From 5ba04f9ec050a66e918571f07e8863f157f05b44 Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Wed, 21 Dec 2022 13:45:58 +0100 Subject: Attempting to solve slow loads for `safetensors`. Fixes #5893 --- modules/sd_models.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ecdd91c5..cd938656 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -168,7 +168,10 @@ def get_state_dict_from_checkpoint(pl_sd): def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): _, extension = os.path.splitext(checkpoint_file) if extension.lower() == ".safetensors": - pl_sd = safetensors.torch.load_file(checkpoint_file, device=map_location or shared.weight_load_location) + device = map_location or shared.weight_load_location + if device is None: + device = "cuda:0" if torch.cuda.is_available() else "cpu" + pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) -- cgit v1.2.3 From f55ac33d446185680604e872ceda2ae858821d5c Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 31 Dec 2022 11:27:02 -0500 Subject: validate textual inversion embeddings --- modules/sd_models.py | 3 ++ modules/textual_inversion/textual_inversion.py | 43 +++++++++++++++++++++++--- modules/ui.py | 2 -- 3 files changed, 41 insertions(+), 7 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ecdd91c5..ebd4dff7 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -325,6 +325,9 @@ def load_model(checkpoint_info=None): script_callbacks.model_loaded_callback(sd_model) print("Model loaded.") + + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model + return sd_model diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index f6112578..103ace60 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -23,6 +23,8 @@ class Embedding: self.vec = vec self.name = name self.step = step + self.shape = None + self.vectors = 0 self.cached_checksum = None self.sd_checkpoint = None self.sd_checkpoint_name = None @@ -57,8 +59,10 @@ class EmbeddingDatabase: def __init__(self, embeddings_dir): self.ids_lookup = {} self.word_embeddings = {} + self.skipped_embeddings = [] self.dir_mtime = None self.embeddings_dir = embeddings_dir + self.expected_shape = -1 def register_embedding(self, embedding, model): @@ -75,14 +79,35 @@ class EmbeddingDatabase: return embedding - def load_textual_inversion_embeddings(self): + def get_expected_shape(self): + expected_shape = -1 # initialize with unknown + idx = torch.tensor(0).to(shared.device) + if expected_shape == -1: + try: # matches sd15 signature + first_embedding = shared.sd_model.cond_stage_model.wrapped.transformer.text_model.embeddings.token_embedding.wrapped(idx) + expected_shape = first_embedding.shape[0] + except: + pass + if expected_shape == -1: + try: # matches sd20 signature + first_embedding = shared.sd_model.cond_stage_model.wrapped.model.token_embedding.wrapped(idx) + expected_shape = first_embedding.shape[0] + except: + pass + if expected_shape == -1: + print('Could not determine expected embeddings shape from model') + return expected_shape + + def load_textual_inversion_embeddings(self, force_reload = False): mt = os.path.getmtime(self.embeddings_dir) - if self.dir_mtime is not None and mt <= self.dir_mtime: + if not force_reload and self.dir_mtime is not None and mt <= self.dir_mtime: return self.dir_mtime = mt self.ids_lookup.clear() self.word_embeddings.clear() + self.skipped_embeddings = [] + self.expected_shape = self.get_expected_shape() def process_file(path, filename): name = os.path.splitext(filename)[0] @@ -122,7 +147,14 @@ class EmbeddingDatabase: embedding.step = data.get('step', None) embedding.sd_checkpoint = data.get('sd_checkpoint', None) embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) - self.register_embedding(embedding, shared.sd_model) + embedding.vectors = vec.shape[0] + embedding.shape = vec.shape[-1] + + if (self.expected_shape == -1) or (self.expected_shape == embedding.shape): + self.register_embedding(embedding, shared.sd_model) + else: + self.skipped_embeddings.append(name) + # print('Skipping embedding {name}: shape was {shape} expected {expected}'.format(name = name, shape = embedding.shape, expected = self.expected_shape)) for fn in os.listdir(self.embeddings_dir): try: @@ -137,8 +169,9 @@ class EmbeddingDatabase: print(traceback.format_exc(), file=sys.stderr) continue - print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") - print("Embeddings:", ', '.join(self.word_embeddings.keys())) + print("Textual inversion embeddings {num} loaded: {val}".format(num = len(self.word_embeddings), val = ', '.join(self.word_embeddings.keys()))) + if (len(self.skipped_embeddings) > 0): + print("Textual inversion embeddings {num} skipped: {val}".format(num = len(self.skipped_embeddings), val = ', '.join(self.skipped_embeddings))) def find_embedding_at_position(self, tokens, offset): token = tokens[offset] diff --git a/modules/ui.py b/modules/ui.py index 57ee0465..397dd804 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1157,8 +1157,6 @@ def create_ui(): with gr.Column(variant='panel'): submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) - sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() - with gr.Blocks(analytics_enabled=False) as train_interface: with gr.Row().style(equal_height=False): gr.HTML(value="

See wiki for detailed explanation.

") -- cgit v1.2.3 From 311354c0bb8930ea939d6aa6b3edd50c69301320 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 2 Jan 2023 00:38:09 +0300 Subject: fix the issue with training on SD2.0 --- modules/sd_models.py | 2 ++ modules/textual_inversion/textual_inversion.py | 3 +-- 2 files changed, 3 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ebd4dff7..bff8d6c9 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -228,6 +228,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + model.logvar = model.logvar.to(devices.device) # fix for training + sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 66f40367..1e5722e7 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -282,7 +282,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ return embedding, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) - # dataset loading may take a while, so input validations and early returns should be done before this + # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." old_parallel_processing_allowed = shared.parallel_processing_allowed @@ -310,7 +310,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ loss_step = 0 _loss_step = 0 #internal - last_saved_file = "" last_saved_image = "" forced_filename = "" -- cgit v1.2.3 From 8f96f9289981a66741ba770d14f3d27ce335a0fb Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 3 Jan 2023 18:39:14 +0300 Subject: call script callbacks for reloaded model after loading embeddings --- modules/sd_models.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index bff8d6c9..b98b05fc 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -324,12 +324,12 @@ def load_model(checkpoint_info=None): sd_model.eval() shared.sd_model = sd_model + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model + script_callbacks.model_loaded_callback(sd_model) print("Model loaded.") - sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload = True) # Reload embeddings after model load as they may or may not fit the model - return sd_model -- cgit v1.2.3 From 02d7abf5141431b9a3a8a189bb3136c71abd5e79 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 12:35:07 +0300 Subject: helpful error message when trying to load 2.0 without config failing to load model weights from settings won't break generation for currently loaded model anymore --- modules/errors.py | 25 +++++++++++++++++++++++-- modules/sd_models.py | 26 ++++++++++++++++++-------- modules/shared.py | 9 +++++++-- webui.py | 12 ++++++++++-- 4 files changed, 58 insertions(+), 14 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/errors.py b/modules/errors.py index 372dc51a..a668c014 100644 --- a/modules/errors.py +++ b/modules/errors.py @@ -2,9 +2,30 @@ import sys import traceback +def print_error_explanation(message): + lines = message.strip().split("\n") + max_len = max([len(x) for x in lines]) + + print('=' * max_len, file=sys.stderr) + for line in lines: + print(line, file=sys.stderr) + print('=' * max_len, file=sys.stderr) + + +def display(e: Exception, task): + print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + message = str(e) + if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message: + print_error_explanation(""" +The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file. +See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this. + """) + + def run(code, task): try: code() except Exception as e: - print(f"{task}: {type(e).__name__}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) + display(task, e) diff --git a/modules/sd_models.py b/modules/sd_models.py index b98b05fc..6846b74a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -278,6 +278,7 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -312,6 +313,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.use_fp16 = False sd_model = instantiate_from_config(sd_config.model) + load_model_weights(sd_model, checkpoint_info) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: @@ -336,10 +338,12 @@ def load_model(checkpoint_info=None): def reload_model_weights(sd_model=None, info=None): from modules import lowvram, devices, sd_hijack checkpoint_info = info or select_checkpoint() - + if not sd_model: sd_model = shared.sd_model + current_checkpoint_info = sd_model.sd_checkpoint_info + if sd_model.sd_model_checkpoint == checkpoint_info.filename: return @@ -356,13 +360,19 @@ def reload_model_weights(sd_model=None, info=None): sd_hijack.model_hijack.undo_hijack(sd_model) - load_model_weights(sd_model, checkpoint_info) - - sd_hijack.model_hijack.hijack(sd_model) - script_callbacks.model_loaded_callback(sd_model) - - if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: - sd_model.to(devices.device) + try: + load_model_weights(sd_model, checkpoint_info) + except Exception as e: + print("Failed to load checkpoint, restoring previous") + load_model_weights(sd_model, current_checkpoint_info) + raise + finally: + sd_hijack.model_hijack.hijack(sd_model) + script_callbacks.model_loaded_callback(sd_model) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) print("Weights loaded.") + return sd_model diff --git a/modules/shared.py b/modules/shared.py index 23657a93..7588c47b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.interrogate import modules.memmon import modules.styles import modules.devices as devices -from modules import localization, sd_vae, extensions, script_loading +from modules import localization, sd_vae, extensions, script_loading, errors from modules.paths import models_path, script_path, sd_path @@ -494,7 +494,12 @@ class Options: return False if self.data_labels[key].onchange is not None: - self.data_labels[key].onchange() + try: + self.data_labels[key].onchange() + except Exception as e: + errors.display(e, f"changing setting {key} to {value}") + setattr(self, key, oldval) + return False return True diff --git a/webui.py b/webui.py index c7d55a97..13375e71 100644 --- a/webui.py +++ b/webui.py @@ -9,7 +9,7 @@ from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.gzip import GZipMiddleware -from modules import import_hook +from modules import import_hook, errors from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call from modules.paths import script_path @@ -61,7 +61,15 @@ def initialize(): modelloader.load_upscalers() modules.sd_vae.refresh_vae_list() - modules.sd_models.load_model() + + try: + modules.sd_models.load_model() + except Exception as e: + errors.display(e, "loading stable diffusion model") + print("", file=sys.stderr) + print("Stable diffusion model failed to load, exiting", file=sys.stderr) + exit(1) + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) -- cgit v1.2.3 From 8d8a05a3bbb50fdfeab51679a919d2487bd97976 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 12:47:42 +0300 Subject: find configs for models at runtime rather than when starting --- modules/sd_hijack_inpainting.py | 5 ++++- modules/sd_models.py | 31 ++++++++++++++++++------------- 2 files changed, 22 insertions(+), 14 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 3c214a35..31d2c898 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -97,8 +97,11 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F def should_hijack_inpainting(checkpoint_info): + from modules import sd_models + ckpt_basename = os.path.basename(checkpoint_info.filename).lower() - cfg_basename = os.path.basename(checkpoint_info.config).lower() + cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() + return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename diff --git a/modules/sd_models.py b/modules/sd_models.py index 6846b74a..6dca4ddf 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -20,7 +20,7 @@ from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inp model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) -CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config']) +CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) checkpoints_list = {} checkpoints_loaded = collections.OrderedDict() @@ -48,6 +48,14 @@ def checkpoint_tiles(): return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key) +def find_checkpoint_config(info): + config = os.path.splitext(info.filename)[0] + ".yaml" + if os.path.exists(config): + return config + + return shared.cmd_opts.config + + def list_models(): checkpoints_list.clear() model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"]) @@ -73,7 +81,7 @@ def list_models(): if os.path.exists(cmd_ckpt): h = model_hash(cmd_ckpt) title, short_model_name = modeltitle(cmd_ckpt, h) - checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config) + checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) shared.opts.data['sd_model_checkpoint'] = title elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) @@ -81,12 +89,7 @@ def list_models(): h = model_hash(filename) title, short_model_name = modeltitle(filename, h) - basename, _ = os.path.splitext(filename) - config = basename + ".yaml" - if not os.path.exists(config): - config = shared.cmd_opts.config - - checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config) + checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) def get_closet_checkpoint_match(searchString): @@ -282,9 +285,10 @@ def enable_midas_autodownload(): def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() + checkpoint_config = find_checkpoint_config(checkpoint_info) - if checkpoint_info.config != shared.cmd_opts.config: - print(f"Loading config from: {checkpoint_info.config}") + if checkpoint_config != shared.cmd_opts.config: + print(f"Loading config from: {checkpoint_config}") if shared.sd_model: sd_hijack.model_hijack.undo_hijack(shared.sd_model) @@ -292,7 +296,7 @@ def load_model(checkpoint_info=None): gc.collect() devices.torch_gc() - sd_config = OmegaConf.load(checkpoint_info.config) + sd_config = OmegaConf.load(checkpoint_config) if should_hijack_inpainting(checkpoint_info): # Hardcoded config for now... @@ -302,7 +306,7 @@ def load_model(checkpoint_info=None): sd_config.model.params.finetune_keys = None # Create a "fake" config with a different name so that we know to unload it when switching models. - checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml")) + checkpoint_info = checkpoint_info._replace(config=checkpoint_config.replace(".yaml", "-inpainting.yaml")) if not hasattr(sd_config.model.params, "use_ema"): sd_config.model.params.use_ema = False @@ -343,11 +347,12 @@ def reload_model_weights(sd_model=None, info=None): sd_model = shared.sd_model current_checkpoint_info = sd_model.sd_checkpoint_info + checkpoint_config = find_checkpoint_config(current_checkpoint_info) if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): + if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): del sd_model checkpoints_loaded.clear() load_model(checkpoint_info) -- cgit v1.2.3 From 0cd6399b8b1699b8b7acad6f0ad2988111fe618e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 14:29:13 +0300 Subject: fix broken inpainting model --- modules/sd_models.py | 3 --- 1 file changed, 3 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 6dca4ddf..a568823d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -305,9 +305,6 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.in_channels = 9 sd_config.model.params.finetune_keys = None - # Create a "fake" config with a different name so that we know to unload it when switching models. - checkpoint_info = checkpoint_info._replace(config=checkpoint_config.replace(".yaml", "-inpainting.yaml")) - if not hasattr(sd_config.model.params, "use_ema"): sd_config.model.params.use_ema = False -- cgit v1.2.3 From 642142556d8ecdea9beb86d7618b628b1803ab98 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 15:09:53 +0300 Subject: use commandline-supplied cuda device name instead of cuda:0 for safetensors PR that doesn't fix anything --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index ee918f24..76a89e88 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -173,7 +173,7 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None if extension.lower() == ".safetensors": device = map_location or shared.weight_load_location if device is None: - device = "cuda:0" if torch.cuda.is_available() else "cpu" + device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu" pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) -- cgit v1.2.3 From 552d7b90bf483c160cd20740f7acd7fccbc02e6f Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Mon, 9 Jan 2023 18:34:26 -0500 Subject: allow model load if previous model failed --- modules/sd_models.py | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 76a89e88..0a6d55ca 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -49,6 +49,9 @@ def checkpoint_tiles(): def find_checkpoint_config(info): + if info is None: + return shared.cmd_opts.config + config = os.path.splitext(info.filename)[0] + ".yaml" if os.path.exists(config): return config @@ -345,14 +348,16 @@ def reload_model_weights(sd_model=None, info=None): if not sd_model: sd_model = shared.sd_model + if sd_model is None: # previous model load failed + current_checkpoint_info = None + else: + current_checkpoint_info = sd_model.sd_checkpoint_info + if sd_model.sd_model_checkpoint == checkpoint_info.filename: + return - current_checkpoint_info = sd_model.sd_checkpoint_info checkpoint_config = find_checkpoint_config(current_checkpoint_info) - if sd_model.sd_model_checkpoint == checkpoint_info.filename: - return - - if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): + if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): del sd_model checkpoints_loaded.clear() load_model(checkpoint_info) -- cgit v1.2.3 From 0c3feb202c5714abd50d879c1db2cd9a71ce93e3 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 10 Jan 2023 14:08:29 +0300 Subject: disable torch weight initialization and CLIP downloading/reading checkpoint to speedup creating sd model from config --- modules/sd_disable_initialization.py | 44 ++++++++++++++++++++++++++++++++++++ modules/sd_models.py | 5 ++-- 2 files changed, 47 insertions(+), 2 deletions(-) create mode 100644 modules/sd_disable_initialization.py (limited to 'modules/sd_models.py') diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py new file mode 100644 index 00000000..c9a3b5e4 --- /dev/null +++ b/modules/sd_disable_initialization.py @@ -0,0 +1,44 @@ +import ldm.modules.encoders.modules +import open_clip +import torch + + +class DisableInitialization: + """ + When an object of this class enters a `with` block, it starts preventing torch's layer initialization + functions from working, and changes CLIP and OpenCLIP to not download model weights. When it leaves, + reverts everything to how it was. + + Use like this: + ``` + with DisableInitialization(): + do_things() + ``` + """ + + def __enter__(self): + def do_nothing(*args, **kwargs): + pass + + def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs): + return self.create_model_and_transforms(*args, pretrained=None, **kwargs) + + def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs): + return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) + + self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ + self.init_no_grad_normal = torch.nn.init._no_grad_normal_ + self.create_model_and_transforms = open_clip.create_model_and_transforms + self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained + + torch.nn.init.kaiming_uniform_ = do_nothing + torch.nn.init._no_grad_normal_ = do_nothing + open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained + ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained + + def __exit__(self, exc_type, exc_val, exc_tb): + torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform + torch.nn.init._no_grad_normal_ = self.init_no_grad_normal + open_clip.create_model_and_transforms = self.create_model_and_transforms + ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained + diff --git a/modules/sd_models.py b/modules/sd_models.py index 0a6d55ca..ee241032 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -13,7 +13,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -319,7 +319,8 @@ def load_model(checkpoint_info=None): if shared.cmd_opts.no_half: sd_config.model.params.unet_config.params.use_fp16 = False - sd_model = instantiate_from_config(sd_config.model) + with sd_disable_initialization.DisableInitialization(): + sd_model = instantiate_from_config(sd_config.model) load_model_weights(sd_model, checkpoint_info) -- cgit v1.2.3 From ce3f639ec8758ce2bc90483336361d2dc25acd3a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 10 Jan 2023 16:51:04 +0300 Subject: add more stuff to ignore when creating model from config prevent .vae.safetensors files from being listed as stable diffusion models --- modules/modelloader.py | 4 +++- modules/sd_disable_initialization.py | 29 +++++++++++++++++++++++++---- modules/sd_models.py | 32 ++++++++++++++++++++++++++++---- 3 files changed, 56 insertions(+), 9 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/modelloader.py b/modules/modelloader.py index 6a1a7ac8..e9aa514e 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -10,7 +10,7 @@ from modules.upscaler import Upscaler from modules.paths import script_path, models_path -def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None) -> list: +def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list: """ A one-and done loader to try finding the desired models in specified directories. @@ -45,6 +45,8 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None full_path = file if os.path.isdir(full_path): continue + if ext_blacklist is not None and any([full_path.endswith(x) for x in ext_blacklist]): + continue if len(ext_filter) != 0: model_name, extension = os.path.splitext(file) if extension not in ext_filter: diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index c9a3b5e4..9942bd7e 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -1,15 +1,19 @@ import ldm.modules.encoders.modules import open_clip import torch +import transformers.utils.hub class DisableInitialization: """ - When an object of this class enters a `with` block, it starts preventing torch's layer initialization - functions from working, and changes CLIP and OpenCLIP to not download model weights. When it leaves, - reverts everything to how it was. + When an object of this class enters a `with` block, it starts: + - preventing torch's layer initialization functions from working + - changes CLIP and OpenCLIP to not download model weights + - changes CLIP to not make requests to check if there is a new version of a file you already have - Use like this: + When it leaves the block, it reverts everything to how it was before. + + Use it like this: ``` with DisableInitialization(): do_things() @@ -26,19 +30,36 @@ class DisableInitialization: def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs): return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) + def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): + + # this file is always 404, prevent making request + if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json': + raise transformers.utils.hub.EntryNotFoundError + + try: + return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=True, **kwargs) + except Exception as e: + return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs) + self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ self.init_no_grad_normal = torch.nn.init._no_grad_normal_ + self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_ self.create_model_and_transforms = open_clip.create_model_and_transforms self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained + self.transformers_utils_hub_get_from_cache = transformers.utils.hub.get_from_cache torch.nn.init.kaiming_uniform_ = do_nothing torch.nn.init._no_grad_normal_ = do_nothing + torch.nn.init._no_grad_uniform_ = do_nothing open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained + transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache def __exit__(self, exc_type, exc_val, exc_tb): torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform torch.nn.init._no_grad_normal_ = self.init_no_grad_normal + torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_ open_clip.create_model_and_transforms = self.create_model_and_transforms ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained + transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache diff --git a/modules/sd_models.py b/modules/sd_models.py index ee241032..1bb9088b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -2,6 +2,7 @@ import collections import os.path import sys import gc +import time from collections import namedtuple import torch import re @@ -61,7 +62,7 @@ def find_checkpoint_config(info): def list_models(): checkpoints_list.clear() - model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"]) + model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"]) def modeltitle(path, shorthash): abspath = os.path.abspath(path) @@ -288,6 +289,17 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper +class Timer: + def __init__(self): + self.start = time.time() + + def elapsed(self): + end = time.time() + res = end - self.start + self.start = end + return res + + def load_model(checkpoint_info=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() @@ -319,11 +331,17 @@ def load_model(checkpoint_info=None): if shared.cmd_opts.no_half: sd_config.model.params.unet_config.params.use_fp16 = False + timer = Timer() + with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) + elapsed_create = timer.elapsed() + load_model_weights(sd_model, checkpoint_info) + elapsed_load_weights = timer.elapsed() + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) else: @@ -338,7 +356,9 @@ def load_model(checkpoint_info=None): script_callbacks.model_loaded_callback(sd_model) - print("Model loaded.") + elapsed_the_rest = timer.elapsed() + + print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).") return sd_model @@ -349,7 +369,7 @@ def reload_model_weights(sd_model=None, info=None): if not sd_model: sd_model = shared.sd_model - if sd_model is None: # previous model load failed + if sd_model is None: # previous model load failed current_checkpoint_info = None else: current_checkpoint_info = sd_model.sd_checkpoint_info @@ -371,6 +391,8 @@ def reload_model_weights(sd_model=None, info=None): sd_hijack.model_hijack.undo_hijack(sd_model) + timer = Timer() + try: load_model_weights(sd_model, checkpoint_info) except Exception as e: @@ -384,6 +406,8 @@ def reload_model_weights(sd_model=None, info=None): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print("Weights loaded.") + elapsed = timer.elapsed() + + print(f"Weights loaded in {elapsed:.1f}s.") return sd_model -- cgit v1.2.3 From 0f8603a55988d22616b17140e6c4a7e9d0736af5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 10 Jan 2023 17:46:59 +0300 Subject: add support for transformers==4.25.1 add fallback for when quick model creation fails --- modules/sd_disable_initialization.py | 42 ++++++++++++++++++++++++++++++------ modules/sd_models.py | 8 +++++-- 2 files changed, 42 insertions(+), 8 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index 9942bd7e..088ac24b 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -30,30 +30,53 @@ class DisableInitialization: def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs): return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) - def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): + def transformers_modeling_utils_load_pretrained_model(*args, **kwargs): + args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug + return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs) + + def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs): # this file is always 404, prevent making request if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json': raise transformers.utils.hub.EntryNotFoundError try: - return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=True, **kwargs) + return original(url, *args, local_files_only=True, **kwargs) except Exception as e: - return self.transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs) + return original(url, *args, local_files_only=False, **kwargs) + + def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs) + + def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs) + + def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs): + return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs) self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ self.init_no_grad_normal = torch.nn.init._no_grad_normal_ self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_ self.create_model_and_transforms = open_clip.create_model_and_transforms self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained - self.transformers_utils_hub_get_from_cache = transformers.utils.hub.get_from_cache + self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None) + self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None) + self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None) + self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None) torch.nn.init.kaiming_uniform_ = do_nothing torch.nn.init._no_grad_normal_ = do_nothing torch.nn.init._no_grad_uniform_ = do_nothing open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained - transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache + if self.transformers_modeling_utils_load_pretrained_model is not None: + transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model + if self.transformers_tokenization_utils_base_cached_file is not None: + transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file + if self.transformers_configuration_utils_cached_file is not None: + transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file + if self.transformers_utils_hub_get_from_cache is not None: + transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache def __exit__(self, exc_type, exc_val, exc_tb): torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform @@ -61,5 +84,12 @@ class DisableInitialization: torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_ open_clip.create_model_and_transforms = self.create_model_and_transforms ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained - transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache + if self.transformers_modeling_utils_load_pretrained_model is not None: + transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model + if self.transformers_tokenization_utils_base_cached_file is not None: + transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file + if self.transformers_configuration_utils_cached_file is not None: + transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file + if self.transformers_utils_hub_get_from_cache is not None: + transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache diff --git a/modules/sd_models.py b/modules/sd_models.py index 1bb9088b..b5bc12f0 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,7 +14,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting @@ -333,7 +333,11 @@ def load_model(checkpoint_info=None): timer = Timer() - with sd_disable_initialization.DisableInitialization(): + try: + with sd_disable_initialization.DisableInitialization(): + sd_model = instantiate_from_config(sd_config.model) + except Exception as e: + print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) sd_model = instantiate_from_config(sd_config.model) elapsed_create = timer.elapsed() -- cgit v1.2.3 From 4fdacd31e48c6a7a35c1c25c559932585e8addde Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 11 Jan 2023 10:24:56 +0300 Subject: possible fix for fallback for fast model creation from config --- modules/sd_models.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index b5bc12f0..a0a8a909 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -337,6 +337,9 @@ def load_model(checkpoint_info=None): with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) except Exception as e: + pass + + if sd_model is None: print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) sd_model = instantiate_from_config(sd_config.model) -- cgit v1.2.3 From 1a23dc32ac5e16fac10115cafd0b841abd06e59f Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 11 Jan 2023 10:34:36 +0300 Subject: possible fix for fallback for fast model creation from config, attempt 2 --- modules/sd_models.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index a0a8a909..084ba7fa 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -333,6 +333,7 @@ def load_model(checkpoint_info=None): timer = Timer() + sd_model = None try: with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) -- cgit v1.2.3 From 4bd490727e156ff53107d53416d6b89be86f2a62 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 11 Jan 2023 18:54:04 +0300 Subject: fix for an error caused by skipping initialization, for realsies this time: TypeError: expected str, bytes or os.PathLike object, not NoneType --- modules/sd_disable_initialization.py | 71 ++++++++++++++++-------------------- modules/sd_models.py | 1 + 2 files changed, 33 insertions(+), 39 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_disable_initialization.py b/modules/sd_disable_initialization.py index 088ac24b..c72d8efc 100644 --- a/modules/sd_disable_initialization.py +++ b/modules/sd_disable_initialization.py @@ -20,6 +20,19 @@ class DisableInitialization: ``` """ + def __init__(self): + self.replaced = [] + + def replace(self, obj, field, func): + original = getattr(obj, field, None) + if original is None: + return None + + self.replaced.append((obj, field, original)) + setattr(obj, field, func) + + return original + def __enter__(self): def do_nothing(*args, **kwargs): pass @@ -37,11 +50,14 @@ class DisableInitialization: def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs): # this file is always 404, prevent making request - if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json': - raise transformers.utils.hub.EntryNotFoundError + if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json': + return None try: - return original(url, *args, local_files_only=True, **kwargs) + res = original(url, *args, local_files_only=True, **kwargs) + if res is None: + res = original(url, *args, local_files_only=False, **kwargs) + return res except Exception as e: return original(url, *args, local_files_only=False, **kwargs) @@ -54,42 +70,19 @@ class DisableInitialization: def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs): return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs) - self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ - self.init_no_grad_normal = torch.nn.init._no_grad_normal_ - self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_ - self.create_model_and_transforms = open_clip.create_model_and_transforms - self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained - self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None) - self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None) - self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None) - self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None) - - torch.nn.init.kaiming_uniform_ = do_nothing - torch.nn.init._no_grad_normal_ = do_nothing - torch.nn.init._no_grad_uniform_ = do_nothing - open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained - ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained - if self.transformers_modeling_utils_load_pretrained_model is not None: - transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model - if self.transformers_tokenization_utils_base_cached_file is not None: - transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file - if self.transformers_configuration_utils_cached_file is not None: - transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file - if self.transformers_utils_hub_get_from_cache is not None: - transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache + self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing) + self.replace(torch.nn.init, '_no_grad_normal_', do_nothing) + self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing) + self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained) + self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained) + self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model) + self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file) + self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file) + self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache) def __exit__(self, exc_type, exc_val, exc_tb): - torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform - torch.nn.init._no_grad_normal_ = self.init_no_grad_normal - torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_ - open_clip.create_model_and_transforms = self.create_model_and_transforms - ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained - if self.transformers_modeling_utils_load_pretrained_model is not None: - transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model - if self.transformers_tokenization_utils_base_cached_file is not None: - transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file - if self.transformers_configuration_utils_cached_file is not None: - transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file - if self.transformers_utils_hub_get_from_cache is not None: - transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache + for obj, field, original in self.replaced: + setattr(obj, field, original) + + self.replaced.clear() diff --git a/modules/sd_models.py b/modules/sd_models.py index 084ba7fa..c466f273 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -334,6 +334,7 @@ def load_model(checkpoint_info=None): timer = Timer() sd_model = None + try: with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) -- cgit v1.2.3 From a95f1353089bdeaccd7c266b40cdd79efedfe632 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 09:56:59 +0300 Subject: change hash to sha256 --- .gitignore | 1 + modules/api/api.py | 2 +- modules/api/models.py | 3 +- modules/hashes.py | 72 +++++++++++++++ modules/hypernetworks/hypernetwork.py | 4 +- modules/sd_models.py | 116 ++++++++++++++++--------- modules/shared.py | 2 +- modules/textual_inversion/textual_inversion.py | 6 +- webui.py | 2 + 9 files changed, 158 insertions(+), 50 deletions(-) create mode 100644 modules/hashes.py (limited to 'modules/sd_models.py') diff --git a/.gitignore b/.gitignore index 21fa26a7..0b1d17ca 100644 --- a/.gitignore +++ b/.gitignore @@ -32,3 +32,4 @@ notification.mp3 /extensions /test/stdout.txt /test/stderr.txt +/cache.json diff --git a/modules/api/api.py b/modules/api/api.py index 5767ba90..9814bbc2 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -371,7 +371,7 @@ class Api: return upscalers def get_sd_models(self): - return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] + return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] def get_hypernetworks(self): return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] diff --git a/modules/api/models.py b/modules/api/models.py index c78095ca..1eb1fcf1 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -224,7 +224,8 @@ class UpscalerItem(BaseModel): class SDModelItem(BaseModel): title: str = Field(title="Title") model_name: str = Field(title="Model Name") - hash: str = Field(title="Hash") + hash: Optional[str] = Field(title="Short hash") + sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") config: str = Field(title="Config file") diff --git a/modules/hashes.py b/modules/hashes.py new file mode 100644 index 00000000..ebfbd90c --- /dev/null +++ b/modules/hashes.py @@ -0,0 +1,72 @@ +import hashlib +import json +import os.path + +import filelock + + +cache_filename = "cache.json" +cache_data = None + + +def dump_cache(): + with filelock.FileLock(cache_filename+".lock"): + with open(cache_filename, "w", encoding="utf8") as file: + json.dump(cache_data, file, indent=4) + + +def cache(subsection): + global cache_data + + if cache_data is None: + with filelock.FileLock(cache_filename+".lock"): + if not os.path.isfile(cache_filename): + cache_data = {} + else: + with open(cache_filename, "r", encoding="utf8") as file: + cache_data = json.load(file) + + s = cache_data.get(subsection, {}) + cache_data[subsection] = s + + return s + + +def calculate_sha256(filename): + hash_sha256 = hashlib.sha256() + + with open(filename, "rb") as f: + for chunk in iter(lambda: f.read(4096), b""): + hash_sha256.update(chunk) + + return hash_sha256.hexdigest() + + +def sha256(filename, title): + hashes = cache("hashes") + ondisk_mtime = os.path.getmtime(filename) + + if title in hashes: + cached_sha256 = hashes[title].get("sha256", None) + cached_mtime = hashes[title].get("mtime", 0) + + if ondisk_mtime <= cached_mtime and cached_sha256 is not None: + return cached_sha256 + + print(f"Calculating sha256 for {filename}: ", end='') + sha256_value = calculate_sha256(filename) + print(f"{sha256_value}") + + hashes[title] = { + "mtime": ondisk_mtime, + "sha256": sha256_value, + } + + dump_cache() + + return sha256_value + + + + + diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 83cbb4f0..9b5f2e79 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -509,7 +509,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, if shared.opts.save_training_settings_to_txt: saved_params = dict( - model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), + model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} ) logging.save_settings_to_file(log_directory, {**saved_params, **locals()}) @@ -737,7 +737,7 @@ def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None try: - hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint = checkpoint.shorthash hypernetwork.sd_checkpoint_name = checkpoint.model_name hypernetwork.name = hypernetwork_name hypernetwork.save(filename) diff --git a/modules/sd_models.py b/modules/sd_models.py index c466f273..7babb9ae 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,17 +14,56 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) -CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) checkpoints_list = {} +checkpoint_alisases = {} checkpoints_loaded = collections.OrderedDict() + +class CheckpointInfo: + def __init__(self, filename): + self.filename = filename + abspath = os.path.abspath(filename) + + if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): + name = abspath.replace(shared.cmd_opts.ckpt_dir, '') + elif abspath.startswith(model_path): + name = abspath.replace(model_path, '') + else: + name = os.path.basename(filename) + + if name.startswith("\\") or name.startswith("/"): + name = name[1:] + + self.title = name + self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] + self.hash = model_hash(filename) + self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]'] + self.shorthash = None + self.sha256 = None + + def register(self): + checkpoints_list[self.title] = self + for id in self.ids: + checkpoint_alisases[id] = self + + def calculate_shorthash(self): + self.sha256 = hashes.sha256(self.filename, self.title) + self.shorthash = self.sha256[0:10] + + if self.shorthash not in self.ids: + self.ids += [self.shorthash, self.sha256] + self.register() + + return self.shorthash + + try: # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. @@ -43,10 +82,14 @@ def setup_model(): enable_midas_autodownload() -def checkpoint_tiles(): - convert = lambda name: int(name) if name.isdigit() else name.lower() - alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] - return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key) +def checkpoint_tiles(): + def convert(name): + return int(name) if name.isdigit() else name.lower() + + def alphanumeric_key(key): + return [convert(c) for c in re.split('([0-9]+)', key)] + + return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key) def find_checkpoint_config(info): @@ -62,48 +105,38 @@ def find_checkpoint_config(info): def list_models(): checkpoints_list.clear() + checkpoint_alisases.clear() model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], ext_blacklist=[".vae.safetensors"]) - def modeltitle(path, shorthash): - abspath = os.path.abspath(path) - - if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): - name = abspath.replace(shared.cmd_opts.ckpt_dir, '') - elif abspath.startswith(model_path): - name = abspath.replace(model_path, '') - else: - name = os.path.basename(path) - - if name.startswith("\\") or name.startswith("/"): - name = name[1:] - - shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] - - return f'{name} [{shorthash}]', shortname - cmd_ckpt = shared.cmd_opts.ckpt if os.path.exists(cmd_ckpt): - h = model_hash(cmd_ckpt) - title, short_model_name = modeltitle(cmd_ckpt, h) - checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) - shared.opts.data['sd_model_checkpoint'] = title + checkpoint_info = CheckpointInfo(cmd_ckpt) + checkpoint_info.register() + + shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) + for filename in model_list: - h = model_hash(filename) - title, short_model_name = modeltitle(filename, h) + checkpoint_info = CheckpointInfo(filename) + checkpoint_info.register() + - checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) +def get_closet_checkpoint_match(search_string): + checkpoint_info = checkpoint_alisases.get(search_string, None) + if checkpoint_info is not None: + return + found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) + if found: + return found[0] -def get_closet_checkpoint_match(searchString): - applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title)) - if len(applicable) > 0: - return applicable[0] return None def model_hash(filename): + """old hash that only looks at a small part of the file and is prone to collisions""" + try: with open(filename, "rb") as file: import hashlib @@ -119,7 +152,7 @@ def model_hash(filename): def select_checkpoint(): model_checkpoint = shared.opts.sd_model_checkpoint - checkpoint_info = checkpoints_list.get(model_checkpoint, None) + checkpoint_info = checkpoint_alisases.get(model_checkpoint, None) if checkpoint_info is not None: return checkpoint_info @@ -189,9 +222,8 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None return sd -def load_model_weights(model, checkpoint_info, vae_file="auto"): - checkpoint_file = checkpoint_info.filename - sd_model_hash = checkpoint_info.hash +def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"): + sd_model_hash = checkpoint_info.calculate_shorthash() cache_enabled = shared.opts.sd_checkpoint_cache > 0 @@ -201,9 +233,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.load_state_dict(checkpoints_loaded[checkpoint_info]) else: # load from file - print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") + print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") - sd = read_state_dict(checkpoint_file) + sd = read_state_dict(checkpoint_info.filename) model.load_state_dict(sd, strict=False) del sd @@ -235,14 +267,14 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoints_loaded.popitem(last=False) # LRU model.sd_model_hash = sd_model_hash - model.sd_model_checkpoint = checkpoint_file + model.sd_model_checkpoint = checkpoint_info.filename model.sd_checkpoint_info = checkpoint_info model.logvar = model.logvar.to(devices.device) # fix for training sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() - vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) + vae_file = sd_vae.resolve_vae(checkpoint_info.filename, vae_file=vae_file) sd_vae.load_vae(model, vae_file) diff --git a/modules/shared.py b/modules/shared.py index b90ded52..d74c069d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -428,7 +428,7 @@ options_templates.update(options_section(('ui', "User interface"), { "return_grid": OptionInfo(True, "Show grid in results for web"), "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), - "add_model_name_to_info": OptionInfo(False, "Add model name to generation information"), + "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 6939efcc..63935878 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -407,7 +407,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize) if shared.opts.save_training_settings_to_txt: - save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.hash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) + save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) latent_sampling_method = ds.latent_sampling_method @@ -584,7 +584,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name - footer_mid = '[{}]'.format(checkpoint.hash) + footer_mid = '[{}]'.format(checkpoint.shorthash) footer_right = '{}v {}s'.format(vectorSize, steps_done) captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) @@ -626,7 +626,7 @@ def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, r old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None try: - embedding.sd_checkpoint = checkpoint.hash + embedding.sd_checkpoint = checkpoint.shorthash embedding.sd_checkpoint_name = checkpoint.model_name if remove_cached_checksum: embedding.cached_checksum = None diff --git a/webui.py b/webui.py index 47d372c7..1fff80da 100644 --- a/webui.py +++ b/webui.py @@ -78,6 +78,8 @@ def initialize(): print("Stable diffusion model failed to load, exiting", file=sys.stderr) exit(1) + shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) -- cgit v1.2.3 From f9ac3352cb66ce2bc0aa4325130fc7267fb35e4f Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 10:25:21 +0300 Subject: change hypernets to use sha256 hashes --- modules/hypernetworks/hypernetwork.py | 40 ++++++++++++++++++++--------------- modules/processing.py | 2 +- modules/sd_models.py | 2 +- modules/shared.py | 1 + 4 files changed, 26 insertions(+), 19 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 9b5f2e79..3aebefa8 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm from einops import rearrange, repeat from ldm.util import default -from modules import devices, processing, sd_models, shared, sd_samplers +from modules import devices, processing, sd_models, shared, sd_samplers, hashes from modules.textual_inversion import textual_inversion, logging from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum @@ -225,7 +225,7 @@ class Hypernetwork: torch.save(state_dict, filename) if shared.opts.save_optimizer_state and self.optimizer_state_dict: - optimizer_saved_dict['hash'] = sd_models.model_hash(filename) + optimizer_saved_dict['hash'] = self.shorthash() optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict torch.save(optimizer_saved_dict, filename + '.optim') @@ -237,32 +237,33 @@ class Hypernetwork: state_dict = torch.load(filename, map_location='cpu') self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) - print(self.layer_structure) - optional_info = state_dict.get('optional_info', None) - if optional_info is not None: - print(f"INFO:\n {optional_info}\n") - self.optional_info = optional_info + self.optional_info = state_dict.get('optional_info', None) self.activation_func = state_dict.get('activation_func', None) - print(f"Activation function is {self.activation_func}") self.weight_init = state_dict.get('weight_initialization', 'Normal') - print(f"Weight initialization is {self.weight_init}") self.add_layer_norm = state_dict.get('is_layer_norm', False) - print(f"Layer norm is set to {self.add_layer_norm}") self.dropout_structure = state_dict.get('dropout_structure', None) self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) - print(f"Dropout usage is set to {self.use_dropout}" ) self.activate_output = state_dict.get('activate_output', True) - print(f"Activate last layer is set to {self.activate_output}") self.last_layer_dropout = state_dict.get('last_layer_dropout', False) # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. if self.dropout_structure is None: - print("Using previous dropout structure") self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) - print(f"Dropout structure is set to {self.dropout_structure}") - optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {} + if shared.opts.print_hypernet_extra: + if self.optional_info is not None: + print(f" INFO:\n {self.optional_info}\n") - if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None): + print(f" Layer structure: {self.layer_structure}") + print(f" Activation function: {self.activation_func}") + print(f" Weight initialization: {self.weight_init}") + print(f" Layer norm: {self.add_layer_norm}") + print(f" Dropout usage: {self.use_dropout}" ) + print(f" Activate last layer: {self.activate_output}") + print(f" Dropout structure: {self.dropout_structure}") + + optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} + + if self.shorthash() == optimizer_saved_dict.get('hash', None): self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) else: self.optimizer_state_dict = None @@ -289,6 +290,11 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.eval() + def shorthash(self): + sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') + + return sha256[0:10] + def list_hypernetworks(path): res = {} @@ -296,7 +302,7 @@ def list_hypernetworks(path): name = os.path.splitext(os.path.basename(filename))[0] # Prevent a hypothetical "None.pt" from being listed. if name != "None": - res[name + f"({sd_models.model_hash(filename)})"] = filename + res[name] = filename return res diff --git a/modules/processing.py b/modules/processing.py index ae04cab7..849f6b19 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -437,7 +437,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')), "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name), - "Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)), + "Hypernet hash": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.shorthash()), "Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), diff --git a/modules/sd_models.py b/modules/sd_models.py index 7babb9ae..8f00191c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -125,7 +125,7 @@ def list_models(): def get_closet_checkpoint_match(search_string): checkpoint_info = checkpoint_alisases.get(search_string, None) if checkpoint_info is not None: - return + return checkpoint_info found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title)) if found: diff --git a/modules/shared.py b/modules/shared.py index d74c069d..a6c61db3 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -361,6 +361,7 @@ options_templates.update(options_section(('system', "System"), { "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}), "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), + "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), })) options_templates.update(options_section(('training', "Training"), { -- cgit v1.2.3 From febd2b722e80959b89a0e5966a159b4eb430c5a5 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 13:37:55 +0300 Subject: update key to use with checkpoints' sha256 in cache --- modules/sd_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 8f00191c..1fe6d11b 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -54,7 +54,7 @@ class CheckpointInfo: checkpoint_alisases[id] = self def calculate_shorthash(self): - self.sha256 = hashes.sha256(self.filename, self.title) + self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.title) self.shorthash = self.sha256[0:10] if self.shorthash not in self.ids: -- cgit v1.2.3 From 08c6f009a5ee92dd3218a942c08e8337c26352be Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 15:55:40 +0300 Subject: load hashes from cache for checkpoints that have them add checkpoint hash to footer --- javascript/ui.js | 25 ++++++++++++++++--------- modules/hashes.py | 26 +++++++++++++++++++------- modules/sd_models.py | 9 ++++++--- modules/shared.py | 1 + modules/ui.py | 2 ++ script.js | 4 ++++ 6 files changed, 48 insertions(+), 19 deletions(-) (limited to 'modules/sd_models.py') diff --git a/javascript/ui.js b/javascript/ui.js index a41dd26f..1e04a8f4 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -143,14 +143,6 @@ function confirm_clear_prompt(prompt, negative_prompt) { opts = {} -function apply_settings(jsdata){ - console.log(jsdata) - - opts = JSON.parse(jsdata) - - return jsdata -} - onUiUpdate(function(){ if(Object.keys(opts).length != 0) return; @@ -160,7 +152,7 @@ onUiUpdate(function(){ textarea = json_elem.querySelector('textarea') jsdata = textarea.value opts = JSON.parse(jsdata) - + executeCallbacks(optionsChangedCallbacks); Object.defineProperty(textarea, 'value', { set: function(newValue) { @@ -171,6 +163,8 @@ onUiUpdate(function(){ if (oldValue != newValue) { opts = JSON.parse(textarea.value) } + + executeCallbacks(optionsChangedCallbacks); }, get: function() { var valueProp = Object.getOwnPropertyDescriptor(HTMLTextAreaElement.prototype, 'value'); @@ -201,6 +195,19 @@ onUiUpdate(function(){ } }) + +onOptionsChanged(function(){ + elem = gradioApp().getElementById('sd_checkpoint_hash') + sd_checkpoint_hash = opts.sd_checkpoint_hash || "" + shorthash = sd_checkpoint_hash.substr(0,10) + + if(elem && elem.textContent != shorthash){ + elem.textContent = shorthash + elem.title = sd_checkpoint_hash + elem.href = "https://google.com/search?q=" + sd_checkpoint_hash + } +}) + let txt2img_textarea, img2img_textarea = undefined; let wait_time = 800 let token_timeout; diff --git a/modules/hashes.py b/modules/hashes.py index ebfbd90c..14231771 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -42,23 +42,35 @@ def calculate_sha256(filename): return hash_sha256.hexdigest() -def sha256(filename, title): +def sha256_from_cache(filename, title): hashes = cache("hashes") ondisk_mtime = os.path.getmtime(filename) - if title in hashes: - cached_sha256 = hashes[title].get("sha256", None) - cached_mtime = hashes[title].get("mtime", 0) + if title not in hashes: + return None + + cached_sha256 = hashes[title].get("sha256", None) + cached_mtime = hashes[title].get("mtime", 0) + + if ondisk_mtime > cached_mtime or cached_sha256 is None: + return None + + return cached_sha256 + + +def sha256(filename, title): + hashes = cache("hashes") - if ondisk_mtime <= cached_mtime and cached_sha256 is not None: - return cached_sha256 + sha256_value = sha256_from_cache(filename, title) + if sha256_value is not None: + return sha256_value print(f"Calculating sha256 for {filename}: ", end='') sha256_value = calculate_sha256(filename) print(f"{sha256_value}") hashes[title] = { - "mtime": ondisk_mtime, + "mtime": os.path.getmtime(filename), "sha256": sha256_value, } diff --git a/modules/sd_models.py b/modules/sd_models.py index 1fe6d11b..e5a0bc63 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -44,9 +44,11 @@ class CheckpointInfo: self.title = name self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] self.hash = model_hash(filename) - self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]'] - self.shorthash = None - self.sha256 = None + + self.sha256 = hashes.sha256_from_cache(self.filename, "checkpoint/" + self.title) + self.shorthash = self.sha256[0:10] if self.sha256 else None + + self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256] if self.shorthash else []) def register(self): checkpoints_list[self.title] = self @@ -269,6 +271,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"): model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_info.filename model.sd_checkpoint_info = checkpoint_info + shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256 model.logvar = model.logvar.to(devices.device) # fix for training diff --git a/modules/shared.py b/modules/shared.py index a6c61db3..c9988d4d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -458,6 +458,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" options_templates.update(options_section((None, "Hidden options"), { "disabled_extensions": OptionInfo([], "Disable those extensions"), + "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), })) options_templates.update() diff --git a/modules/ui.py b/modules/ui.py index e86a624b..2625ae32 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1841,4 +1841,6 @@ xformers: {xformers_version} gradio: {gr.__version__}  •  commit: {short_commit} + •  +checkpoint: N/A """ diff --git a/script.js b/script.js index 21960d91..3345e32b 100644 --- a/script.js +++ b/script.js @@ -14,6 +14,7 @@ function get_uiCurrentTabContent() { uiUpdateCallbacks = [] uiTabChangeCallbacks = [] +optionsChangedCallbacks = [] let uiCurrentTab = null function onUiUpdate(callback){ @@ -22,6 +23,9 @@ function onUiUpdate(callback){ function onUiTabChange(callback){ uiTabChangeCallbacks.push(callback) } +function onOptionsChanged(callback){ + optionsChangedCallbacks.push(callback) +} function runCallback(x, m){ try { -- cgit v1.2.3 From a5bbcd215304e0c83ab2b9fe7f172f88536d7629 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 14 Jan 2023 19:56:09 +0300 Subject: fix bug with "Ignore selected VAE for..." option completely disabling VAE election rework VAE resolving code to be more simple --- modules/sd_models.py | 6 +- modules/sd_vae.py | 194 ++++++++++++++++++++------------------------------- modules/shared.py | 4 +- scripts/xy_grid.py | 27 ++++--- 4 files changed, 95 insertions(+), 136 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index e5a0bc63..6a681cef 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -224,7 +224,7 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None return sd -def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"): +def load_model_weights(model, checkpoint_info: CheckpointInfo): sd_model_hash = checkpoint_info.calculate_shorthash() cache_enabled = shared.opts.sd_checkpoint_cache > 0 @@ -277,8 +277,8 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, vae_file="auto"): sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() - vae_file = sd_vae.resolve_vae(checkpoint_info.filename, vae_file=vae_file) - sd_vae.load_vae(model, vae_file) + vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename) + sd_vae.load_vae(model, vae_file, vae_source) def enable_midas_autodownload(): diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 0a49daa1..6ea92711 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -9,23 +9,9 @@ import glob from copy import deepcopy -model_dir = "Stable-diffusion" -model_path = os.path.abspath(os.path.join(models_path, model_dir)) -vae_dir = "VAE" -vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) - - +vae_path = os.path.abspath(os.path.join(models_path, "VAE")) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} - - -default_vae_dict = {"auto": "auto", "None": None, None: None} -default_vae_list = ["auto", "None"] - - -default_vae_values = [default_vae_dict[x] for x in default_vae_list] -vae_dict = dict(default_vae_dict) -vae_list = list(default_vae_list) -first_load = True +vae_dict = {} base_vae = None @@ -64,100 +50,69 @@ def restore_base_vae(model): def get_filename(filepath): - return os.path.splitext(os.path.basename(filepath))[0] - - -def refresh_vae_list(vae_path=vae_path, model_path=model_path): - global vae_dict, vae_list - res = {} - candidates = [ - *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), - *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), - *glob.iglob(os.path.join(model_path, '**/*.vae.safetensors'), recursive=True), - *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True), - *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True), - *glob.iglob(os.path.join(vae_path, '**/*.safetensors'), recursive=True), + return os.path.basename(filepath) + + +def refresh_vae_list(): + vae_dict.clear() + + paths = [ + os.path.join(sd_models.model_path, '**/*.vae.ckpt'), + os.path.join(sd_models.model_path, '**/*.vae.pt'), + os.path.join(sd_models.model_path, '**/*.vae.safetensors'), + os.path.join(vae_path, '**/*.ckpt'), + os.path.join(vae_path, '**/*.pt'), + os.path.join(vae_path, '**/*.safetensors'), ] - if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): - candidates.append(shared.cmd_opts.vae_path) + + if shared.cmd_opts.ckpt_dir is not None and os.path.isdir(shared.cmd_opts.ckpt_dir): + paths += [ + os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.ckpt'), + os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.pt'), + os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.safetensors'), + ] + + candidates = [] + for path in paths: + candidates += glob.iglob(path, recursive=True) + for filepath in candidates: name = get_filename(filepath) - res[name] = filepath - vae_list.clear() - vae_list.extend(default_vae_list) - vae_list.extend(list(res.keys())) - vae_dict.clear() - vae_dict.update(res) - vae_dict.update(default_vae_dict) - return vae_list - - -def get_vae_from_settings(vae_file="auto"): - # else, we load from settings, if not set to be default - if vae_file == "auto" and shared.opts.sd_vae is not None: - # if saved VAE settings isn't recognized, fallback to auto - vae_file = vae_dict.get(shared.opts.sd_vae, "auto") - # if VAE selected but not found, fallback to auto - if vae_file not in default_vae_values and not os.path.isfile(vae_file): - vae_file = "auto" - print(f"Selected VAE doesn't exist: {vae_file}") - return vae_file - - -def resolve_vae(checkpoint_file=None, vae_file="auto"): - global first_load, vae_dict, vae_list - - # if vae_file argument is provided, it takes priority, but not saved - if vae_file and vae_file not in default_vae_list: - if not os.path.isfile(vae_file): - print(f"VAE provided as function argument doesn't exist: {vae_file}") - vae_file = "auto" - # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported - if first_load and shared.cmd_opts.vae_path is not None: - if os.path.isfile(shared.cmd_opts.vae_path): - vae_file = shared.cmd_opts.vae_path - shared.opts.data['sd_vae'] = get_filename(vae_file) - else: - print(f"VAE provided as command line argument doesn't exist: {vae_file}") - # fallback to selector in settings, if vae selector not set to act as default fallback - if not shared.opts.sd_vae_as_default: - vae_file = get_vae_from_settings(vae_file) - # vae-path cmd arg takes priority for auto - if vae_file == "auto" and shared.cmd_opts.vae_path is not None: - if os.path.isfile(shared.cmd_opts.vae_path): - vae_file = shared.cmd_opts.vae_path - print(f"Using VAE provided as command line argument: {vae_file}") - # if still not found, try look for ".vae.pt" beside model - model_path = os.path.splitext(checkpoint_file)[0] - if vae_file == "auto": - vae_file_try = model_path + ".vae.pt" - if os.path.isfile(vae_file_try): - vae_file = vae_file_try - print(f"Using VAE found similar to selected model: {vae_file}") - # if still not found, try look for ".vae.ckpt" beside model - if vae_file == "auto": - vae_file_try = model_path + ".vae.ckpt" - if os.path.isfile(vae_file_try): - vae_file = vae_file_try - print(f"Using VAE found similar to selected model: {vae_file}") - # if still not found, try look for ".vae.safetensors" beside model - if vae_file == "auto": - vae_file_try = model_path + ".vae.safetensors" - if os.path.isfile(vae_file_try): - vae_file = vae_file_try - print(f"Using VAE found similar to selected model: {vae_file}") - # No more fallbacks for auto - if vae_file == "auto": - vae_file = None - # Last check, just because - if vae_file and not os.path.exists(vae_file): - vae_file = None - - return vae_file - - -def load_vae(model, vae_file=None): - global first_load, vae_dict, vae_list, loaded_vae_file + vae_dict[name] = filepath + + +def find_vae_near_checkpoint(checkpoint_file): + checkpoint_path = os.path.splitext(checkpoint_file)[0] + for vae_location in [checkpoint_path + ".vae.pt", checkpoint_path + ".vae.ckpt", checkpoint_path + ".vae.safetensors"]: + if os.path.isfile(vae_location): + return vae_location + + return None + + +def resolve_vae(checkpoint_file): + if shared.cmd_opts.vae_path is not None: + return shared.cmd_opts.vae_path, 'from commandline argument' + + vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file) + if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or shared.opts.sd_vae == "auto"): + return vae_near_checkpoint, 'found near the checkpoint' + + if shared.opts.sd_vae == "None": + return None, None + + vae_from_options = vae_dict.get(shared.opts.sd_vae, None) + if vae_from_options is not None: + return vae_from_options, 'specified in settings' + + if shared.opts.sd_vae != "Automatic": + print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead") + + return None, None + + +def load_vae(model, vae_file=None, vae_source="from unknown source"): + global vae_dict, loaded_vae_file # save_settings = False cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0 @@ -165,12 +120,12 @@ def load_vae(model, vae_file=None): if vae_file: if cache_enabled and vae_file in checkpoints_loaded: # use vae checkpoint cache - print(f"Loading VAE weights [{get_filename(vae_file)}] from cache") + print(f"Loading VAE weights {vae_source}: cached {get_filename(vae_file)}") store_base_vae(model) _load_vae_dict(model, checkpoints_loaded[vae_file]) else: - assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" - print(f"Loading VAE weights from: {vae_file}") + assert os.path.isfile(vae_file), f"VAE {vae_source} doesn't exist: {vae_file}" + print(f"Loading VAE weights {vae_source}: {vae_file}") store_base_vae(model) vae_ckpt = sd_models.read_state_dict(vae_file, map_location=shared.weight_load_location) @@ -191,14 +146,12 @@ def load_vae(model, vae_file=None): vae_opt = get_filename(vae_file) if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file - vae_list.append(vae_opt) + elif loaded_vae_file: restore_base_vae(model) loaded_vae_file = vae_file - first_load = False - # don't call this from outside def _load_vae_dict(model, vae_dict_1): @@ -211,7 +164,10 @@ def clear_loaded_vae(): loaded_vae_file = None -def reload_vae_weights(sd_model=None, vae_file="auto"): +unspecified = object() + + +def reload_vae_weights(sd_model=None, vae_file=unspecified): from modules import lowvram, devices, sd_hijack if not sd_model: @@ -219,7 +175,11 @@ def reload_vae_weights(sd_model=None, vae_file="auto"): checkpoint_info = sd_model.sd_checkpoint_info checkpoint_file = checkpoint_info.filename - vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) + + if vae_file == unspecified: + vae_file, vae_source = resolve_vae(checkpoint_file) + else: + vae_source = "from function argument" if loaded_vae_file == vae_file: return @@ -231,7 +191,7 @@ def reload_vae_weights(sd_model=None, vae_file="auto"): sd_hijack.model_hijack.undo_hijack(sd_model) - load_vae(sd_model, vae_file) + load_vae(sd_model, vae_file, vae_source) sd_hijack.model_hijack.hijack(sd_model) script_callbacks.model_loaded_callback(sd_model) @@ -239,5 +199,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print("VAE Weights loaded.") + print("VAE weights loaded.") return sd_model diff --git a/modules/shared.py b/modules/shared.py index e0ec3136..9756adea 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -83,7 +83,7 @@ parser.add_argument("--theme", type=str, help="launches the UI with light or dar parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False) parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False) -parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None) +parser.add_argument('--vae-path', type=str, help='Checkpoint to use as VAE; setting this argument disables all settings related to VAE', default=None) parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False) parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)") parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) @@ -383,7 +383,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list), "sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index f04d9b7e..bd3087d4 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -125,24 +125,21 @@ def apply_upscale_latent_space(p, x, xs): def find_vae(name: str): - if name.lower() in ['auto', 'none']: - return name + if name.lower() in ['auto', 'automatic']: + return modules.sd_vae.unspecified + if name.lower() == 'none': + return None else: - vae_path = os.path.abspath(os.path.join(paths.models_path, 'VAE')) - found = glob.glob(os.path.join(vae_path, f'**/{name}.*pt'), recursive=True) - if found: - return found[0] + choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()] + if len(choices) == 0: + print(f"No VAE found for {name}; using automatic") + return modules.sd_vae.unspecified else: - return 'auto' + return modules.sd_vae.vae_dict[choices[0]] def apply_vae(p, x, xs): - if x.lower().strip() == 'none': - modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file='None') - else: - found = find_vae(x) - if found: - v = modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=found) + modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x)) def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _): @@ -271,7 +268,9 @@ class SharedSettingsStackHelper(object): def __exit__(self, exc_type, exc_value, tb): modules.sd_models.reload_model_weights(self.model) - modules.sd_vae.reload_vae_weights(self.model, vae_file=find_vae(self.vae)) + + opts.data["sd_vae"] = self.vae + modules.sd_vae.reload_vae_weights(self.model) hypernetwork.load_hypernetwork(self.hypernetwork) hypernetwork.apply_strength() -- cgit v1.2.3 From c1928cdd6194928af0f53f70c51d59479b7025e2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Thu, 19 Jan 2023 18:58:08 +0300 Subject: bring back short hashes to sd checkpoint selection --- modules/sd_models.py | 15 +++++++++++---- modules/ui.py | 23 ++++++++++++----------- 2 files changed, 23 insertions(+), 15 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 6a681cef..12083848 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -41,14 +41,16 @@ class CheckpointInfo: if name.startswith("\\") or name.startswith("/"): name = name[1:] - self.title = name + self.name = name self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0] self.hash = model_hash(filename) - self.sha256 = hashes.sha256_from_cache(self.filename, "checkpoint/" + self.title) + self.sha256 = hashes.sha256_from_cache(self.filename, "checkpoint/" + name) self.shorthash = self.sha256[0:10] if self.sha256 else None - self.ids = [self.hash, self.model_name, self.title, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256] if self.shorthash else []) + self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]' + + self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else []) def register(self): checkpoints_list[self.title] = self @@ -56,13 +58,15 @@ class CheckpointInfo: checkpoint_alisases[id] = self def calculate_shorthash(self): - self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.title) + self.sha256 = hashes.sha256(self.filename, "checkpoint/" + self.name) self.shorthash = self.sha256[0:10] if self.shorthash not in self.ids: self.ids += [self.shorthash, self.sha256] self.register() + self.title = f'{self.name} [{self.shorthash}]' + return self.shorthash @@ -225,7 +229,10 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None def load_model_weights(model, checkpoint_info: CheckpointInfo): + title = checkpoint_info.title sd_model_hash = checkpoint_info.calculate_shorthash() + if checkpoint_info.title != title: + shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title cache_enabled = shared.opts.sd_checkpoint_cache > 0 diff --git a/modules/ui.py b/modules/ui.py index 0c5ba358..13d80ae2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -439,7 +439,7 @@ def apply_setting(key, value): opts.data_labels[key].onchange() opts.save(shared.config_filename) - return value + return getattr(opts, key) def update_generation_info(generation_info, html_info, img_index): @@ -597,6 +597,16 @@ def ordered_ui_categories(): yield category +def get_value_for_setting(key): + value = getattr(opts, key) + + info = opts.data_labels[key] + args = info.component_args() if callable(info.component_args) else info.component_args or {} + args = {k: v for k, v in args.items() if k not in {'precision'}} + + return gr.update(value=value, **args) + + def create_ui(): import modules.img2img import modules.txt2img @@ -1600,7 +1610,7 @@ def create_ui(): opts.save(shared.config_filename) - return gr.update(value=value), opts.dumpjson() + return get_value_for_setting(key), opts.dumpjson() with gr.Blocks(analytics_enabled=False) as settings_interface: with gr.Row(): @@ -1771,15 +1781,6 @@ def create_ui(): component_keys = [k for k in opts.data_labels.keys() if k in component_dict] - def get_value_for_setting(key): - value = getattr(opts, key) - - info = opts.data_labels[key] - args = info.component_args() if callable(info.component_args) else info.component_args or {} - args = {k: v for k, v in args.items() if k not in {'precision'}} - - return gr.update(value=value, **args) - def get_settings_values(): return [get_value_for_setting(key) for key in component_keys] -- cgit v1.2.3 From 84d9ce30cb427759547bc7876ed80ab91787d175 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 24 Jan 2023 23:51:45 -0500 Subject: Add option for float32 sampling with float16 UNet This also handles type casting so that ROCm and MPS torch devices work correctly without --no-half. One cast is required for deepbooru in deepbooru_model.py, some explicit casting is required for img2img and inpainting. depth_model can't be converted to float16 or it won't work correctly on some systems (it's known to have issues on MPS) so in sd_models.py model.depth_model is removed for model.half(). --- README.md | 1 + modules/deepbooru_model.py | 4 +++- modules/devices.py | 2 ++ modules/processing.py | 15 ++++++++------- modules/sd_hijack_unet.py | 29 +++++++++++++++++++++++++++++ modules/sd_hijack_utils.py | 28 ++++++++++++++++++++++++++++ modules/sd_models.py | 10 ++++++++++ modules/shared.py | 1 + 8 files changed, 82 insertions(+), 8 deletions(-) create mode 100644 modules/sd_hijack_utils.py (limited to 'modules/sd_models.py') diff --git a/README.md b/README.md index 9c0cd1ef..a5611671 100644 --- a/README.md +++ b/README.md @@ -157,4 +157,5 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Security advice - RyotaK - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. +- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - (You) diff --git a/modules/deepbooru_model.py b/modules/deepbooru_model.py index edd40c81..83d2ff09 100644 --- a/modules/deepbooru_model.py +++ b/modules/deepbooru_model.py @@ -2,6 +2,8 @@ import torch import torch.nn as nn import torch.nn.functional as F +from modules import devices + # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more @@ -196,7 +198,7 @@ class DeepDanbooruModel(nn.Module): t_358, = inputs t_359 = t_358.permute(*[0, 3, 1, 2]) t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0) - t_360 = self.n_Conv_0(t_359_padded) + t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded) t_361 = F.relu(t_360) t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf')) t_362 = self.n_MaxPool_0(t_361) diff --git a/modules/devices.py b/modules/devices.py index 524ec7af..0981ef80 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -79,6 +79,8 @@ cpu = torch.device("cpu") device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None dtype = torch.float16 dtype_vae = torch.float16 +dtype_unet = torch.float16 +unet_needs_upcast = False def randn(seed, shape): diff --git a/modules/processing.py b/modules/processing.py index bc541e2f..2d186ba0 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -172,7 +172,8 @@ class StableDiffusionProcessing: midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device) midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size) - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image.to(devices.dtype_unet) if devices.unet_needs_upcast else source_image)) + conditioning_image = conditioning_image.float() if devices.unet_needs_upcast else conditioning_image conditioning = torch.nn.functional.interpolate( self.sd_model.depth_model(midas_in), size=conditioning_image.shape[2:], @@ -203,7 +204,7 @@ class StableDiffusionProcessing: # Create another latent image, this time with a masked version of the original input. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. - conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype) + conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype) conditioning_image = torch.lerp( source_image, source_image * (1.0 - conditioning_mask), @@ -211,7 +212,7 @@ class StableDiffusionProcessing: ) # Encode the new masked image using first stage of network. - conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image)) + conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image.to(devices.dtype_unet) if devices.unet_needs_upcast else conditioning_image)) # Create the concatenated conditioning tensor to be fed to `c_concat` conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:]) @@ -225,10 +226,10 @@ class StableDiffusionProcessing: # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # identify itself with a field common to all models. The conditioning_key is also hybrid. if isinstance(self.sd_model, LatentDepth2ImageDiffusion): - return self.depth2img_image_conditioning(source_image) + return self.depth2img_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: - return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) + return self.inpainting_image_conditioning(source_image.float() if devices.unet_needs_upcast else source_image, latent_image, image_mask=image_mask) # Dummy zero conditioning if we're not using inpainting or depth model. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) @@ -610,7 +611,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if p.n_iter > 1: shared.state.job = f"Batch {n+1} out of {p.n_iter}" - with devices.autocast(): + with devices.autocast(disable=devices.unet_needs_upcast): samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))] @@ -988,7 +989,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = torch.from_numpy(batch_images) image = 2. * image - 1. - image = image.to(shared.device) + image = image.to(device=shared.device, dtype=devices.dtype_unet if devices.unet_needs_upcast else None) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index 18daf8c1..88c94e54 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -1,4 +1,8 @@ import torch +from packaging import version + +from modules import devices +from modules.sd_hijack_utils import CondFunc class TorchHijackForUnet: @@ -28,3 +32,28 @@ class TorchHijackForUnet: th = TorchHijackForUnet() + + +# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling +def apply_model(orig_func, self, x_noisy, t, cond, **kwargs): + for y in cond.keys(): + cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] + with devices.autocast(): + return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float() + +class GELUHijack(torch.nn.GELU, torch.nn.Module): + def __init__(self, *args, **kwargs): + torch.nn.GELU.__init__(self, *args, **kwargs) + def forward(self, x): + if devices.unet_needs_upcast: + return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet) + else: + return torch.nn.GELU.forward(self, x) + +unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast +CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast) +CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).to(devices.dtype_unet), unet_needs_upcast) +if version.parse(torch.__version__) <= version.parse("1.13.1"): + CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast) + CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast) + CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU) diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py new file mode 100644 index 00000000..f81b169a --- /dev/null +++ b/modules/sd_hijack_utils.py @@ -0,0 +1,28 @@ +import importlib + +class CondFunc: + def __new__(cls, orig_func, sub_func, cond_func): + self = super(CondFunc, cls).__new__(cls) + if isinstance(orig_func, str): + func_path = orig_func.split('.') + for i in range(len(func_path)-2, -1, -1): + try: + resolved_obj = importlib.import_module('.'.join(func_path[:i])) + break + except ImportError: + pass + for attr_name in func_path[i:-1]: + resolved_obj = getattr(resolved_obj, attr_name) + orig_func = getattr(resolved_obj, func_path[-1]) + setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) + self.__init__(orig_func, sub_func, cond_func) + return lambda *args, **kwargs: self(*args, **kwargs) + def __init__(self, orig_func, sub_func, cond_func): + self.__orig_func = orig_func + self.__sub_func = sub_func + self.__cond_func = cond_func + def __call__(self, *args, **kwargs): + if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs): + return self.__sub_func(self.__orig_func, *args, **kwargs) + else: + return self.__orig_func(*args, **kwargs) diff --git a/modules/sd_models.py b/modules/sd_models.py index 12083848..7c98991a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -257,16 +257,24 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo): if not shared.cmd_opts.no_half: vae = model.first_stage_model + depth_model = getattr(model, 'depth_model', None) # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 if shared.cmd_opts.no_half_vae: model.first_stage_model = None + # with --upcast-sampling, don't convert the depth model weights to float16 + if shared.cmd_opts.upcast_sampling and depth_model: + model.depth_model = None model.half() model.first_stage_model = vae + if depth_model: + model.depth_model = depth_model devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + devices.dtype_unet = model.model.diffusion_model.dtype + devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 model.first_stage_model.to(devices.dtype_vae) @@ -372,6 +380,8 @@ def load_model(checkpoint_info=None): if shared.cmd_opts.no_half: sd_config.model.params.unet_config.params.use_fp16 = False + elif shared.cmd_opts.upcast_sampling: + sd_config.model.params.unet_config.params.use_fp16 = True timer = Timer() diff --git a/modules/shared.py b/modules/shared.py index 5f713bee..4ce1209b 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -45,6 +45,7 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram") parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") +parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site") parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None) parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us") -- cgit v1.2.3 From ee0a0da3244123cb6d2ba4097a54a1e9caccb687 Mon Sep 17 00:00:00 2001 From: Kyle Date: Wed, 25 Jan 2023 08:53:23 -0500 Subject: Add instruct-pix2pix hijack Allows loading instruct-pix2pix models via same method as inpainting models in sd_models.py and sd_hijack_ip2p.py Adds ddpm_edit.py necessary for instruct-pix2pix --- modules/models/diffusion/ddpm_edit.py | 1459 +++++++++++++++++++++++++++++++++ modules/sd_hijack_ip2p.py | 13 + modules/sd_models.py | 12 +- 3 files changed, 1483 insertions(+), 1 deletion(-) create mode 100644 modules/models/diffusion/ddpm_edit.py create mode 100644 modules/sd_hijack_ip2p.py (limited to 'modules/sd_models.py') diff --git a/modules/models/diffusion/ddpm_edit.py b/modules/models/diffusion/ddpm_edit.py new file mode 100644 index 00000000..f3d49c44 --- /dev/null +++ b/modules/models/diffusion/ddpm_edit.py @@ -0,0 +1,1459 @@ +""" +wild mixture of +https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py +https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py +https://github.com/CompVis/taming-transformers +-- merci +""" + +# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). +# See more details in LICENSE. + +import torch +import torch.nn as nn +import numpy as np +import pytorch_lightning as pl +from torch.optim.lr_scheduler import LambdaLR +from einops import rearrange, repeat +from contextlib import contextmanager +from functools import partial +from tqdm import tqdm +from torchvision.utils import make_grid +from pytorch_lightning.utilities.distributed import rank_zero_only + +from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config +from ldm.modules.ema import LitEma +from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution +from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL +from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like +from ldm.models.diffusion.ddim import DDIMSampler + + +__conditioning_keys__ = {'concat': 'c_concat', + 'crossattn': 'c_crossattn', + 'adm': 'y'} + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def uniform_on_device(r1, r2, shape, device): + return (r1 - r2) * torch.rand(*shape, device=device) + r2 + + +class DDPM(pl.LightningModule): + # classic DDPM with Gaussian diffusion, in image space + def __init__(self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor="val/loss", + use_ema=True, + first_stage_key="image", + image_size=256, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0., + v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1., + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0., + load_ema=True, + ): + super().__init__() + assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' + self.parameterization = parameterization + print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + self.image_size = image_size # try conv? + self.channels = channels + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapper(unet_config, conditioning_key) + count_params(self.model, verbose=True) + self.use_ema = use_ema + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + + if self.use_ema and load_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + + # If initialing from EMA-only checkpoint, create EMA model after loading. + if self.use_ema and not load_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, + linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + + + def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( + 1. - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer('posterior_variance', to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) + self.register_buffer('posterior_mean_coef1', to_torch( + betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) + self.register_buffer('posterior_mean_coef2', to_torch( + (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) + + if self.parameterization == "eps": + lvlb_weights = self.betas ** 2 / ( + 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) + elif self.parameterization == "x0": + lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) + else: + raise NotImplementedError("mu not supported") + # TODO how to choose this term + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + + # Our model adds additional channels to the first layer to condition on an input image. + # For the first layer, copy existing channel weights and initialize new channel weights to zero. + input_keys = [ + "model.diffusion_model.input_blocks.0.0.weight", + "model_ema.diffusion_modelinput_blocks00weight", + ] + + self_sd = self.state_dict() + for input_key in input_keys: + if input_key not in sd or input_key not in self_sd: + continue + + input_weight = self_sd[input_key] + + if input_weight.size() != sd[input_key].size(): + print(f"Manual init: {input_key}") + input_weight.zero_() + input_weight[:, :4, :, :].copy_(sd[input_key]) + ignore_keys.append(input_key) + + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( + sd, strict=False) + print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - + extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1., 1.) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): + img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + image_size = self.image_size + channels = self.channels + return self.p_sample_loop((batch_size, channels, image_size, image_size), + return_intermediates=return_intermediates) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + + def get_loss(self, pred, target, mean=True): + if self.loss_type == 'l1': + loss = (target - pred).abs() + if mean: + loss = loss.mean() + elif self.loss_type == 'l2': + if mean: + loss = torch.nn.functional.mse_loss(target, pred) + else: + loss = torch.nn.functional.mse_loss(target, pred, reduction='none') + else: + raise NotImplementedError("unknown loss type '{loss_type}'") + + return loss + + def p_losses(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_out = self.model(x_noisy, t) + + loss_dict = {} + if self.parameterization == "eps": + target = noise + elif self.parameterization == "x0": + target = x_start + else: + raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") + + loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) + + log_prefix = 'train' if self.training else 'val' + + loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) + loss_simple = loss.mean() * self.l_simple_weight + + loss_vlb = (self.lvlb_weights[t] * loss).mean() + loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) + + loss = loss_simple + self.original_elbo_weight * loss_vlb + + loss_dict.update({f'{log_prefix}/loss': loss}) + + return loss, loss_dict + + def forward(self, x, *args, **kwargs): + # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size + # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' + t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() + return self.p_losses(x, t, *args, **kwargs) + + def get_input(self, batch, k): + return batch[k] + + def shared_step(self, batch): + x = self.get_input(batch, self.first_stage_key) + loss, loss_dict = self(x) + return loss, loss_dict + + def training_step(self, batch, batch_idx): + loss, loss_dict = self.shared_step(batch) + + self.log_dict(loss_dict, prog_bar=True, + logger=True, on_step=True, on_epoch=True) + + self.log("global_step", self.global_step, + prog_bar=True, logger=True, on_step=True, on_epoch=False) + + if self.use_scheduler: + lr = self.optimizers().param_groups[0]['lr'] + self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) + + return loss + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + _, loss_dict_no_ema = self.shared_step(batch) + with self.ema_scope(): + _, loss_dict_ema = self.shared_step(batch) + loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} + self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) + self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self.model) + + def _get_rows_from_list(self, samples): + n_imgs_per_row = len(samples) + denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): + log = dict() + x = self.get_input(batch, self.first_stage_key) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + x = x.to(self.device)[:N] + log["inputs"] = x + + # get diffusion row + diffusion_row = list() + x_start = x[:n_row] + + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(x_start) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + diffusion_row.append(x_noisy) + + log["diffusion_row"] = self._get_rows_from_list(diffusion_row) + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) + + log["samples"] = samples + log["denoise_row"] = self._get_rows_from_list(denoise_row) + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.learn_logvar: + params = params + [self.logvar] + opt = torch.optim.AdamW(params, lr=lr) + return opt + + +class LatentDiffusion(DDPM): + """main class""" + def __init__(self, + first_stage_config, + cond_stage_config, + num_timesteps_cond=None, + cond_stage_key="image", + cond_stage_trainable=False, + concat_mode=True, + cond_stage_forward=None, + conditioning_key=None, + scale_factor=1.0, + scale_by_std=False, + load_ema=True, + *args, **kwargs): + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs['timesteps'] + # for backwards compatibility after implementation of DiffusionWrapper + if conditioning_key is None: + conditioning_key = 'concat' if concat_mode else 'crossattn' + if cond_stage_config == '__is_unconditional__': + conditioning_key = None + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", []) + super().__init__(conditioning_key=conditioning_key, *args, load_ema=load_ema, **kwargs) + self.concat_mode = concat_mode + self.cond_stage_trainable = cond_stage_trainable + self.cond_stage_key = cond_stage_key + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer('scale_factor', torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.cond_stage_forward = cond_stage_forward + self.clip_denoised = False + self.bbox_tokenizer = None + + self.restarted_from_ckpt = False + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys) + self.restarted_from_ckpt = True + + if self.use_ema and not load_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + def make_cond_schedule(self, ): + self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) + ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() + self.cond_ids[:self.num_timesteps_cond] = ids + + @rank_zero_only + @torch.no_grad() + def on_train_batch_start(self, batch, batch_idx, dataloader_idx): + # only for very first batch + if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: + assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' + # set rescale weight to 1./std of encodings + print("### USING STD-RESCALING ###") + x = super().get_input(batch, self.first_stage_key) + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + del self.scale_factor + self.register_buffer('scale_factor', 1. / z.flatten().std()) + print(f"setting self.scale_factor to {self.scale_factor}") + print("### USING STD-RESCALING ###") + + def register_schedule(self, + given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) + + self.shorten_cond_schedule = self.num_timesteps_cond > 1 + if self.shorten_cond_schedule: + self.make_cond_schedule() + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + if config == "__is_first_stage__": + print("Using first stage also as cond stage.") + self.cond_stage_model = self.first_stage_model + elif config == "__is_unconditional__": + print(f"Training {self.__class__.__name__} as an unconditional model.") + self.cond_stage_model = None + # self.be_unconditional = True + else: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + assert config != '__is_first_stage__' + assert config != '__is_unconditional__' + model = instantiate_from_config(config) + self.cond_stage_model = model + + def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): + denoise_row = [] + for zd in tqdm(samples, desc=desc): + denoise_row.append(self.decode_first_stage(zd.to(self.device), + force_not_quantize=force_no_decoder_quantization)) + n_imgs_per_row = len(denoise_row) + denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W + denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") + return self.scale_factor * z + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def meshgrid(self, h, w): + y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) + x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) + + arr = torch.cat([y, x], dim=-1) + return arr + + def delta_border(self, h, w): + """ + :param h: height + :param w: width + :return: normalized distance to image border, + wtith min distance = 0 at border and max dist = 0.5 at image center + """ + lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) + arr = self.meshgrid(h, w) / lower_right_corner + dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] + dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] + edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] + return edge_dist + + def get_weighting(self, h, w, Ly, Lx, device): + weighting = self.delta_border(h, w) + weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], + self.split_input_params["clip_max_weight"], ) + weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) + + if self.split_input_params["tie_braker"]: + L_weighting = self.delta_border(Ly, Lx) + L_weighting = torch.clip(L_weighting, + self.split_input_params["clip_min_tie_weight"], + self.split_input_params["clip_max_tie_weight"]) + + L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) + weighting = weighting * L_weighting + return weighting + + def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code + """ + :param x: img of size (bs, c, h, w) + :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) + """ + bs, nc, h, w = x.shape + + # number of crops in image + Ly = (h - kernel_size[0]) // stride[0] + 1 + Lx = (w - kernel_size[1]) // stride[1] + 1 + + if uf == 1 and df == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) + + weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) + + elif uf > 1 and df == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), + dilation=1, padding=0, + stride=(stride[0] * uf, stride[1] * uf)) + fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) + + weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) + + elif df > 1 and uf == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), + dilation=1, padding=0, + stride=(stride[0] // df, stride[1] // df)) + fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) + + weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) + + else: + raise NotImplementedError + + return fold, unfold, normalization, weighting + + @torch.no_grad() + def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, + cond_key=None, return_original_cond=False, bs=None, uncond=0.05): + x = super().get_input(batch, k) + if bs is not None: + x = x[:bs] + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + cond_key = cond_key or self.cond_stage_key + xc = super().get_input(batch, cond_key) + if bs is not None: + xc["c_crossattn"] = xc["c_crossattn"][:bs] + xc["c_concat"] = xc["c_concat"][:bs] + cond = {} + + # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. + random = torch.rand(x.size(0), device=x.device) + prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") + input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") + + null_prompt = self.get_learned_conditioning([""]) + cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())] + cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()] + + out = [z, cond] + if return_first_stage_outputs: + xrec = self.decode_first_stage(z) + out.extend([x, xrec]) + if return_original_cond: + out.append(xc) + return out + + @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, 'b h w c -> b c h w').contiguous() + + z = 1. / self.scale_factor * z + + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + uf = self.split_input_params["vqf"] + bs, nc, h, w = z.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) + + z = unfold(z) # (bn, nc * prod(**ks), L) + # 1. Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + # 2. apply model loop over last dim + if isinstance(self.first_stage_model, VQModelInterface): + output_list = [self.first_stage_model.decode(z[:, :, :, :, i], + force_not_quantize=predict_cids or force_not_quantize) + for i in range(z.shape[-1])] + else: + + output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) + o = o * weighting + # Reverse 1. reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization # norm is shape (1, 1, h, w) + return decoded + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + # same as above but without decorator + def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, 'b h w c -> b c h w').contiguous() + + z = 1. / self.scale_factor * z + + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + uf = self.split_input_params["vqf"] + bs, nc, h, w = z.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) + + z = unfold(z) # (bn, nc * prod(**ks), L) + # 1. Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + # 2. apply model loop over last dim + if isinstance(self.first_stage_model, VQModelInterface): + output_list = [self.first_stage_model.decode(z[:, :, :, :, i], + force_not_quantize=predict_cids or force_not_quantize) + for i in range(z.shape[-1])] + else: + + output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) + o = o * weighting + # Reverse 1. reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization # norm is shape (1, 1, h, w) + return decoded + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + @torch.no_grad() + def encode_first_stage(self, x): + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + df = self.split_input_params["vqf"] + self.split_input_params['original_image_size'] = x.shape[-2:] + bs, nc, h, w = x.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) + z = unfold(x) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) + o = o * weighting + + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization + return decoded + + else: + return self.first_stage_model.encode(x) + else: + return self.first_stage_model.encode(x) + + def shared_step(self, batch, **kwargs): + x, c = self.get_input(batch, self.first_stage_key) + loss = self(x, c) + return loss + + def forward(self, x, c, *args, **kwargs): + t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() + if self.model.conditioning_key is not None: + assert c is not None + if self.cond_stage_trainable: + c = self.get_learned_conditioning(c) + if self.shorten_cond_schedule: # TODO: drop this option + tc = self.cond_ids[t].to(self.device) + c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) + return self.p_losses(x, c, t, *args, **kwargs) + + def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset + def rescale_bbox(bbox): + x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) + y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) + w = min(bbox[2] / crop_coordinates[2], 1 - x0) + h = min(bbox[3] / crop_coordinates[3], 1 - y0) + return x0, y0, w, h + + return [rescale_bbox(b) for b in bboxes] + + def apply_model(self, x_noisy, t, cond, return_ids=False): + + if isinstance(cond, dict): + # hybrid case, cond is exptected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' + cond = {key: cond} + + if hasattr(self, "split_input_params"): + assert len(cond) == 1 # todo can only deal with one conditioning atm + assert not return_ids + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + + h, w = x_noisy.shape[-2:] + + fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) + + z = unfold(x_noisy) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] + + if self.cond_stage_key in ["image", "LR_image", "segmentation", + 'bbox_img'] and self.model.conditioning_key: # todo check for completeness + c_key = next(iter(cond.keys())) # get key + c = next(iter(cond.values())) # get value + assert (len(c) == 1) # todo extend to list with more than one elem + c = c[0] # get element + + c = unfold(c) + c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] + + elif self.cond_stage_key == 'coordinates_bbox': + assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' + + # assuming padding of unfold is always 0 and its dilation is always 1 + n_patches_per_row = int((w - ks[0]) / stride[0] + 1) + full_img_h, full_img_w = self.split_input_params['original_image_size'] + # as we are operating on latents, we need the factor from the original image size to the + # spatial latent size to properly rescale the crops for regenerating the bbox annotations + num_downs = self.first_stage_model.encoder.num_resolutions - 1 + rescale_latent = 2 ** (num_downs) + + # get top left postions of patches as conforming for the bbbox tokenizer, therefore we + # need to rescale the tl patch coordinates to be in between (0,1) + tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, + rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) + for patch_nr in range(z.shape[-1])] + + # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) + patch_limits = [(x_tl, y_tl, + rescale_latent * ks[0] / full_img_w, + rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] + # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] + + # tokenize crop coordinates for the bounding boxes of the respective patches + patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) + for bbox in patch_limits] # list of length l with tensors of shape (1, 2) + print(patch_limits_tknzd[0].shape) + # cut tknzd crop position from conditioning + assert isinstance(cond, dict), 'cond must be dict to be fed into model' + cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) + print(cut_cond.shape) + + adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) + adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') + print(adapted_cond.shape) + adapted_cond = self.get_learned_conditioning(adapted_cond) + print(adapted_cond.shape) + adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) + print(adapted_cond.shape) + + cond_list = [{'c_crossattn': [e]} for e in adapted_cond] + + else: + cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient + + # apply model by loop over crops + output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] + assert not isinstance(output_list[0], + tuple) # todo cant deal with multiple model outputs check this never happens + + o = torch.stack(output_list, axis=-1) + o = o * weighting + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + x_recon = fold(o) / normalization + + else: + x_recon = self.model(x_noisy, t, **cond) + + if isinstance(x_recon, tuple) and not return_ids: + return x_recon[0] + else: + return x_recon + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ + extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + This term can't be optimized, as it only depends on the encoder. + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) + return mean_flat(kl_prior) / np.log(2.0) + + def p_losses(self, x_start, cond, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_output = self.apply_model(x_noisy, t, cond) + + loss_dict = {} + prefix = 'train' if self.training else 'val' + + if self.parameterization == "x0": + target = x_start + elif self.parameterization == "eps": + target = noise + else: + raise NotImplementedError() + + loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) + loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) + + logvar_t = self.logvar[t].to(self.device) + loss = loss_simple / torch.exp(logvar_t) + logvar_t + # loss = loss_simple / torch.exp(self.logvar) + self.logvar + if self.learn_logvar: + loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) + loss_dict.update({'logvar': self.logvar.data.mean()}) + + loss = self.l_simple_weight * loss.mean() + + loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) + loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() + loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) + loss += (self.original_elbo_weight * loss_vlb) + loss_dict.update({f'{prefix}/loss': loss}) + + return loss, loss_dict + + def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, + return_x0=False, score_corrector=None, corrector_kwargs=None): + t_in = t + model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) + + if return_codebook_ids: + model_out, logits = model_out + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1., 1.) + if quantize_denoised: + x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + if return_codebook_ids: + return model_mean, posterior_variance, posterior_log_variance, logits + elif return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, + return_codebook_ids=False, quantize_denoised=False, return_x0=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, + return_codebook_ids=return_codebook_ids, + quantize_denoised=quantize_denoised, + return_x0=return_x0, + score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) + if return_codebook_ids: + raise DeprecationWarning("Support dropped.") + model_mean, _, model_log_variance, logits = outputs + elif return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + + if return_codebook_ids: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) + if return_x0: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, + img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., + score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, + log_every_t=None): + if not log_every_t: + log_every_t = self.log_every_t + timesteps = self.num_timesteps + if batch_size is not None: + b = batch_size if batch_size is not None else shape[0] + shape = [batch_size] + list(shape) + else: + b = batch_size = shape[0] + if x_T is None: + img = torch.randn(shape, device=self.device) + else: + img = x_T + intermediates = [] + if cond is not None: + if isinstance(cond, dict): + cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else + list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + else: + cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', + total=timesteps) if verbose else reversed( + range(0, timesteps)) + if type(temperature) == float: + temperature = [temperature] * timesteps + + for i in iterator: + ts = torch.full((b,), i, device=self.device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != 'hybrid' + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img, x0_partial = self.p_sample(img, cond, ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, return_x0=True, + temperature=temperature[i], noise_dropout=noise_dropout, + score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) + if mask is not None: + assert x0 is not None + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1. - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(x0_partial) + if callback: callback(i) + if img_callback: img_callback(img, i) + return img, intermediates + + @torch.no_grad() + def p_sample_loop(self, cond, shape, return_intermediates=False, + x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, + mask=None, x0=None, img_callback=None, start_T=None, + log_every_t=None): + + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( + range(0, timesteps)) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != 'hybrid' + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample(img, cond, ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1. - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: callback(i) + if img_callback: img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, + verbose=True, timesteps=None, quantize_denoised=False, + mask=None, x0=None, shape=None,**kwargs): + if shape is None: + shape = (batch_size, self.channels, self.image_size, self.image_size) + if cond is not None: + if isinstance(cond, dict): + cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else + list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + else: + cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] + return self.p_sample_loop(cond, + shape, + return_intermediates=return_intermediates, x_T=x_T, + verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, + mask=mask, x0=x0) + + @torch.no_grad() + def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): + + if ddim: + ddim_sampler = DDIMSampler(self) + shape = (self.channels, self.image_size, self.image_size) + samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, + shape,cond,verbose=False,**kwargs) + + else: + samples, intermediates = self.sample(cond=cond, batch_size=batch_size, + return_intermediates=True,**kwargs) + + return samples, intermediates + + + @torch.no_grad() + def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, + quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False, + plot_diffusion_rows=False, **kwargs): + + use_ddim = False + + log = dict() + z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=N, uncond=0) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reals"] = xc["c_concat"] + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption"]: + xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) + log["conditioning"] = xc + elif self.cond_stage_key == 'class_label': + xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) + log['conditioning'] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') + diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, + ddim_steps=ddim_steps,eta=ddim_eta) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( + self.first_stage_model, IdentityFirstStage): + # also display when quantizing x0 while sampling + with self.ema_scope("Plotting Quantized Denoised"): + samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, + ddim_steps=ddim_steps,eta=ddim_eta, + quantize_denoised=True) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, + # quantize_denoised=True) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_x0_quantized"] = x_samples + + if inpaint: + # make a simple center square + b, h, w = z.shape[0], z.shape[2], z.shape[3] + mask = torch.ones(N, h, w).to(self.device) + # zeros will be filled in + mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. + mask = mask[:, None, ...] + with self.ema_scope("Plotting Inpaint"): + + samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, + ddim_steps=ddim_steps, x0=z[:N], mask=mask) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_inpainting"] = x_samples + log["mask"] = mask + + # outpaint + with self.ema_scope("Plotting Outpaint"): + samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, + ddim_steps=ddim_steps, x0=z[:N], mask=mask) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_outpainting"] = x_samples + + if plot_progressive_rows: + with self.ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising(c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N) + prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") + log["progressive_row"] = prog_row + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.cond_stage_trainable: + print(f"{self.__class__.__name__}: Also optimizing conditioner params!") + params = params + list(self.cond_stage_model.parameters()) + if self.learn_logvar: + print('Diffusion model optimizing logvar') + params.append(self.logvar) + opt = torch.optim.AdamW(params, lr=lr) + if self.use_scheduler: + assert 'target' in self.scheduler_config + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), + 'interval': 'step', + 'frequency': 1 + }] + return [opt], scheduler + return opt + + @torch.no_grad() + def to_rgb(self, x): + x = x.float() + if not hasattr(self, "colorize"): + self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) + x = nn.functional.conv2d(x, weight=self.colorize) + x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. + return x + + +class DiffusionWrapper(pl.LightningModule): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] + + def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == 'concat': + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t) + elif self.conditioning_key == 'crossattn': + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == 'hybrid': + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif self.conditioning_key == 'adm': + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + else: + raise NotImplementedError() + + return out + + +class Layout2ImgDiffusion(LatentDiffusion): + # TODO: move all layout-specific hacks to this class + def __init__(self, cond_stage_key, *args, **kwargs): + assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' + super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + + def log_images(self, batch, N=8, *args, **kwargs): + logs = super().log_images(batch=batch, N=N, *args, **kwargs) + + key = 'train' if self.training else 'validation' + dset = self.trainer.datamodule.datasets[key] + mapper = dset.conditional_builders[self.cond_stage_key] + + bbox_imgs = [] + map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) + for tknzd_bbox in batch[self.cond_stage_key][:N]: + bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) + bbox_imgs.append(bboximg) + + cond_img = torch.stack(bbox_imgs, dim=0) + logs['bbox_image'] = cond_img + return logs diff --git a/modules/sd_hijack_ip2p.py b/modules/sd_hijack_ip2p.py new file mode 100644 index 00000000..635f015f --- /dev/null +++ b/modules/sd_hijack_ip2p.py @@ -0,0 +1,13 @@ +import collections +import os.path +import sys +import gc +import time + +def should_hijack_ip2p(checkpoint_info): + from modules import sd_models + + ckpt_basename = os.path.basename(checkpoint_info.filename).lower() + cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() + + return "pix2pix" in ckpt_basename and not "pix2pix" in cfg_basename diff --git a/modules/sd_models.py b/modules/sd_models.py index 12083848..cddc2343 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -17,6 +17,7 @@ from ldm.util import instantiate_from_config from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting +from modules.sd_hijack_ip2p import should_hijack_ip2p model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) @@ -365,6 +366,15 @@ def load_model(checkpoint_info=None): sd_config.model.params.unet_config.params.in_channels = 9 sd_config.model.params.finetune_keys = None + if should_hijack_ip2p(checkpoint_info): + sd_config.model.target = "modules.models.diffusion.ddpm_edit.LatentDiffusion" + sd_config.model.params.conditioning_key = "hybrid" + sd_config.model.params.first_stage_key = "edited" + sd_config.model.params.cond_stage_key = "edit" + sd_config.model.params.image_size = 16 + sd_config.model.params.unet_config.params.in_channels = 8 + sd_config.model.params.unet_config.params.out_channels = 4 + if not hasattr(sd_config.model.params, "use_ema"): sd_config.model.params.use_ema = False @@ -429,7 +439,7 @@ def reload_model_weights(sd_model=None, info=None): checkpoint_config = find_checkpoint_config(current_checkpoint_info) - if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info): + if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info) or should_hijack_ip2p(checkpoint_info) != should_hijack_ip2p(sd_model.sd_checkpoint_info): del sd_model checkpoints_loaded.clear() load_model(checkpoint_info) -- cgit v1.2.3 From d2ac95fa7b2a8d0bcc5361ee16dba9cbb81ff8b2 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 27 Jan 2023 11:28:12 +0300 Subject: remove the need to place configs near models --- configs/instruct-pix2pix.yaml | 99 +++++++++++++++ configs/v1-inpainting-inference.yaml | 70 +++++++++++ modules/api/api.py | 5 +- modules/devices.py | 12 +- modules/sd_hijack_inpainting.py | 9 -- modules/sd_models.py | 228 +++++++++++++++++------------------ modules/sd_models_config.py | 65 ++++++++++ modules/shared.py | 7 +- modules/shared_items.py | 15 ++- modules/timer.py | 35 ++++++ v2-inference-v.yaml | 68 ----------- 11 files changed, 411 insertions(+), 202 deletions(-) create mode 100644 configs/instruct-pix2pix.yaml create mode 100644 configs/v1-inpainting-inference.yaml create mode 100644 modules/sd_models_config.py create mode 100644 modules/timer.py delete mode 100644 v2-inference-v.yaml (limited to 'modules/sd_models.py') diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml new file mode 100644 index 00000000..437ddcef --- /dev/null +++ b/configs/instruct-pix2pix.yaml @@ -0,0 +1,99 @@ +# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). +# See more details in LICENSE. + +model: + base_learning_rate: 1.0e-04 + target: modules.models.diffusion.ddpm_edit.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: edited + cond_stage_key: edit + # image_size: 64 + # image_size: 32 + image_size: 16 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: true + load_ema: true + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 0 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 8 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + +data: + target: main.DataModuleFromConfig + params: + batch_size: 128 + num_workers: 1 + wrap: false + validation: + target: edit_dataset.EditDataset + params: + path: data/clip-filtered-dataset + cache_dir: data/ + cache_name: data_10k + split: val + min_text_sim: 0.2 + min_image_sim: 0.75 + min_direction_sim: 0.2 + max_samples_per_prompt: 1 + min_resize_res: 512 + max_resize_res: 512 + crop_res: 512 + output_as_edit: False + real_input: True diff --git a/configs/v1-inpainting-inference.yaml b/configs/v1-inpainting-inference.yaml new file mode 100644 index 00000000..f9eec37d --- /dev/null +++ b/configs/v1-inpainting-inference.yaml @@ -0,0 +1,70 @@ +model: + base_learning_rate: 7.5e-05 + target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid # important + monitor: val/loss_simple_ema + scale_factor: 0.18215 + finetune_keys: null + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 9 # 4 data + 4 downscaled image + 1 mask + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/modules/api/api.py b/modules/api/api.py index 25c65e57..eb7b1da5 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -18,7 +18,8 @@ from modules.textual_inversion.textual_inversion import create_embedding, train_ from modules.textual_inversion.preprocess import preprocess from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork from PIL import PngImagePlugin,Image -from modules.sd_models import checkpoints_list, find_checkpoint_config +from modules.sd_models import checkpoints_list +from modules.sd_models_config import find_checkpoint_config_near_filename from modules.realesrgan_model import get_realesrgan_models from modules import devices from typing import List @@ -387,7 +388,7 @@ class Api: ] def get_sd_models(self): - return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()] + return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] def get_hypernetworks(self): return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] diff --git a/modules/devices.py b/modules/devices.py index 6b36622c..2d5f797a 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -34,14 +34,18 @@ def get_cuda_device_string(): return "cuda" -def get_optimal_device(): +def get_optimal_device_name(): if torch.cuda.is_available(): - return torch.device(get_cuda_device_string()) + return get_cuda_device_string() if has_mps(): - return torch.device("mps") + return "mps" + + return "cpu" - return cpu + +def get_optimal_device(): + return torch.device(get_optimal_device_name()) def get_device_for(task): diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 31d2c898..478cd499 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -96,15 +96,6 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F return x_prev, pred_x0, e_t -def should_hijack_inpainting(checkpoint_info): - from modules import sd_models - - ckpt_basename = os.path.basename(checkpoint_info.filename).lower() - cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower() - - return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename - - def do_inpainting_hijack(): # p_sample_plms is needed because PLMS can't work with dicts as conditionings diff --git a/modules/sd_models.py b/modules/sd_models.py index 7072eb2e..fa208728 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -2,8 +2,6 @@ import collections import os.path import sys import gc -import time -from collections import namedtuple import torch import re import safetensors.torch @@ -14,10 +12,10 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes +from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules.paths import models_path -from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting -from modules.sd_hijack_ip2p import should_hijack_ip2p +from modules.sd_hijack_inpainting import do_inpainting_hijack +from modules.timer import Timer model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) @@ -99,17 +97,6 @@ def checkpoint_tiles(): return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key) -def find_checkpoint_config(info): - if info is None: - return shared.cmd_opts.config - - config = os.path.splitext(info.filename)[0] + ".yaml" - if os.path.exists(config): - return config - - return shared.cmd_opts.config - - def list_models(): checkpoints_list.clear() checkpoint_alisases.clear() @@ -215,9 +202,7 @@ def get_state_dict_from_checkpoint(pl_sd): def read_state_dict(checkpoint_file, print_global_state=False, map_location=None): _, extension = os.path.splitext(checkpoint_file) if extension.lower() == ".safetensors": - device = map_location or shared.weight_load_location - if device is None: - device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu" + device = map_location or shared.weight_load_location or devices.get_optimal_device_name() pl_sd = safetensors.torch.load_file(checkpoint_file, device=device) else: pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location) @@ -229,60 +214,74 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None return sd -def load_model_weights(model, checkpoint_info: CheckpointInfo): +def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer): + sd_model_hash = checkpoint_info.calculate_shorthash() + timer.record("calculate hash") + + if checkpoint_info in checkpoints_loaded: + # use checkpoint cache + print(f"Loading weights [{sd_model_hash}] from cache") + return checkpoints_loaded[checkpoint_info] + + print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") + res = read_state_dict(checkpoint_info.filename) + timer.record("load weights from disk") + + return res + + +def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer): title = checkpoint_info.title sd_model_hash = checkpoint_info.calculate_shorthash() + timer.record("calculate hash") + if checkpoint_info.title != title: shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title - cache_enabled = shared.opts.sd_checkpoint_cache > 0 + if state_dict is None: + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) - if cache_enabled and checkpoint_info in checkpoints_loaded: - # use checkpoint cache - print(f"Loading weights [{sd_model_hash}] from cache") - model.load_state_dict(checkpoints_loaded[checkpoint_info]) - else: - # load from file - print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}") + model.load_state_dict(state_dict, strict=False) + del state_dict + timer.record("apply weights to model") - sd = read_state_dict(checkpoint_info.filename) - model.load_state_dict(sd, strict=False) - del sd - - if cache_enabled: - # cache newly loaded model - checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + if shared.opts.sd_checkpoint_cache > 0: + # cache newly loaded model + checkpoints_loaded[checkpoint_info] = model.state_dict().copy() + + if shared.cmd_opts.opt_channelslast: + model.to(memory_format=torch.channels_last) + timer.record("apply channels_last") - if shared.cmd_opts.opt_channelslast: - model.to(memory_format=torch.channels_last) + if not shared.cmd_opts.no_half: + vae = model.first_stage_model + depth_model = getattr(model, 'depth_model', None) - if not shared.cmd_opts.no_half: - vae = model.first_stage_model - depth_model = getattr(model, 'depth_model', None) + # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 + if shared.cmd_opts.no_half_vae: + model.first_stage_model = None + # with --upcast-sampling, don't convert the depth model weights to float16 + if shared.cmd_opts.upcast_sampling and depth_model: + model.depth_model = None - # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16 - if shared.cmd_opts.no_half_vae: - model.first_stage_model = None - # with --upcast-sampling, don't convert the depth model weights to float16 - if shared.cmd_opts.upcast_sampling and depth_model: - model.depth_model = None + model.half() + model.first_stage_model = vae + if depth_model: + model.depth_model = depth_model - model.half() - model.first_stage_model = vae - if depth_model: - model.depth_model = depth_model + timer.record("apply half()") - devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 - devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 - devices.dtype_unet = model.model.diffusion_model.dtype - devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 + devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 + devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16 + devices.dtype_unet = model.model.diffusion_model.dtype + devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 - model.first_stage_model.to(devices.dtype_vae) + model.first_stage_model.to(devices.dtype_vae) + timer.record("apply dtype to VAE") # clean up cache if limit is reached - if cache_enabled: - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model - checkpoints_loaded.popitem(last=False) # LRU + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + checkpoints_loaded.popitem(last=False) model.sd_model_hash = sd_model_hash model.sd_model_checkpoint = checkpoint_info.filename @@ -295,6 +294,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo): sd_vae.clear_loaded_vae() vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename) sd_vae.load_vae(model, vae_file, vae_source) + timer.record("load VAE") def enable_midas_autodownload(): @@ -340,24 +340,20 @@ def enable_midas_autodownload(): midas.api.load_model = load_model_wrapper -class Timer: - def __init__(self): - self.start = time.time() +def repair_config(sd_config): - def elapsed(self): - end = time.time() - res = end - self.start - self.start = end - return res + if not hasattr(sd_config.model.params, "use_ema"): + sd_config.model.params.use_ema = False + if shared.cmd_opts.no_half: + sd_config.model.params.unet_config.params.use_fp16 = False + elif shared.cmd_opts.upcast_sampling: + sd_config.model.params.unet_config.params.use_fp16 = True -def load_model(checkpoint_info=None): + +def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None): from modules import lowvram, sd_hijack checkpoint_info = checkpoint_info or select_checkpoint() - checkpoint_config = find_checkpoint_config(checkpoint_info) - - if checkpoint_config != shared.cmd_opts.config: - print(f"Loading config from: {checkpoint_config}") if shared.sd_model: sd_hijack.model_hijack.undo_hijack(shared.sd_model) @@ -365,38 +361,27 @@ def load_model(checkpoint_info=None): gc.collect() devices.torch_gc() - sd_config = OmegaConf.load(checkpoint_config) - - if should_hijack_inpainting(checkpoint_info): - # Hardcoded config for now... - sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion" - sd_config.model.params.conditioning_key = "hybrid" - sd_config.model.params.unet_config.params.in_channels = 9 - sd_config.model.params.finetune_keys = None - - if should_hijack_ip2p(checkpoint_info): - sd_config.model.target = "modules.models.diffusion.ddpm_edit.LatentDiffusion" - sd_config.model.params.conditioning_key = "hybrid" - sd_config.model.params.first_stage_key = "edited" - sd_config.model.params.cond_stage_key = "edit" - sd_config.model.params.image_size = 16 - sd_config.model.params.unet_config.params.in_channels = 8 - sd_config.model.params.unet_config.params.out_channels = 4 + do_inpainting_hijack() - if not hasattr(sd_config.model.params, "use_ema"): - sd_config.model.params.use_ema = False + timer = Timer() - do_inpainting_hijack() + if already_loaded_state_dict is not None: + state_dict = already_loaded_state_dict + else: + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) - if shared.cmd_opts.no_half: - sd_config.model.params.unet_config.params.use_fp16 = False - elif shared.cmd_opts.upcast_sampling: - sd_config.model.params.unet_config.params.use_fp16 = True + checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) - timer = Timer() + timer.record("find config") - sd_model = None + sd_config = OmegaConf.load(checkpoint_config) + repair_config(sd_config) + + timer.record("load config") + + print(f"Creating model from config: {checkpoint_config}") + sd_model = None try: with sd_disable_initialization.DisableInitialization(): sd_model = instantiate_from_config(sd_config.model) @@ -407,29 +392,35 @@ def load_model(checkpoint_info=None): print('Failed to create model quickly; will retry using slow method.', file=sys.stderr) sd_model = instantiate_from_config(sd_config.model) - elapsed_create = timer.elapsed() + sd_model.used_config = checkpoint_config - load_model_weights(sd_model, checkpoint_info) + timer.record("create model") - elapsed_load_weights = timer.elapsed() + load_model_weights(sd_model, checkpoint_info, state_dict, timer) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) else: sd_model.to(shared.device) + timer.record("move model to device") + sd_hijack.model_hijack.hijack(sd_model) + timer.record("hijack") + sd_model.eval() shared.sd_model = sd_model sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model + timer.record("load textual inversion embeddings") + script_callbacks.model_loaded_callback(sd_model) - elapsed_the_rest = timer.elapsed() + timer.record("scripts callbacks") - print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).") + print(f"Model loaded in {timer.summary()}.") return sd_model @@ -440,6 +431,7 @@ def reload_model_weights(sd_model=None, info=None): if not sd_model: sd_model = shared.sd_model + if sd_model is None: # previous model load failed current_checkpoint_info = None else: @@ -447,14 +439,6 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - checkpoint_config = find_checkpoint_config(current_checkpoint_info) - - if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info) or should_hijack_ip2p(checkpoint_info) != should_hijack_ip2p(sd_model.sd_checkpoint_info): - del sd_model - checkpoints_loaded.clear() - load_model(checkpoint_info) - return shared.sd_model - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.send_everything_to_cpu() else: @@ -464,21 +448,35 @@ def reload_model_weights(sd_model=None, info=None): timer = Timer() + state_dict = get_checkpoint_state_dict(checkpoint_info, timer) + + checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info) + + timer.record("find config") + + if sd_model is None or checkpoint_config != sd_model.used_config: + del sd_model + checkpoints_loaded.clear() + load_model(checkpoint_info, already_loaded_state_dict=state_dict, time_taken_to_load_state_dict=timer.records["load weights from disk"]) + return shared.sd_model + try: - load_model_weights(sd_model, checkpoint_info) + load_model_weights(sd_model, checkpoint_info, state_dict, timer) except Exception as e: print("Failed to load checkpoint, restoring previous") - load_model_weights(sd_model, current_checkpoint_info) + load_model_weights(sd_model, current_checkpoint_info, None, timer) raise finally: sd_hijack.model_hijack.hijack(sd_model) + timer.record("hijack") + script_callbacks.model_loaded_callback(sd_model) + timer.record("script callbacks") if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) + timer.record("move model to device") - elapsed = timer.elapsed() - - print(f"Weights loaded in {elapsed:.1f}s.") + print(f"Weights loaded in {timer.summary()}.") return sd_model diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py new file mode 100644 index 00000000..ea773a10 --- /dev/null +++ b/modules/sd_models_config.py @@ -0,0 +1,65 @@ +import re +import os + +from modules import shared, paths + +sd_configs_path = shared.sd_configs_path +sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") + + +config_default = shared.sd_default_config +config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml") +config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml") +config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml") +config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") +config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") + +re_parametrization_v = re.compile(r'-v\b') + + +def guess_model_config_from_state_dict(sd, filename): + fn = os.path.basename(filename) + + sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) + diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) + roberta_weight = sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) + + if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: + if re.search(re_parametrization_v, fn) or "v2-1_768" in fn: + return config_sd2v + else: + return config_sd2 + + if diffusion_model_input is not None: + if diffusion_model_input.shape[1] == 9: + return config_inpainting + if diffusion_model_input.shape[1] == 8: + return config_instruct_pix2pix + + if roberta_weight is not None: + return config_alt_diffusion + + return config_default + + +def find_checkpoint_config(state_dict, info): + if info is None: + return guess_model_config_from_state_dict(state_dict, "") + + config = find_checkpoint_config_near_filename(info) + if config is not None: + return config + + return guess_model_config_from_state_dict(state_dict, info.filename) + + +def find_checkpoint_config_near_filename(info): + if info is None: + return None + + config = os.path.splitext(info.filename)[0] + ".yaml" + if os.path.exists(config): + return config + + return None + diff --git a/modules/shared.py b/modules/shared.py index cdeed55d..14be993d 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,13 +13,14 @@ import modules.interrogate import modules.memmon import modules.styles import modules.devices as devices -from modules import localization, sd_vae, extensions, script_loading, errors, ui_components, shared_items +from modules import localization, extensions, script_loading, errors, ui_components, shared_items from modules.paths import models_path, script_path demo = None -sd_default_config = os.path.join(script_path, "configs/v1-inference.yaml") +sd_configs_path = os.path.join(script_path, "configs") +sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml") sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file @@ -391,7 +392,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list), "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), diff --git a/modules/shared_items.py b/modules/shared_items.py index b5d480c9..8b5ec96d 100644 --- a/modules/shared_items.py +++ b/modules/shared_items.py @@ -4,7 +4,20 @@ def realesrgan_models_names(): import modules.realesrgan_model return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)] + def postprocessing_scripts(): import modules.scripts - return modules.scripts.scripts_postproc.scripts \ No newline at end of file + return modules.scripts.scripts_postproc.scripts + + +def sd_vae_items(): + import modules.sd_vae + + return ["Automatic", "None"] + list(modules.sd_vae.vae_dict) + + +def refresh_vae_list(): + import modules.sd_vae + + return modules.sd_vae.refresh_vae_list diff --git a/modules/timer.py b/modules/timer.py new file mode 100644 index 00000000..57a4f17a --- /dev/null +++ b/modules/timer.py @@ -0,0 +1,35 @@ +import time + + +class Timer: + def __init__(self): + self.start = time.time() + self.records = {} + self.total = 0 + + def elapsed(self): + end = time.time() + res = end - self.start + self.start = end + return res + + def record(self, category, extra_time=0): + e = self.elapsed() + if category not in self.records: + self.records[category] = 0 + + self.records[category] += e + extra_time + self.total += e + extra_time + + def summary(self): + res = f"{self.total:.1f}s" + + additions = [x for x in self.records.items() if x[1] >= 0.1] + if not additions: + return res + + res += " (" + res += ", ".join([f"{category}: {time_taken:.1f}s" for category, time_taken in additions]) + res += ")" + + return res diff --git a/v2-inference-v.yaml b/v2-inference-v.yaml deleted file mode 100644 index 513cd635..00000000 --- a/v2-inference-v.yaml +++ /dev/null @@ -1,68 +0,0 @@ -model: - base_learning_rate: 1.0e-4 - target: ldm.models.diffusion.ddpm.LatentDiffusion - params: - parameterization: "v" - linear_start: 0.00085 - linear_end: 0.0120 - num_timesteps_cond: 1 - log_every_t: 200 - timesteps: 1000 - first_stage_key: "jpg" - cond_stage_key: "txt" - image_size: 64 - channels: 4 - cond_stage_trainable: false - conditioning_key: crossattn - monitor: val/loss_simple_ema - scale_factor: 0.18215 - use_ema: False # we set this to false because this is an inference only config - - unet_config: - target: ldm.modules.diffusionmodules.openaimodel.UNetModel - params: - use_checkpoint: True - use_fp16: True - image_size: 32 # unused - in_channels: 4 - out_channels: 4 - model_channels: 320 - attention_resolutions: [ 4, 2, 1 ] - num_res_blocks: 2 - channel_mult: [ 1, 2, 4, 4 ] - num_head_channels: 64 # need to fix for flash-attn - use_spatial_transformer: True - use_linear_in_transformer: True - transformer_depth: 1 - context_dim: 1024 - legacy: False - - first_stage_config: - target: ldm.models.autoencoder.AutoencoderKL - params: - embed_dim: 4 - monitor: val/rec_loss - ddconfig: - #attn_type: "vanilla-xformers" - double_z: true - z_channels: 4 - resolution: 256 - in_channels: 3 - out_ch: 3 - ch: 128 - ch_mult: - - 1 - - 2 - - 4 - - 4 - num_res_blocks: 2 - attn_resolutions: [] - dropout: 0.0 - lossconfig: - target: torch.nn.Identity - - cond_stage_config: - target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder - params: - freeze: True - layer: "penultimate" \ No newline at end of file -- cgit v1.2.3 From 6f31d2210c189f8db118e6f95add7ba2a64f0238 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 27 Jan 2023 11:54:19 +0300 Subject: support detecting midas model fix broken api for checkpoint list --- modules/api/models.py | 2 +- modules/sd_models.py | 10 +++++----- modules/sd_models_config.py | 7 +++++-- 3 files changed, 11 insertions(+), 8 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/api/models.py b/modules/api/models.py index 805bd8f7..cba43d3b 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -228,7 +228,7 @@ class SDModelItem(BaseModel): hash: Optional[str] = Field(title="Short hash") sha256: Optional[str] = Field(title="sha256 hash") filename: str = Field(title="Filename") - config: str = Field(title="Config file") + config: Optional[str] = Field(title="Config file") class HypernetworkItem(BaseModel): name: str = Field(title="Name") diff --git a/modules/sd_models.py b/modules/sd_models.py index fa208728..37dad18d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -439,12 +439,12 @@ def reload_model_weights(sd_model=None, info=None): if sd_model.sd_model_checkpoint == checkpoint_info.filename: return - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: - lowvram.send_everything_to_cpu() - else: - sd_model.to(devices.cpu) + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) - sd_hijack.model_hijack.undo_hijack(sd_model) + sd_hijack.model_hijack.undo_hijack(sd_model) timer = Timer() diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index ea773a10..4d1e92e1 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -10,6 +10,7 @@ sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", config_default = shared.sd_default_config config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml") config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml") +config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml") config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml") config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml") config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml") @@ -22,7 +23,9 @@ def guess_model_config_from_state_dict(sd, filename): sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None) diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None) - roberta_weight = sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) + + if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None: + return config_depth_model if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024: if re.search(re_parametrization_v, fn) or "v2-1_768" in fn: @@ -36,7 +39,7 @@ def guess_model_config_from_state_dict(sd, filename): if diffusion_model_input.shape[1] == 8: return config_instruct_pix2pix - if roberta_weight is not None: + if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None: return config_alt_diffusion return config_default -- cgit v1.2.3 From 5eee2ac39863f9e44591b50d0710dd2615416a13 Mon Sep 17 00:00:00 2001 From: Max Audron Date: Wed, 25 Jan 2023 17:15:42 +0100 Subject: add data-dir flag and set all user data directories based on it --- modules/extensions.py | 2 +- modules/generation_parameters_copypaste.py | 4 ++-- modules/gfpgan_model.py | 5 ++--- modules/hashes.py | 4 +++- modules/interrogate.py | 2 +- modules/paths.py | 10 +++++++++- modules/processing.py | 3 ++- modules/sd_models.py | 6 +++--- modules/sd_vae.py | 5 ++--- modules/shared.py | 11 ++++++----- modules/textual_inversion/preprocess.py | 5 ++--- modules/ui.py | 6 +++--- modules/ui_extensions.py | 2 +- modules/upscaler.py | 5 ++--- 14 files changed, 39 insertions(+), 31 deletions(-) (limited to 'modules/sd_models.py') diff --git a/modules/extensions.py b/modules/extensions.py index b522125c..92ee8144 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -7,7 +7,7 @@ import git from modules import paths, shared extensions = [] -extensions_dir = os.path.join(paths.script_path, "extensions") +extensions_dir = os.path.join(paths.data_path, "extensions") extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin") diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 46e12dc6..35f72808 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -6,7 +6,7 @@ import re from pathlib import Path import gradio as gr -from modules.shared import script_path +from modules.paths import data_path, script_path from modules import shared, ui_tempdir, script_callbacks import tempfile from PIL import Image @@ -289,7 +289,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model def connect_paste(button, paste_fields, input_comp, jsfunc=None): def paste_func(prompt): if not prompt and not shared.cmd_opts.hide_ui_dir_config: - filename = os.path.join(script_path, "params.txt") + filename = os.path.join(data_path, "params.txt") if os.path.exists(filename): with open(filename, "r", encoding="utf8") as file: prompt = file.read() diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index 1e2dbc32..fbe6215a 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -6,12 +6,11 @@ import facexlib import gfpgan import modules.face_restoration -from modules import shared, devices, modelloader -from modules.paths import models_path +from modules import paths, shared, devices, modelloader model_dir = "GFPGAN" user_path = None -model_path = os.path.join(models_path, model_dir) +model_path = os.path.join(paths.models_path, model_dir) model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" have_gfpgan = False loaded_gfpgan_model = None diff --git a/modules/hashes.py b/modules/hashes.py index b85a7580..819362a3 100644 --- a/modules/hashes.py +++ b/modules/hashes.py @@ -4,8 +4,10 @@ import os.path import filelock +from modules.paths import data_path -cache_filename = "cache.json" + +cache_filename = os.path.join(data_path, "cache.json") cache_data = None diff --git a/modules/interrogate.py b/modules/interrogate.py index c72ff694..cbb80683 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -12,7 +12,7 @@ from torchvision import transforms from torchvision.transforms.functional import InterpolationMode import modules.shared as shared -from modules import devices, paths, lowvram, modelloader, errors +from modules import devices, paths, shared, lowvram, modelloader, errors blip_image_eval_size = 384 clip_model_name = 'ViT-L/14' diff --git a/modules/paths.py b/modules/paths.py index 20b3e4d8..08e6f9b9 100644 --- a/modules/paths.py +++ b/modules/paths.py @@ -4,7 +4,15 @@ import sys import modules.safe script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) -models_path = os.path.join(script_path, "models") + +# Parse the --data-dir flag first so we can use it as a base for our other argument default values +parser = argparse.ArgumentParser() +parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",) +cmd_opts_pre = parser.parse_known_args()[0] +data_path = cmd_opts_pre.data_dir +models_path = os.path.join(data_path, "models") + +# data_path = cmd_opts_pre.data sys.path.insert(0, script_path) # search for directory of stable diffusion in following places diff --git a/modules/processing.py b/modules/processing.py index 262806a1..5072fc40 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -17,6 +17,7 @@ from modules import devices, prompt_parser, masking, sd_samplers, lowvram, gener from modules.sd_hijack import model_hijack from modules.shared import opts, cmd_opts, state import modules.shared as shared +import modules.paths as paths import modules.face_restoration import modules.images as images import modules.styles @@ -584,7 +585,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if not p.disable_extra_networks: extra_networks.activate(p, extra_network_data) - with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file: + with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file: processed = Processed(p, [], p.seed, "") file.write(processed.infotext(p, 0)) diff --git a/modules/sd_models.py b/modules/sd_models.py index 37dad18d..b2d48a51 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -12,13 +12,13 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config +from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config from modules.paths import models_path from modules.sd_hijack_inpainting import do_inpainting_hijack from modules.timer import Timer model_dir = "Stable-diffusion" -model_path = os.path.abspath(os.path.join(models_path, model_dir)) +model_path = os.path.abspath(os.path.join(paths.models_path, model_dir)) checkpoints_list = {} checkpoint_alisases = {} @@ -307,7 +307,7 @@ def enable_midas_autodownload(): location automatically. """ - midas_path = os.path.join(models_path, 'midas') + midas_path = os.path.join(paths.models_path, 'midas') # stable-diffusion-stability-ai hard-codes the midas model path to # a location that differs from where other scripts using this model look. diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 4ce238b8..9b00f76e 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -3,13 +3,12 @@ import safetensors.torch import os import collections from collections import namedtuple -from modules import shared, devices, script_callbacks, sd_models -from modules.paths import models_path +from modules import paths, shared, devices, script_callbacks, sd_models import glob from copy import deepcopy -vae_path = os.path.abspath(os.path.join(models_path, "VAE")) +vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE")) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} vae_dict = {} diff --git a/modules/shared.py b/modules/shared.py index 14be993d..474fcc42 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -14,7 +14,7 @@ import modules.memmon import modules.styles import modules.devices as devices from modules import localization, extensions, script_loading, errors, ui_components, shared_items -from modules.paths import models_path, script_path +from modules.paths import models_path, script_path, data_path demo = None @@ -25,6 +25,7 @@ sd_model_file = os.path.join(script_path, 'model.ckpt') default_sd_model_file = sd_model_file parser = argparse.ArgumentParser() +parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",) parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",) parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",) parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints") @@ -35,7 +36,7 @@ parser.add_argument("--no-half", action='store_true', help="do not switch the mo parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats") parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") -parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates") parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory") @@ -74,16 +75,16 @@ parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for sp parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) -parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json')) +parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json')) parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False) parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False) -parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json')) +parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json')) parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything') parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything") parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last") -parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) +parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv')) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None) parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index c0ac11d3..2239cb84 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -6,8 +6,7 @@ import sys import tqdm import time -from modules import shared, images, deepbooru -from modules.paths import models_path +from modules import paths, shared, images, deepbooru from modules.shared import opts, cmd_opts from modules.textual_inversion import autocrop @@ -199,7 +198,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre dnn_model_path = None try: - dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) + dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv")) except Exception as e: print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) diff --git a/modules/ui.py b/modules/ui.py index 85ae62c7..0117df3e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -21,7 +21,7 @@ from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_grad from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML -from modules.paths import script_path +from modules.paths import script_path, data_path from modules.shared import opts, cmd_opts, restricted_opts @@ -1497,8 +1497,8 @@ def create_ui(): with open(cssfile, "r", encoding="utf8") as file: css += file.read() + "\n" - if os.path.exists(os.path.join(script_path, "user.css")): - with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: + if os.path.exists(os.path.join(data_path, "user.css")): + with open(os.path.join(data_path, "user.css"), "r", encoding="utf8") as file: css += file.read() + "\n" if not cmd_opts.no_progressbar_hiding: diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py index 742e745e..66a41865 100644 --- a/modules/ui_extensions.py +++ b/modules/ui_extensions.py @@ -132,7 +132,7 @@ def install_extension_from_url(dirname, url): normalized_url = normalize_git_url(url) assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed' - tmpdir = os.path.join(paths.script_path, "tmp", dirname) + tmpdir = os.path.join(paths.data_path, "tmp", dirname) try: shutil.rmtree(tmpdir, True) diff --git a/modules/upscaler.py b/modules/upscaler.py index a5bf5acb..e2eaa730 100644 --- a/modules/upscaler.py +++ b/modules/upscaler.py @@ -11,7 +11,6 @@ from modules import modelloader, shared LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) NEAREST = (Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST) -from modules.paths import models_path class Upscaler: @@ -39,7 +38,7 @@ class Upscaler: self.mod_scale = None if self.model_path is None and self.name: - self.model_path = os.path.join(models_path, self.name) + self.model_path = os.path.join(shared.models_path, self.name) if self.model_path and create_dirs: os.makedirs(self.model_path, exist_ok=True) @@ -143,4 +142,4 @@ class UpscalerNearest(Upscaler): def __init__(self, dirname=None): super().__init__(False) self.name = "Nearest" - self.scalers = [UpscalerData("Nearest", None, self)] \ No newline at end of file + self.scalers = [UpscalerData("Nearest", None, self)] -- cgit v1.2.3