From 8a34671fe91e142bce9e5556cca2258b3be9dd6e Mon Sep 17 00:00:00 2001 From: MrCheeze Date: Fri, 24 Mar 2023 22:48:16 -0400 Subject: Add support for the Variations models (unclip-h and unclip-l) --- modules/sd_samplers_kdiffusion.py | 19 +++++++++++++------ 1 file changed, 13 insertions(+), 6 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 93f0e55a..e9f08518 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -92,14 +92,21 @@ class CFGDenoiser(torch.nn.Module): batch_size = len(conds_list) repeats = [len(conds_list[i]) for i in range(batch_size)] + if shared.sd_model.model.conditioning_key == "crossattn-adm": + image_uncond = torch.zeros_like(image_cond) + make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm} + else: + image_uncond = image_cond + make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]} + if not is_edit_model: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond]) else: x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) - image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)]) + image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)]) denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond) cfg_denoiser_callback(denoiser_params) @@ -116,13 +123,13 @@ class CFGDenoiser(torch.nn.Module): cond_in = torch.cat([tensor, uncond, uncond]) if shared.batch_cond_uncond: - x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]}) + x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in)) else: x_out = torch.zeros_like(x_in) for batch_offset in range(0, x_out.shape[0], batch_size): a = batch_offset b = a + batch_size - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]}) + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b])) else: x_out = torch.zeros_like(x_in) batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size @@ -135,9 +142,9 @@ class CFGDenoiser(torch.nn.Module): else: c_crossattn = torch.cat([tensor[a:b]], uncond) - x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": c_crossattn, "c_concat": [image_cond_in[a:b]]}) + x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]}) + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) -- cgit v1.2.3 From 42082e8a3239c1c32cd9e2a03a20b610af857b51 Mon Sep 17 00:00:00 2001 From: devdn Date: Tue, 28 Mar 2023 18:18:28 -0400 Subject: performance increase --- modules/processing.py | 4 +++- modules/sd_samplers_kdiffusion.py | 22 +++++++++++++++++----- modules/shared.py | 1 + scripts/xyz_grid.py | 1 + 4 files changed, 22 insertions(+), 6 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/processing.py b/modules/processing.py index 6d9c6a8d..9f00ce3c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -105,7 +105,7 @@ class StableDiffusionProcessing: """ The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing """ - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -140,6 +140,7 @@ class StableDiffusionProcessing: self.denoising_strength: float = denoising_strength self.sampler_noise_scheduler_override = None self.ddim_discretize = ddim_discretize or opts.ddim_discretize + self.s_min_uncond = s_min_uncond or opts.s_min_uncond self.s_churn = s_churn or opts.s_churn self.s_tmin = s_tmin or opts.s_tmin self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option @@ -162,6 +163,7 @@ class StableDiffusionProcessing: self.all_seeds = None self.all_subseeds = None self.iteration = 0 + @property def sd_model(self): diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index e9f08518..6a54ce32 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -76,7 +76,7 @@ class CFGDenoiser(torch.nn.Module): return denoised - def forward(self, x, sigma, uncond, cond, cond_scale, image_cond): + def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException @@ -116,6 +116,12 @@ class CFGDenoiser(torch.nn.Module): tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond + sigma_thresh = s_min_uncond + if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_thresh*sigma_thresh) and not is_edit_model): + uncond = torch.zeros([0,0,uncond.shape[2]]) + x_in=x_in[:x_in.shape[0]//2] + sigma_in=sigma_in[:sigma_in.shape[0]//2] + if tensor.shape[1] == uncond.shape[1]: if not is_edit_model: cond_in = torch.cat([tensor, uncond]) @@ -144,7 +150,8 @@ class CFGDenoiser(torch.nn.Module): x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) - x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) + if uncond.shape[0]: + x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) @@ -157,7 +164,10 @@ class CFGDenoiser(torch.nn.Module): sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) if not is_edit_model: - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + if uncond.shape[0]: + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + else: + denoised = x_out else: denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) @@ -165,7 +175,6 @@ class CFGDenoiser(torch.nn.Module): denoised = self.init_latent * self.mask + self.nmask * denoised self.step += 1 - return denoised @@ -244,6 +253,7 @@ class KDiffusionSampler: self.model_wrap_cfg.step = 0 self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None) self.eta = p.eta if p.eta is not None else opts.eta_ancestral + self.s_min_uncond = getattr(p, 's_min_uncond', 0.0) k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) @@ -326,6 +336,7 @@ class KDiffusionSampler: 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond } samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) @@ -359,7 +370,8 @@ class KDiffusionSampler: 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, - 'cond_scale': p.cfg_scale + 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond }, disable=False, callback=self.callback_state, **extra_params_kwargs)) return samples diff --git a/modules/shared.py b/modules/shared.py index 5fd0eecb..0bdd30b8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -405,6 +405,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" "eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + 's_min_uncond': OptionInfo(0, "minimum sigma to use unconditioned guidance", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index 3895a795..d6a44b1c 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -212,6 +212,7 @@ axis_options = [ AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]), AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]), AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)), + AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")), AxisOption("Sigma Churn", float, apply_field("s_churn")), AxisOption("Sigma min", float, apply_field("s_tmin")), AxisOption("Sigma max", float, apply_field("s_tmax")), -- cgit v1.2.3 From 44e8e9c36807d4a71c2fc84129ebcf5ba4f77f21 Mon Sep 17 00:00:00 2001 From: devdn Date: Thu, 30 Mar 2023 00:54:28 -0400 Subject: fix live preview & alternate uncond guidance for better quality --- modules/sd_samplers_kdiffusion.py | 14 ++++++++------ 1 file changed, 8 insertions(+), 6 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 6a54ce32..17d24df4 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -116,11 +116,13 @@ class CFGDenoiser(torch.nn.Module): tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond - sigma_thresh = s_min_uncond - if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_thresh*sigma_thresh) and not is_edit_model): - uncond = torch.zeros([0,0,uncond.shape[2]]) - x_in=x_in[:x_in.shape[0]//2] - sigma_in=sigma_in[:sigma_in.shape[0]//2] + if self.step % 2 and s_min_uncond > 0 and not is_edit_model: + # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it + sigma_threshold = s_min_uncond + if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ): + uncond = torch.zeros([0,0,uncond.shape[2]]) + x_in=x_in[:x_in.shape[0]//2] + sigma_in=sigma_in[:sigma_in.shape[0]//2] if tensor.shape[1] == uncond.shape[1]: if not is_edit_model: @@ -159,7 +161,7 @@ class CFGDenoiser(torch.nn.Module): devices.test_for_nans(x_out, "unet") if opts.live_preview_content == "Prompt": - sd_samplers_common.store_latent(x_out[0:uncond.shape[0]]) + sd_samplers_common.store_latent(x_out[0:x_out.shape[0]-uncond.shape[0]]) elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) -- cgit v1.2.3 From d40e44ade479f7bba30d5317381cbc58c861775b Mon Sep 17 00:00:00 2001 From: Deciare <1689220+deciare@users.noreply.github.com> Date: Tue, 18 Apr 2023 23:18:58 -0400 Subject: Option to use CPU for random number generation. Makes a given manual seed generate the same images across different platforms, independently of the GPU architecture in use. Fixes #9613. --- modules/devices.py | 8 ++++++-- modules/sd_samplers_common.py | 9 +++++++++ modules/sd_samplers_kdiffusion.py | 2 +- modules/shared.py | 1 + 4 files changed, 17 insertions(+), 3 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/devices.py b/modules/devices.py index 52c3e7cd..3bc86a6a 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -92,14 +92,18 @@ def cond_cast_float(input): def randn(seed, shape): + from modules.shared import opts + torch.manual_seed(seed) - if device.type == 'mps': + if opts.use_cpu_randn or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) def randn_without_seed(shape): - if device.type == 'mps': + from modules.shared import opts + + if opts.use_cpu_randn or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index a1aac7cf..e6a372d5 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -60,3 +60,12 @@ def store_latent(decoded): class InterruptedException(BaseException): pass + +if opts.use_cpu_randn: + import torchsde._brownian.brownian_interval + + def torchsde_randn(size, dtype, device, seed): + generator = torch.Generator(devices.cpu).manual_seed(int(seed)) + return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device) + + torchsde._brownian.brownian_interval._randn = torchsde_randn diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index e9f08518..13f4567a 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -190,7 +190,7 @@ class TorchHijack: if noise.shape == x.shape: return noise - if x.device.type == 'mps': + if opts.use_cpu_randn or x.device.type == 'mps': return torch.randn_like(x, device=devices.cpu).to(x.device) else: return torch.randn_like(x) diff --git a/modules/shared.py b/modules/shared.py index 5fd0eecb..59b037d5 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -331,6 +331,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), + "use_cpu_randn": OptionInfo(False, "Use CPU for random number generation to make manual seeds generate the same image across platforms. This may change existing seeds."), })) options_templates.update(options_section(('compatibility', "Compatibility"), { -- cgit v1.2.3 From 5fe0dd79beaa5ef737ff85254ee9870f60ae9464 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 29 Apr 2023 11:29:37 +0300 Subject: rename CPU RNG to RNG source in settings, add infotext and parameters copypaste support to RNG source --- modules/devices.py | 4 ++-- modules/generation_parameters_copypaste.py | 5 +++++ modules/processing.py | 3 ++- modules/sd_samplers_common.py | 3 ++- modules/sd_samplers_kdiffusion.py | 2 +- modules/shared.py | 2 +- 6 files changed, 13 insertions(+), 6 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/devices.py b/modules/devices.py index 3bc86a6a..c705a3cb 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -95,7 +95,7 @@ def randn(seed, shape): from modules.shared import opts torch.manual_seed(seed) - if opts.use_cpu_randn or device.type == 'mps': + if opts.randn_source == "CPU" or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) @@ -103,7 +103,7 @@ def randn(seed, shape): def randn_without_seed(shape): from modules.shared import opts - if opts.use_cpu_randn or device.type == 'mps': + if opts.randn_source == "CPU" or device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 6df76858..e7269363 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -284,6 +284,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model restore_old_hires_fix_params(res) + # Missing RNG means the default was set, which is GPU RNG + if "RNG" not in res: + res["RNG"] = "GPU" + return res @@ -304,6 +308,7 @@ infotext_to_setting_name_mapping = [ ('UniPC skip type', 'uni_pc_skip_type'), ('UniPC order', 'uni_pc_order'), ('UniPC lower order final', 'uni_pc_lower_order_final'), + ('RNG', 'randn_source'), ] diff --git a/modules/processing.py b/modules/processing.py index 5556afc5..7bac154d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -477,7 +477,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None, "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, - "Init image hash": getattr(p, 'init_img_hash', None) + "Init image hash": getattr(p, 'init_img_hash', None), + "RNG": (opts.randn_source if opts.randn_source != "GPU" else None) } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index e6a372d5..bc074238 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -61,7 +61,8 @@ def store_latent(decoded): class InterruptedException(BaseException): pass -if opts.use_cpu_randn: + +if opts.randn_source == "CPU": import torchsde._brownian.brownian_interval def torchsde_randn(size, dtype, device, seed): diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 13f4567a..a547d1b5 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -190,7 +190,7 @@ class TorchHijack: if noise.shape == x.shape: return noise - if opts.use_cpu_randn or x.device.type == 'mps': + if opts.randn_source == "CPU" or x.device.type == 'mps': return torch.randn_like(x, device=devices.cpu).to(x.device) else: return torch.randn_like(x) diff --git a/modules/shared.py b/modules/shared.py index b5b401fe..73704889 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -334,7 +334,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), - "use_cpu_randn": OptionInfo(False, "Use CPU for random number generation to make manual seeds generate the same image across platforms. This may change existing seeds."), + "randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}), })) options_templates.update(options_section(('compatibility', "Compatibility"), { -- cgit v1.2.3 From 1d11e896984c883f6a0debb3abaef945595cbc70 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 29 Apr 2023 15:57:09 +0300 Subject: rework Negative Guidance minimum sigma to work with AND, add infotext and copypaste parameters support --- javascript/hints.js | 3 ++- modules/generation_parameters_copypaste.py | 1 + modules/processing.py | 3 ++- modules/sd_samplers_kdiffusion.py | 43 +++++++++++++++++------------- 4 files changed, 30 insertions(+), 20 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/javascript/hints.js b/javascript/hints.js index c6bae360..44d418da 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -111,7 +111,8 @@ titles = { "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.", "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", - "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited." + "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.", + "Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction." } diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index e7269363..99f1a0d3 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -309,6 +309,7 @@ infotext_to_setting_name_mapping = [ ('UniPC order', 'uni_pc_order'), ('UniPC lower order final', 'uni_pc_lower_order_final'), ('RNG', 'randn_source'), + ('NGMS', 's_min_uncond'), ] diff --git a/modules/processing.py b/modules/processing.py index 04a06290..c50784f4 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -480,7 +480,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Clip skip": None if clip_skip <= 1 else clip_skip, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, "Init image hash": getattr(p, 'init_img_hash', None), - "RNG": (opts.randn_source if opts.randn_source != "GPU" else None) + "RNG": opts.randn_source if opts.randn_source != "GPU" else None, + "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index d42d5fcf..f8aaac59 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -115,20 +115,21 @@ class CFGDenoiser(torch.nn.Module): sigma_in = denoiser_params.sigma tensor = denoiser_params.text_cond uncond = denoiser_params.text_uncond + skip_uncond = False - if self.step % 2 and s_min_uncond > 0 and not is_edit_model: - # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it - sigma_threshold = s_min_uncond - if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ): - uncond = torch.zeros([0,0,uncond.shape[2]]) - x_in=x_in[:x_in.shape[0]//2] - sigma_in=sigma_in[:sigma_in.shape[0]//2] + # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it + if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: + skip_uncond = True + x_in = x_in[:-batch_size] + sigma_in = sigma_in[:-batch_size] - if tensor.shape[1] == uncond.shape[1]: - if not is_edit_model: - cond_in = torch.cat([tensor, uncond]) - else: + if tensor.shape[1] == uncond.shape[1] or skip_uncond: + if is_edit_model: cond_in = torch.cat([tensor, uncond, uncond]) + elif skip_uncond: + cond_in = tensor + else: + cond_in = torch.cat([tensor, uncond]) if shared.batch_cond_uncond: x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in)) @@ -152,9 +153,15 @@ class CFGDenoiser(torch.nn.Module): x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) - if uncond.shape[0]: + if not skip_uncond: x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) + if skip_uncond: + #x_out = torch.cat([x_out, x_out[0:batch_size]]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be + denoised_image_indexes = [x[0][0] for x in conds_list] + fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) + x_out = torch.cat([x_out, fake_uncond]) + denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) @@ -165,13 +172,12 @@ class CFGDenoiser(torch.nn.Module): elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) - if not is_edit_model: - if uncond.shape[0]: - denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) - else: - denoised = x_out - else: + if is_edit_model: denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) + elif skip_uncond: + denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) + else: + denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) if self.mask is not None: denoised = self.init_latent * self.mask + self.nmask * denoised @@ -221,6 +227,7 @@ class KDiffusionSampler: self.eta = None self.config = None self.last_latent = None + self.s_min_uncond = None self.conditioning_key = sd_model.model.conditioning_key -- cgit v1.2.3 From 737b73a820584b8035fcc37fe35993bec867f326 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 29 Apr 2023 16:05:20 +0300 Subject: some extra lines I forgot to add for previous commit --- modules/sd_samplers_kdiffusion.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index f8aaac59..136aa8e5 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -156,11 +156,10 @@ class CFGDenoiser(torch.nn.Module): if not skip_uncond: x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) + denoised_image_indexes = [x[0][0] for x in conds_list] if skip_uncond: - #x_out = torch.cat([x_out, x_out[0:batch_size]]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be - denoised_image_indexes = [x[0][0] for x in conds_list] fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) - x_out = torch.cat([x_out, fake_uncond]) + x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) cfg_denoised_callback(denoised_params) -- cgit v1.2.3 From 8863b31d83b527d041ca45e23b9af99e2346081a Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 29 Apr 2023 16:06:20 +0300 Subject: use correct images for previews when using AND (see #9491) --- modules/sd_samplers_kdiffusion.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/sd_samplers_kdiffusion.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 136aa8e5..eb98e599 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -167,7 +167,7 @@ class CFGDenoiser(torch.nn.Module): devices.test_for_nans(x_out, "unet") if opts.live_preview_content == "Prompt": - sd_samplers_common.store_latent(x_out[0:x_out.shape[0]-uncond.shape[0]]) + sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes])) elif opts.live_preview_content == "Negative prompt": sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) -- cgit v1.2.3