload(): + """ + Gives the ldm.modules.midas.api.load_model function automatic downloading. + + When the 512-depth-ema model, and other future models like it, is loaded, + it calls midas.api.load_model to load the associated midas depth model. + This function applies a wrapper to download the model to the correct + location automatically. + """ + + midas_path = os.path.join(models_path, 'midas') + + # stable-diffusion-stability-ai hard-codes the midas model path to + # a location that differs from where other scripts using this model look. + # HACK: Overriding the path here. + for k, v in midas.api.ISL_PATHS.items(): + file_name = os.path.basename(v) + midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name) + + midas_urls = { + "dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", + "dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt", + "midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt", + "midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt", + } + + midas.api.load_model_inner = midas.api.load_model + + def load_model_wrapper(model_type): + path = midas.api.ISL_PATHS[model_type] + if not os.path.exists(path): + if not os.path.exists(midas_path): + mkdir(midas_path) + + print(f"Downloading midas model weights for {model_type} to {path}") + request.urlretrieve(midas_urls[model_type], path) + print(f"{model_type} downloaded") + + return midas.api.load_model_inner(model_type) + + midas.api.load_model = load_model_wrapper + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() -- cgit v1.2.3 From bd81a09eacf02dad095b98094ab936f276d0343f Mon Sep 17 00:00:00 2001 From: MrCheeze Date: Sat, 10 Dec 2022 11:29:26 -0500 Subject: fix support for 2.0 inpainting model while maintaining support for 1.5 inpainting model --- modules/sd_hijack_inpainting.py | 3 +-- modules/sd_models.py | 1 + 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 938f9a58..5018b047 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -324,12 +324,11 @@ def should_hijack_inpainting(checkpoint_info): def do_inpainting_hijack(): # most of this stuff seems to no longer be needed because it is already included into SD2.0 - # LatentInpaintDiffusion remains because SD2.0's LatentInpaintDiffusion can't be loaded without specifying a checkpoint # p_sample_plms is needed because PLMS can't work with dicts as conditionings # this file should be cleaned up later if weverything tuens out to work fine # ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning - ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion + # ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion # ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim # ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim diff --git a/modules/sd_models.py b/modules/sd_models.py index 5b37f3fe..b64f573f 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -296,6 +296,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.use_ema = False sd_config.model.params.conditioning_key = "hybrid" sd_config.model.params.unet_config.params.in_channels = 9 + sd_config.model.params.finetune_keys = None # Create a "fake" config with a different name so that we know to unload it when switching models. checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml")) -- cgit v1.2.3 From 59c6511494c55a578eecdf71fb4590b6bd5d04a7 Mon Sep 17 00:00:00 2001 From: Dean van Dugteren <31391056+deanpress@users.noreply.github.com> Date: Sun, 11 Dec 2022 17:08:51 +0100 Subject: fix: fallback model_checkpoint if it's empty This fixes the following error when SD attempts to start with a deleted checkpoint: ``` Traceback (most recent call last): File "D:\Web\stable-diffusion-webui\launch.py", line 295, in start() File "D:\Web\stable-diffusion-webui\launch.py", line 290, in start webui.webui() File "D:\Web\stable-diffusion-webui\webui.py", line 132, in webui initialize() File "D:\Web\stable-diffusion-webui\webui.py", line 62, in initialize modules.sd_models.load_model() File "D:\Web\stable-diffusion-webui\modules\sd_models.py", line 283, in load_model checkpoint_info = checkpoint_info or select_checkpoint() File "D:\Web\stable-diffusion-webui\modules\sd_models.py", line 117, in select_checkpoint checkpoint_info = checkpoints_list.get(model_checkpoint, None) TypeError: unhashable type: 'list' ``` --- modules/sd_models.py | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 5b37f3fe..b6d75db7 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -111,6 +111,10 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint + + if len(model_checkpoint) == 0: + model_checkpoint = shared.default_sd_model_file + checkpoint_info = checkpoints_list.get(model_checkpoint, None) if checkpoint_info is not None: return checkpoint_info -- cgit v1.2.3 From ec0a48826fb41c1b1baab45a9030f7eb55568fd0 Mon Sep 17 00:00:00 2001 From: MrCheeze Date: Sun, 11 Dec 2022 10:19:46 -0500 Subject: unconditionally set use_ema=False if value not specified (True never worked, and all configs except v1-inpainting-inference.yaml already correctly set it to False) --- modules/sd_models.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index b64f573f..f36b299f 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -293,7 +293,6 @@ def load_model(checkpoint_info=None): if should_hijack_inpainting(checkpoint_info): # Hardcoded config for now... sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" - sd_config.model.params.use_ema = False sd_config.model.params.conditioning_key = "hybrid" sd_config.model.params.unet_config.params.in_channels = 9 sd_config.model.params.finetune_keys = None @@ -301,6 +300,9 @@ def load_model(checkpoint_info=None): # Create a "fake" config with a different name so that we know to unload it when switching models. checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml")) + if not hasattr(sd_config.model.params, "use_ema"): + sd_config.model.params.use_ema = False + do_inpainting_hijack() if shared.cmd_opts.no_half: -- cgit v1.2.3 From 5a650055de3792223a91925aba8130ebdee29e35 Mon Sep 17 00:00:00 2001 From: "linuxmobile ( リナックス )" Date: Sat, 24 Dec 2022 09:25:35 -0300 Subject: Removed lenght in sd_model at line 115 Commit eba60a4 is what is causing this error, delete the length check in sd_model starting at line 115 and it's fine. https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/5971#issuecomment-1364507379 --- modules/sd_models.py | 3 --- 1 file changed, 3 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 1254e5ae..6ca06211 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -111,9 +111,6 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint - - if len(model_checkpoint) == 0: - model_checkpoint = shared.default_sd_model_file checkpoint_info = checkpoints_list.get(model_checkpoint, None) if checkpoint_info is not None: -- cgit v1.2.3 From 3bf5591efe9a9f219c6088be322a87adc4f48f95 Mon Sep 17 00:00:00 2001 From: Yuval Aboulafia Date: Sat, 24 Dec 2022 21:35:29 +0200 Subject: fix F541 f-string without any placeholders --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- modules/codeformer/vqgan_arch.py | 4 ++-- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/images.py | 2 +- modules/interrogate.py | 2 +- modules/safe.py | 8 ++++---- modules/sd_models.py | 8 ++++---- modules/sd_vae.py | 2 +- modules/textual_inversion/textual_inversion.py | 2 +- scripts/prompts_from_file.py | 2 +- 10 files changed, 18 insertions(+), 18 deletions(-) (limited to 'modules/sd_models.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index f5bd8ae4..0ad49f4e 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -26,7 +26,7 @@ class LDSR: global cached_ldsr_model if shared.opts.ldsr_cached and cached_ldsr_model is not None: - print(f"Loading model from cache") + print("Loading model from cache") model: torch.nn.Module = cached_ldsr_model else: print(f"Loading model from {self.modelPath}") diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index c06c590c..e7293683 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module): self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) logger.info(f'vqgan is loaded from: {model_path} [params]') else: - raise ValueError(f'Wrong params!') + raise ValueError('Wrong params!') def forward(self, x): @@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module): elif 'params' in chkpt: self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) else: - raise ValueError(f'Wrong params!') + raise ValueError('Wrong params!') def forward(self, x): return self.main(x) \ No newline at end of file diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index c406ffb3..9d3034ae 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -277,7 +277,7 @@ def load_hypernetwork(filename): print(traceback.format_exc(), file=sys.stderr) else: if shared.loaded_hypernetwork is not None: - print(f"Unloading hypernetwork") + print("Unloading hypernetwork") shared.loaded_hypernetwork = None @@ -417,7 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, initial_step = hypernetwork.step or 0 if initial_step >= steps: - shared.state.textinfo = f"Model has already been trained beyond specified max steps" + shared.state.textinfo = "Model has already been trained beyond specified max steps" return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) diff --git a/modules/images.py b/modules/images.py index 809ad9f7..31d4528d 100644 --- a/modules/images.py +++ b/modules/images.py @@ -599,7 +599,7 @@ def read_info_from_image(image): Negative prompt: {json_info["uc"]} Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" except Exception: - print(f"Error parsing NovelAI image generation parameters:", file=sys.stderr) + print("Error parsing NovelAI image generation parameters:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) return geninfo, items diff --git a/modules/interrogate.py b/modules/interrogate.py index 0068b81c..46935210 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -172,7 +172,7 @@ class InterrogateModels: res += ", " + match except Exception: - print(f"Error interrogating", file=sys.stderr) + print("Error interrogating", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) res += "" diff --git a/modules/safe.py b/modules/safe.py index 479c8b86..1d4c20b9 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -137,15 +137,15 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs): except pickle.UnpicklingError: print(f"Error verifying pickled file from {filename}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr) - print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr) + print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr) + print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr) return None except Exception: print(f"Error verifying pickled file from {filename}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) - print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) + print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) + print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) return None return unsafe_torch_load(filename, *args, **kwargs) diff --git a/modules/sd_models.py b/modules/sd_models.py index 6ca06211..ecdd91c5 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -117,13 +117,13 @@ def select_checkpoint(): return checkpoint_info if len(checkpoints_list) == 0: - print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) + print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) if shared.cmd_opts.ckpt is not None: print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) print(f" - directory {model_path}", file=sys.stderr) if shared.cmd_opts.ckpt_dir is not None: print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) - print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) + print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) exit(1) checkpoint_info = next(iter(checkpoints_list.values())) @@ -324,7 +324,7 @@ def load_model(checkpoint_info=None): script_callbacks.model_loaded_callback(sd_model) - print(f"Model loaded.") + print("Model loaded.") return sd_model @@ -359,5 +359,5 @@ def reload_model_weights(sd_model=None, info=None): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print(f"Weights loaded.") + print("Weights loaded.") return sd_model diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 25638a83..3856418e 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -208,5 +208,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print(f"VAE Weights loaded.") + print("VAE Weights loaded.") return sd_model diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index daf3997b..f6112578 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -263,7 +263,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ initial_step = embedding.step or 0 if initial_step >= steps: - shared.state.textinfo = f"Model has already been trained beyond specified max steps" + shared.state.textinfo = "Model has already been trained beyond specified max steps" return embedding, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 6e118ddb..e8386ed2 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -140,7 +140,7 @@ class Script(scripts.Script): try: args = cmdargs(line) except Exception: - print(f"Error parsing line [line] as commandline:", file=sys.stderr) + print(f"Error parsing line {line} as commandline:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) args = {"prompt": line} else: -- cgit v1.2.3 From 5ba04f9ec050a66e918571f07e8863f157f05b44 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Wed, 21 Dec 2022 13:45:58 +0100 Subject: Attempting to solve slow loads for `safetensors`. Fixes #5893 --- modules/sd_models.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ecdd91c5..cd938656 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -168,7 +168,10 @@ def get_state_dict_from_checkpoint(pl_sd): def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): _, extension = os.path.splitext(checkpoint_file) if extension.lower() == ".safetensors": - pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location) + device = map_location or shared.weight_load_location + if device is None: + device = "cuda:0" if torch.cuda.is_available() else "cpu" + pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) -- cgit v1.2.3 From f55ac33d446185680604e872ceda2ae858821d5c Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 31 Dec 2022 11:27:02 -0500 Subject: validate textual inversion embeddings --- modules/sd_models.py | 3 ++ modules/textual_inversion/textual_inversion.py | 43 +++++++++++++++++++++++--- modules/ui.py | 2 -- 3 files changed, 41 insertions(+), 7 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ecdd91c5..ebd4dff7 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -325,6 +325,9 @@ def load_model(checkpoint_info=None): script_callbacks.model_loaded_callback(sd_model) print("Model loaded.") + + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model + return sd_model diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index f6112578..103ace60 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -23,6 +23,8 @@ class Embedding: self.vec = vec self.name = name self.step = step + self.shape = None + self.vectors = 0 self.cached_checksum = None self.sd_checkpoint = None self.sd_checkpoint_name = None @@ -57,8 +59,10 @@ class EmbeddingDatabase: def __init__(self, embeddings_dir): self.ids_lookup = {} self.word_embeddings = {} + self.skipped_embeddings = [] self.dir_mtime = None self.embeddings_dir = embeddings_dir + self.expected_shape = -1 def register_embedding(self, embedding, model): @@ -75,14 +79,35 @@ class EmbeddingDatabase: return embedding - def load_textual_inversion_embeddings(self): + def get_expected_shape(self): + expected_shape = -1 # initialize with unknown + idx = torch.tensor(0).to(shared.device) + if expected_shape == -1: + try: # matches sd15 signature + first_embedding = shared.sd_model.cond_stage_model.wrapped.transformer.text_model.embeddings.token_embedding.wrapped(idx) + expected_shape = first_embedding.shape[0] + except: + pass + if expected_shape == -1: + try: # matches sd20 signature + first_embedding = shared.sd_model.cond_stage_model.wrapped.model.token_embedding.wrapped(idx) + expected_shape = first_embedding.shape[0] + except: + pass + if expected_shape == -1: + print('Could not determine expected embeddings shape from model') + return expected_shape + + def load_textual_inversion_embeddings(self, force_reload = False): mt = os.path.getmtime(self.embeddings_dir) - if self.dir_mtime is not None and mt <= self.dir_mtime: + if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime: return self.dir_mtime = mt self.ids_lookup.clear() self.word_embeddings.clear() + self.skipped_embeddings = [] + self.expected_shape = self.get_expected_shape() def process_file(path, filename): name = os.path.splitext(filename)[0] @@ -122,7 +147,14 @@ class EmbeddingDatabase: embedding.step = data.get('step', None) embedding.sd_checkpoint = data.get('sd_checkpoint', None) embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) - self.register_embedding(embedding, shared.sd_model) + embedding.vectors = vec.shape[0] + embedding.shape = vec.shape[-1] + + if (self.expected_shape == -1) or (self.expected_shape == embedding.shape): + self.register_embedding(embedding, shared.sd_model) + else: + self.skipped_embeddings.append(name) + # print('Skipping embedding {name}: shape was {shape} expected {expected}'.format(name = name, shape = embedding.shape, expected = self.expected_shape)) for fn in os.listdir(self.embeddings_dir): try: @@ -137,8 +169,9 @@ class EmbeddingDatabase: print(traceback.format_exc(), file=sys.stderr) continue - print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") - print("Embeddings:", ', '.join(self.word_embeddings.keys())) + print("Textual inversion embeddings {num} loaded: {val}".format(num = len(self.word_embeddings), val = ', '.join(self.word_embeddings.keys()))) + if (len(self.skipped_embeddings) > 0): + print("Textual inversion embeddings {num} skipped: {val}".format(num = len(self.skipped_embeddings), val = ', '.join(self.skipped_embeddings))) def find_embedding_at_position(self, tokens, offset): token = tokens[offset] diff --git a/modules/ui.py b/modules/ui.py index 57ee0465..397dd804 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1157,8 +1157,6 @@ def create_ui(): with gr.Column(variant='panel'): submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) - sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() - with gr.Blocks(analytics_enabled=False) as train_interface: with gr.Row().style(equal_height=False): gr.HTML(value="

See wiki for detailed explanation.

") -- cgit v1.2.3 From 311354c0bb8930ea939d6aa6b3edd50c69301320 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 2 Jan 2023 00:38:09 +0300 Subject: fix the issue with training on SD2.0 --- modules/sd_models.py | 2 ++ modules/textual_inversion/textual_inversion.py | 3 +-- 2 files changed, 3 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ebd4dff7..bff8d6c9 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -228,6 +228,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + model.logvar = model.logvar.to(devices.device) # fix for training + sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 66f40367..1e5722e7 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -282,7 +282,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ return embedding, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) - # dataset loading may take a while, so input validations and early returns should be done before this + # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." old_parallel_processing_allowed = shared.parallel_processing_allowed @@ -310,7 +310,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ loss_step = 0 _loss_step = 0 #internal - last_saved_file = "" last_saved_image = "" forced_filename = "" -- cgit v1.2.3 From 8f96f9289981a66741ba770d14f3d27ce335a0fb Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 3 Jan 2023 18:39:14 +0300 Subject: call script callbacks for reloaded model after loading embeddings --- modules/sd_models.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index bff8d6c9..b98b05fc 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -324,12 +324,12 @@ def load_model(checkpoint_info=None): sd_model.eval() shared.sd_model = sd_model + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model + script_callbacks.model_loaded_callback(sd_model) print("Model loaded.") - sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model - return sd_model -- cgit v1.2.3 From 02d7abf5141431b9a3a8a189bb3136c71abd5e79 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 12:35:07 +0300 Subject: helpful error message when trying to load 2.0 without config failing to load model weights from settings won't break generation for currently loaded model anymore --- modules/errors.py | 25 +++++++++++++++++++++++-- modules/sd_models.py | 26 ++++++++++++++++++-------- modules/shared.py | 9 +++++++-- webui.py | 12 ++++++++++-- 4 files changed, 58 insertions(+), 14 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/errors.py b/modules/errors.py index 372dc51a..a668c014 100644 --- a/modules/errors.py +++ b/modules/errors.py @@ -2,9 +2,30 @@ import sys import traceback +def print_error_explanation(message): + lines = message.strip().split("\n") + max_len = max([len(x) for x in lines]) + + print('=' * max_len, file=sys.stderr) + for line in lines: + print(line, file=sys.stderr) + print('=' * max_len, file=sys.stderr) + + +def display(e: Exception, task): + print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + message = str(e) + if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message: + print_error_explanation(""" +The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file. +See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this. + """) + + def run(code, task): try: code() except Exception as e: - print(f"{task}: {type(e).__name__}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) + display(task, e) diff --git a/modules/sd_models.py b/modules/sd_models.py index b98b05fc..6846b74a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -278,6 +278,7 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -312,6 +313,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.use_fp16 = False sd_model = instantiate_from_config(sd_config.model) + load_model_weights(sd_model, checkpoint_info) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -336,10 +338,12 @@ def load_model(checkpoint_info=None): def reload_model_weights(sd_model=None, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() - + if not sd_model: sd_model = shared.sd_model + current_checkpoint_info = sd_model.sd_checkpoint_info + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return @@ -356,13 +360,19 @@ def reload_model_weights(sd_model=None, info=None): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info) - - sd_hijack.model_hijack.hijack(sd_model) - script_callbacks.model_loaded_callback(sd_model) - - if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: - sd_model.to(devices.device) + try: + load_model_weights(sd_model, checkpoint_info) + except Exception as e: + print("Failed to load checkpoint, restoring previous") + load_model_weights(sd_model, current_checkpoint_info) + raise + finally: + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) print("Weights loaded.") + return sd_model diff --git a/modules/shared.py b/modules/shared.py index 23657a93..7588c47b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.interrogate import modules.memmon import modules.styles import modules.devices as devices -from modules import localization, sd_vae, extensions, script_loading +from modules import localization, sd_vae, extensions, script_loading, errors from modules.paths import models_path, script_path, sd_path @@ -494,7 +494,12 @@ class Options: return False if self.data_labels[key].onchange is not None: - self.data_labels[key].onchange() + try: + self.data_labels[key].onchange() + except Exception as e: + errors.display(e, f"changing setting {key} to {value}") + setattr(self, key, oldval) + return False return True diff --git a/webui.py b/webui.py index c7d55a97..13375e71 100644 --- a/webui.py +++ b/webui.py @@ -9,7 +9,7 @@ from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.gzip import GZipMiddleware -from modules import import_hook +from modules import import_hook, errors from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call from modules.paths import script_path @@ -61,7 +61,15 @@ def initialize(): modelloader.load_upscalers() modules.sd_vae.refresh_vae_list() - modules.sd_models.load_model() + + try: + modules.sd_models.load_model() + except Exception as e: + errors.display(e, "loading stable diffusion model") + print("", file=sys.stderr) + print("Stable diffusion model failed to load, exiting", file=sys.stderr) + exit(1) + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) -- cgit v1.2.3 From 8d8a05a3bbb50fdfeab51679a919d2487bd97976 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 12:47:42 +0300 Subject: find configs for models at runtime rather than when starting --- modules/sd_hijack_inpainting.py | 5 ++++- modules/sd_models.py | 31 ++++++++++++++++++------------- 2 files changed, 22 insertions(+), 14 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 3c214a35..31d2c898 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -97,8 +97,11 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F def should_hijack_inpainting(checkpoint_info): + from modules import sd_models + ckpt_basename = os.path.basename(checkpoint_info.filename).lower() - cfg_basename = os.path.basename(checkpoint_info.config).lower() + cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() + return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename diff --git a/modules/sd_models.py b/modules/sd_models.py index 6846b74a..6dca4ddf 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -20,7 +20,7 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) -CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config']) +CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) checkpoints_list = {} checkpoints_loaded = collections.OrderedDict() @@ -48,6 +48,14 @@ def checkpoint_tiles(): return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key) +def find_checkpoint_config(info): + config = os.path.splitext(info.filename)[0] + ".yaml" + if os.path.exists(config): + return config + + return shared.cmd_opts.config + + def list_models(): checkpoints_list.clear() model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"]) @@ -73,7 +81,7 @@ def list_models(): if os.path.exists(cmd_ckpt): h = model_hash(cmd_ckpt) title, short_model_name = modeltitle(cmd_ckpt, h) - checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config) + checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) shared.opts.data['sd_model_checkpoint'] = title elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) @@ -81,12 +89,7 @@ def list_models(): h = model_hash(filename) title, short_model_name = modeltitle(filename, h) - basename, _ = os.path.splitext(filename) - config = basename + ".yaml" - if not os.path.exists(config): - config = shared.cmd_opts.config - - checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config) + checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) def get_closet_checkpoint_match(searchString): @@ -282,9 +285,10 @@ def enable_midas_autodownload(): def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() + checkpoint_config = find_checkpoint_config(checkpoint_info) - if checkpoint_info.config != shared.cmd_opts.config: - print(f"Loading config from: {checkpoint_info.config}") + if checkpoint_config != shared.cmd_opts.config: + print(f"Loading config from: {checkpoint_config}") if shared.sd_model: sd_hijack.model_hijack.undo_hijack(shared.sd_model) @@ -292,7 +296,7 @@ def load_model(checkpoint_info=None): gc.collect() devices.torch_gc() - sd_config = OmegaConf.load(checkpoint_info.config) + sd_config = OmegaConf.load(checkpoint_config) if should_hijack_inpainting(checkpoint_info): # Hardcoded config for now... @@ -302,7 +306,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.finetune_keys = None # Create a "fake" config with a different name so that we know to unload it when switching models. - checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml")) + checkpoint_info = checkpoint_info._replace(config=checkpoint_config.replace(".yaml", "-inpainting.yaml")) if not hasattr(sd_config.model.params, "use_ema"): sd_config.model.params.use_ema = False @@ -343,11 +347,12 @@ def reload_model_weights(sd_model=None, info=None): sd_model = shared.sd_model current_checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_config = find_checkpoint_config(current_checkpoint_info) if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): + if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): del sd_model checkpoints_loaded.clear() load_model(checkpoint_info) -- cgit v1.2.3 From 0cd6399b8b1699b8b7acad6f0ad2988111fe618e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 14:29:13 +0300 Subject: fix broken inpainting model --- modules/sd_models.py | 3 --- 1 file changed, 3 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 6dca4ddf..a568823d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -305,9 +305,6 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.in_channels = 9 sd_config.model.params.finetune_keys = None - # Create a "fake" config with a different name so that we know to unload it when switching models. - checkpoint_info = checkpoint_info._replace(config=checkpoint_config.replace(".yaml", "-inpainting.yaml")) - if not hasattr(sd_config.model.params, "use_ema"): sd_config.model.params.use_ema = False -- cgit v1.2.3 From 642142556d8ecdea9beb86d7618b628b1803ab98 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 15:09:53 +0300 Subject: use commandline-supplied cuda device name instead of cuda:0 for safetensors PR that doesn't fix anything --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ee918f24..76a89e88 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -173,7 +173,7 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None if extension.lower() == ".safetensors": device = map_location or shared.weight_load_location if device is None: - device = "cuda:0" if torch.cuda.is_available() else "cpu" + device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu" pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) -- cgit v1.2.3