From 8285a149d8c488ae6c7a566eb85fb5e825145464 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 8 Aug 2023 19:20:11 +0300 Subject: add CFG denoiser implementation for DDIM, PLMS and UniPC (this is the commit when you can run both old and new implementations to compare them) --- modules/sd_samplers_timesteps.py | 147 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 147 insertions(+) create mode 100644 modules/sd_samplers_timesteps.py (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py new file mode 100644 index 00000000..8560d009 --- /dev/null +++ b/modules/sd_samplers_timesteps.py @@ -0,0 +1,147 @@ +import torch +import inspect +from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl +from modules.sd_samplers_cfg_denoiser import CFGDenoiser + +from modules.shared import opts +import modules.shared as shared + +samplers_timesteps = [ + ('k_DDIM', sd_samplers_timesteps_impl.ddim, ['k_ddim'], {}), + ('k_PLMS', sd_samplers_timesteps_impl.plms, ['k_plms'], {}), + ('k_UniPC', sd_samplers_timesteps_impl.unipc, ['k_unipc'], {}), +] + + +samplers_data_timesteps = [ + sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: CompVisSampler(funcname, model), aliases, options) + for label, funcname, aliases, options in samplers_timesteps +] + + +class CompVisTimestepsDenoiser(torch.nn.Module): + def __init__(self, model, *args, **kwargs): + super().__init__(*args, **kwargs) + self.inner_model = model + + def forward(self, input, timesteps, **kwargs): + return self.inner_model.apply_model(input, timesteps, **kwargs) + + +class CompVisTimestepsVDenoiser(torch.nn.Module): + def __init__(self, model, *args, **kwargs): + super().__init__(*args, **kwargs) + self.inner_model = model + + def predict_eps_from_z_and_v(self, x_t, t, v): + return self.inner_model.sqrt_alphas_cumprod[t.to(torch.int), None, None, None] * v + self.inner_model.sqrt_one_minus_alphas_cumprod[t.to(torch.int), None, None, None] * x_t + + def forward(self, input, timesteps, **kwargs): + model_output = self.inner_model.apply_model(input, timesteps, **kwargs) + e_t = self.predict_eps_from_z_and_v(input, timesteps, model_output) + return e_t + + +class CFGDenoiserTimesteps(CFGDenoiser): + + def __init__(self, model, sampler): + super().__init__(model, sampler) + + self.alphas = model.inner_model.alphas_cumprod + + def get_pred_x0(self, x_in, x_out, sigma): + ts = int(sigma.item()) + + s_in = x_in.new_ones([x_in.shape[0]]) + a_t = self.alphas[ts].item() * s_in + sqrt_one_minus_at = (1 - a_t).sqrt() + + pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt() + + return pred_x0 + + +class CompVisSampler(sd_samplers_common.Sampler): + def __init__(self, funcname, sd_model): + super().__init__(funcname) + + self.eta_option_field = 'eta_ddim' + self.eta_infotext_field = 'Eta DDIM' + + denoiser = CompVisTimestepsVDenoiser if sd_model.parameterization == "v" else CompVisTimestepsDenoiser + self.model_wrap = denoiser(sd_model) + self.model_wrap_cfg = CFGDenoiserTimesteps(self.model_wrap, self) + + def get_timesteps(self, p, steps): + discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) + if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma: + discard_next_to_last_sigma = True + p.extra_generation_params["Discard penultimate sigma"] = True + + steps += 1 if discard_next_to_last_sigma else 0 + + timesteps = torch.clip(torch.asarray(list(range(0, 1000, 1000 // steps)), device=devices.device) + 1, 0, 999) + + return timesteps + + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) + + timesteps = self.get_timesteps(p, steps) + timesteps_sched = timesteps[:t_enc] + + alphas_cumprod = shared.sd_model.alphas_cumprod + sqrt_alpha_cumprod = torch.sqrt(alphas_cumprod[timesteps[t_enc]]) + sqrt_one_minus_alpha_cumprod = torch.sqrt(1 - alphas_cumprod[timesteps[t_enc]]) + + xi = x * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod + + extra_params_kwargs = self.initialize(p) + parameters = inspect.signature(self.func).parameters + + if 'timesteps' in parameters: + extra_params_kwargs['timesteps'] = timesteps_sched + if 'is_img2img' in parameters: + extra_params_kwargs['is_img2img'] = True + + self.model_wrap_cfg.init_latent = x + self.last_latent = x + extra_args = { + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond + } + + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + if self.model_wrap_cfg.padded_cond_uncond: + p.extra_generation_params["Pad conds"] = True + + return samples + + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + steps = steps or p.steps + timesteps = self.get_timesteps(p, steps) + + extra_params_kwargs = self.initialize(p) + parameters = inspect.signature(self.func).parameters + + if 'timesteps' in parameters: + extra_params_kwargs['timesteps'] = timesteps + + self.last_latent = x + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ + 'cond': conditioning, + 'image_cond': image_conditioning, + 'uncond': unconditional_conditioning, + 'cond_scale': p.cfg_scale, + 's_min_uncond': self.s_min_uncond + }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + + if self.model_wrap_cfg.padded_cond_uncond: + p.extra_generation_params["Pad conds"] = True + + return samples + -- cgit v1.2.3 From a8a256f9b5b445206818bfc8a363ed5a1ba50c86 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 8 Aug 2023 21:07:18 +0300 Subject: REMOVE --- modules/processing.py | 3 - modules/sd_hijack.py | 4 +- modules/sd_hijack_inpainting.py | 95 --------------- modules/sd_samplers.py | 7 +- modules/sd_samplers_cfg_denoiser.py | 1 - modules/sd_samplers_compvis.py | 224 ------------------------------------ modules/sd_samplers_kdiffusion.py | 3 +- modules/sd_samplers_timesteps.py | 6 +- 8 files changed, 7 insertions(+), 336 deletions(-) delete mode 100644 modules/sd_hijack_inpainting.py delete mode 100644 modules/sd_samplers_compvis.py (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/processing.py b/modules/processing.py index 31745006..61ba5f11 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -1112,9 +1112,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): img2img_sampler_name = self.hr_sampler_name or self.sampler_name - if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM - img2img_sampler_name = 'DDIM' - self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model) if self.latent_scale_mode is not None: diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 9ad98199..46652fbd 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -5,7 +5,7 @@ from types import MethodType from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet from modules.hypernetworks import hypernetwork from modules.shared import cmd_opts -from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, sd_hijack_inpainting +from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr import ldm.modules.attention import ldm.modules.diffusionmodules.model @@ -34,8 +34,6 @@ ldm.modules.diffusionmodules.model.print = shared.ldm_print ldm.util.print = shared.ldm_print ldm.models.diffusion.ddpm.print = shared.ldm_print -sd_hijack_inpainting.do_inpainting_hijack() - optimizers = [] current_optimizer: sd_hijack_optimizations.SdOptimization = None diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py deleted file mode 100644 index 2d44b856..00000000 --- a/modules/sd_hijack_inpainting.py +++ /dev/null @@ -1,95 +0,0 @@ -import torch - -import ldm.models.diffusion.ddpm -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms - -from ldm.models.diffusion.ddim import noise_like -from ldm.models.diffusion.sampling_util import norm_thresholding - - -@torch.no_grad() -def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None): - b, *_, device = *x.shape, x.device - - def get_model_output(x, t): - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = {} - for k in c: - if isinstance(c[k], list): - c_in[k] = [ - torch.cat([unconditional_conditioning[k][i], c[k][i]]) - for i in range(len(c[k])) - ] - else: - c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) - else: - c_in = torch.cat([unconditional_conditioning, c]) - - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - return e_t - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - - def get_x_prev_and_pred_x0(e_t, index): - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - if dynamic_threshold is not None: - pred_x0 = norm_thresholding(pred_x0, dynamic_threshold) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - e_t = get_model_output(x, t) - if len(old_eps) == 0: - # Pseudo Improved Euler (2nd order) - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index) - e_t_next = get_model_output(x_prev, t_next) - e_t_prime = (e_t + e_t_next) / 2 - elif len(old_eps) == 1: - # 2nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (3 * e_t - old_eps[-1]) / 2 - elif len(old_eps) == 2: - # 3nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12 - elif len(old_eps) >= 3: - # 4nd order Pseudo Linear Multistep (Adams-Bashforth) - e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 - - x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index) - - return x_prev, pred_x0, e_t - - -def do_inpainting_hijack(): - ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index fe206894..05dbe2b5 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -1,11 +1,10 @@ -from modules import sd_samplers_compvis, sd_samplers_kdiffusion, sd_samplers_timesteps, shared +from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, shared # imports for functions that previously were here and are used by other modules from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401 all_samplers = [ *sd_samplers_kdiffusion.samplers_data_k_diffusion, - *sd_samplers_compvis.samplers_data_compvis, *sd_samplers_timesteps.samplers_data_timesteps, ] all_samplers_map = {x.name: x for x in all_samplers} @@ -42,10 +41,8 @@ def set_samplers(): global samplers, samplers_for_img2img hidden = set(shared.opts.hide_samplers) - hidden_img2img = set(shared.opts.hide_samplers + ['PLMS', 'UniPC']) - samplers = [x for x in all_samplers if x.name not in hidden] - samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img] + samplers_for_img2img = [x for x in all_samplers if x.name not in hidden] samplers_map.clear() for sampler in all_samplers: diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index 166a00c7..d826222c 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -1,4 +1,3 @@ -from collections import deque import torch from modules import prompt_parser, devices, sd_samplers_common diff --git a/modules/sd_samplers_compvis.py b/modules/sd_samplers_compvis.py deleted file mode 100644 index 4a8396f9..00000000 --- a/modules/sd_samplers_compvis.py +++ /dev/null @@ -1,224 +0,0 @@ -import math -import ldm.models.diffusion.ddim -import ldm.models.diffusion.plms - -import numpy as np -import torch - -from modules.shared import state -from modules import sd_samplers_common, prompt_parser, shared -import modules.models.diffusion.uni_pc - - -samplers_data_compvis = [ - sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {"default_eta_is_0": True, "uses_ensd": True, "no_sdxl": True}), - sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {"no_sdxl": True}), - sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {"no_sdxl": True}), -] - - -class VanillaStableDiffusionSampler: - def __init__(self, constructor, sd_model): - self.sampler = constructor(sd_model) - self.is_ddim = hasattr(self.sampler, 'p_sample_ddim') - self.is_plms = hasattr(self.sampler, 'p_sample_plms') - self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler) - self.orig_p_sample_ddim = None - if self.is_plms: - self.orig_p_sample_ddim = self.sampler.p_sample_plms - elif self.is_ddim: - self.orig_p_sample_ddim = self.sampler.p_sample_ddim - self.mask = None - self.nmask = None - self.init_latent = None - self.sampler_noises = None - self.step = 0 - self.stop_at = None - self.eta = None - self.config = None - self.last_latent = None - - self.conditioning_key = sd_model.model.conditioning_key - - def number_of_needed_noises(self, p): - return 0 - - def launch_sampling(self, steps, func): - state.sampling_steps = steps - state.sampling_step = 0 - - try: - return func() - except sd_samplers_common.InterruptedException: - return self.last_latent - - def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): - x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning) - - res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs) - - x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res) - - return res - - def before_sample(self, x, ts, cond, unconditional_conditioning): - if state.interrupted or state.skipped: - raise sd_samplers_common.InterruptedException - - if self.stop_at is not None and self.step > self.stop_at: - raise sd_samplers_common.InterruptedException - - # Have to unwrap the inpainting conditioning here to perform pre-processing - image_conditioning = None - uc_image_conditioning = None - if isinstance(cond, dict): - if self.conditioning_key == "crossattn-adm": - image_conditioning = cond["c_adm"] - uc_image_conditioning = unconditional_conditioning["c_adm"] - else: - image_conditioning = cond["c_concat"][0] - cond = cond["c_crossattn"][0] - unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] - - conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) - unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) - - assert all(len(conds) == 1 for conds in conds_list), 'composition via AND is not supported for DDIM/PLMS samplers' - cond = tensor - - # for DDIM, shapes must match, we can't just process cond and uncond independently; - # filling unconditional_conditioning with repeats of the last vector to match length is - # not 100% correct but should work well enough - if unconditional_conditioning.shape[1] < cond.shape[1]: - last_vector = unconditional_conditioning[:, -1:] - last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) - unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) - elif unconditional_conditioning.shape[1] > cond.shape[1]: - unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] - - if self.mask is not None: - img_orig = self.sampler.model.q_sample(self.init_latent, ts) - x = img_orig * self.mask + self.nmask * x - - # Wrap the image conditioning back up since the DDIM code can accept the dict directly. - # Note that they need to be lists because it just concatenates them later. - if image_conditioning is not None: - if self.conditioning_key == "crossattn-adm": - cond = {"c_adm": image_conditioning, "c_crossattn": [cond]} - unconditional_conditioning = {"c_adm": uc_image_conditioning, "c_crossattn": [unconditional_conditioning]} - else: - cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - return x, ts, cond, unconditional_conditioning - - def update_step(self, last_latent): - if self.mask is not None: - self.last_latent = self.init_latent * self.mask + self.nmask * last_latent - else: - self.last_latent = last_latent - - sd_samplers_common.store_latent(self.last_latent) - - self.step += 1 - state.sampling_step = self.step - shared.total_tqdm.update() - - def after_sample(self, x, ts, cond, uncond, res): - if not self.is_unipc: - self.update_step(res[1]) - - return x, ts, cond, uncond, res - - def unipc_after_update(self, x, model_x): - self.update_step(x) - - def initialize(self, p): - if self.is_ddim: - self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim - else: - self.eta = 0.0 - - if self.eta != 0.0: - p.extra_generation_params["Eta DDIM"] = self.eta - - if self.is_unipc: - keys = [ - ('UniPC variant', 'uni_pc_variant'), - ('UniPC skip type', 'uni_pc_skip_type'), - ('UniPC order', 'uni_pc_order'), - ('UniPC lower order final', 'uni_pc_lower_order_final'), - ] - - for name, key in keys: - v = getattr(shared.opts, key) - if v != shared.opts.get_default(key): - p.extra_generation_params[name] = v - - for fieldname in ['p_sample_ddim', 'p_sample_plms']: - if hasattr(self.sampler, fieldname): - setattr(self.sampler, fieldname, self.p_sample_ddim_hook) - if self.is_unipc: - self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx)) - - self.mask = p.mask if hasattr(p, 'mask') else None - self.nmask = p.nmask if hasattr(p, 'nmask') else None - - - def adjust_steps_if_invalid(self, p, num_steps): - if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'): - if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order: - num_steps = shared.opts.uni_pc_order - valid_step = 999 / (1000 // num_steps) - if valid_step == math.floor(valid_step): - return int(valid_step) + 1 - - return num_steps - - def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) - steps = self.adjust_steps_if_invalid(p, steps) - self.initialize(p) - - self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) - x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) - - self.init_latent = x - self.last_latent = x - self.step = 0 - - # Wrap the conditioning models with additional image conditioning for inpainting model - if image_conditioning is not None: - if self.conditioning_key == "crossattn-adm": - conditioning = {"c_adm": image_conditioning, "c_crossattn": [conditioning]} - unconditional_conditioning = {"c_adm": torch.zeros_like(image_conditioning), "c_crossattn": [unconditional_conditioning]} - else: - conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} - unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} - - samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) - - return samples - - def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): - self.initialize(p) - - self.init_latent = None - self.last_latent = x - self.step = 0 - - steps = self.adjust_steps_if_invalid(p, steps or p.steps) - - # Wrap the conditioning models with additional image conditioning for inpainting model - # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape - if image_conditioning is not None: - if self.conditioning_key == "crossattn-adm": - conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_adm": image_conditioning} - unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_adm": torch.zeros_like(image_conditioning)} - else: - conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} - unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} - - samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) - - return samples_ddim diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 3a2e01b7..27a73486 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,8 +1,7 @@ -from collections import deque import torch import inspect import k_diffusion.sampling -from modules import devices, sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser +from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser from modules.shared import opts import modules.shared as shared diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 8560d009..d89d0efb 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -7,9 +7,9 @@ from modules.shared import opts import modules.shared as shared samplers_timesteps = [ - ('k_DDIM', sd_samplers_timesteps_impl.ddim, ['k_ddim'], {}), - ('k_PLMS', sd_samplers_timesteps_impl.plms, ['k_plms'], {}), - ('k_UniPC', sd_samplers_timesteps_impl.unipc, ['k_unipc'], {}), + ('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}), + ('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}), + ('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}), ] -- cgit v1.2.3 From f8ff8c0638997fd0aef217db1505598846f14782 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 8 Aug 2023 22:09:40 +0300 Subject: merge errors --- modules/sd_samplers_cfg_denoiser.py | 23 +++++++++++++++++++++-- modules/sd_samplers_common.py | 6 +++++- modules/sd_samplers_kdiffusion.py | 17 ++++++++++++----- modules/sd_samplers_timesteps.py | 27 +++++++++++++++++---------- 4 files changed, 55 insertions(+), 18 deletions(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index d826222c..a532e013 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -38,16 +38,24 @@ class CFGDenoiser(torch.nn.Module): negative prompt. """ - def __init__(self, model, sampler): + def __init__(self, sampler): super().__init__() - self.inner_model = model + self.model_wrap = None self.mask = None self.nmask = None self.init_latent = None + self.steps = None self.step = 0 self.image_cfg_scale = None self.padded_cond_uncond = False self.sampler = sampler + self.model_wrap = None + self.p = None + + @property + def inner_model(self): + raise NotImplementedError() + def combine_denoised(self, x_out, conds_list, uncond, cond_scale): denoised_uncond = x_out[-uncond.shape[0]:] @@ -68,10 +76,21 @@ class CFGDenoiser(torch.nn.Module): def get_pred_x0(self, x_in, x_out, sigma): return x_out + def update_inner_model(self): + self.model_wrap = None + + c, uc = self.p.get_conds() + self.sampler.sampler_extra_args['cond'] = c + self.sampler.sampler_extra_args['uncond'] = uc + def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): if state.interrupted or state.skipped: raise sd_samplers_common.InterruptedException + if sd_samplers_common.apply_refiner(self): + cond = self.sampler.sampler_extra_args['cond'] + uncond = self.sampler.sampler_extra_args['uncond'] + # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling, # so is_edit_model is set to False to support AND composition. is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 15f27970..fa3614ff 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -202,8 +202,9 @@ class Sampler: self.conditioning_key = shared.sd_model.model.conditioning_key - self.model_wrap = None + self.p = None self.model_wrap_cfg = None + self.sampler_extra_args = None def callback_state(self, d): step = d['i'] @@ -215,6 +216,7 @@ class Sampler: shared.total_tqdm.update() def launch_sampling(self, steps, func): + self.model_wrap_cfg.steps = steps state.sampling_steps = steps state.sampling_step = 0 @@ -234,6 +236,8 @@ class Sampler: return p.steps def initialize(self, p) -> dict: + self.p = p + self.model_wrap_cfg.p = p self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.step = 0 diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 3ff4b634..95a43cef 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -52,17 +52,24 @@ k_diffusion_scheduler = { } +class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser): + @property + def inner_model(self): + if self.model_wrap is None: + denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser + self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization) + + return self.model_wrap + + class KDiffusionSampler(sd_samplers_common.Sampler): def __init__(self, funcname, sd_model): - super().__init__(funcname) - self.extra_params = sampler_extra_params.get(funcname, []) self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname) - denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser - self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.model_wrap_cfg = sd_samplers_cfg_denoiser.CFGDenoiser(self.model_wrap, self) + self.model_wrap_cfg = CFGDenoiserKDiffusion(self) + self.model_wrap = self.model_wrap_cfg.inner_model def get_sigmas(self, p, steps): discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index d89d0efb..965e61c6 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -44,10 +44,10 @@ class CompVisTimestepsVDenoiser(torch.nn.Module): class CFGDenoiserTimesteps(CFGDenoiser): - def __init__(self, model, sampler): - super().__init__(model, sampler) + def __init__(self, sampler): + super().__init__(sampler) - self.alphas = model.inner_model.alphas_cumprod + self.alphas = shared.sd_model.alphas_cumprod def get_pred_x0(self, x_in, x_out, sigma): ts = int(sigma.item()) @@ -60,6 +60,14 @@ class CFGDenoiserTimesteps(CFGDenoiser): return pred_x0 + @property + def inner_model(self): + if self.model_wrap is None: + denoiser = CompVisTimestepsVDenoiser if shared.sd_model.parameterization == "v" else CompVisTimestepsDenoiser + self.model_wrap = denoiser(shared.sd_model) + + return self.model_wrap + class CompVisSampler(sd_samplers_common.Sampler): def __init__(self, funcname, sd_model): @@ -68,9 +76,7 @@ class CompVisSampler(sd_samplers_common.Sampler): self.eta_option_field = 'eta_ddim' self.eta_infotext_field = 'Eta DDIM' - denoiser = CompVisTimestepsVDenoiser if sd_model.parameterization == "v" else CompVisTimestepsDenoiser - self.model_wrap = denoiser(sd_model) - self.model_wrap_cfg = CFGDenoiserTimesteps(self.model_wrap, self) + self.model_wrap_cfg = CFGDenoiserTimesteps(self) def get_timesteps(self, p, steps): discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) @@ -106,7 +112,7 @@ class CompVisSampler(sd_samplers_common.Sampler): self.model_wrap_cfg.init_latent = x self.last_latent = x - extra_args = { + self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, @@ -114,7 +120,7 @@ class CompVisSampler(sd_samplers_common.Sampler): 's_min_uncond': self.s_min_uncond } - samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) + samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) if self.model_wrap_cfg.padded_cond_uncond: p.extra_generation_params["Pad conds"] = True @@ -132,13 +138,14 @@ class CompVisSampler(sd_samplers_common.Sampler): extra_params_kwargs['timesteps'] = timesteps self.last_latent = x - samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={ + self.sampler_extra_args = { 'cond': conditioning, 'image_cond': image_conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale, 's_min_uncond': self.s_min_uncond - }, disable=False, callback=self.callback_state, **extra_params_kwargs)) + } + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs)) if self.model_wrap_cfg.padded_cond_uncond: p.extra_generation_params["Pad conds"] = True -- cgit v1.2.3 From 0e83c675257f473e024511845e7940802333fd5f Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Tue, 8 Aug 2023 22:27:32 +0300 Subject: by request: fix tiled vae extension --- modules/sd_samplers_kdiffusion.py | 5 +++-- modules/sd_samplers_timesteps.py | 4 ++++ 2 files changed, 7 insertions(+), 2 deletions(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index f47431af..5613b8c1 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,7 +1,8 @@ import torch import inspect import k_diffusion.sampling -from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser +from modules import sd_samplers_common, sd_samplers_extra +from modules.sd_samplers_cfg_denoiser import CFGDenoiser from modules.shared import opts import modules.shared as shared @@ -62,7 +63,7 @@ class KDiffusionSampler(sd_samplers_common.Sampler): denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization) - self.model_wrap_cfg = sd_samplers_cfg_denoiser.CFGDenoiser(self.model_wrap, self) + self.model_wrap_cfg = CFGDenoiser(self.model_wrap, self) def get_sigmas(self, p, steps): discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False) diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index d89d0efb..f61799a8 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -1,5 +1,6 @@ import torch import inspect +import sys from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl from modules.sd_samplers_cfg_denoiser import CFGDenoiser @@ -145,3 +146,6 @@ class CompVisSampler(sd_samplers_common.Sampler): return samples + +sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__] +VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions -- cgit v1.2.3 From aeb76ef174bc8a1904b25ca0b0b5009395f07d96 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 08:49:02 +0300 Subject: repair DDIM/PLMS/UniPC batches --- modules/sd_samplers_timesteps.py | 5 ++--- modules/sd_samplers_timesteps_impl.py | 18 ++++++++++-------- 2 files changed, 12 insertions(+), 11 deletions(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 16572c7e..6aed2974 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -51,10 +51,9 @@ class CFGDenoiserTimesteps(CFGDenoiser): self.alphas = shared.sd_model.alphas_cumprod def get_pred_x0(self, x_in, x_out, sigma): - ts = int(sigma.item()) + ts = sigma.to(dtype=int) - s_in = x_in.new_ones([x_in.shape[0]]) - a_t = self.alphas[ts].item() * s_in + a_t = self.alphas[ts][:, None, None, None] sqrt_one_minus_at = (1 - a_t).sqrt() pred_x0 = (x_in - sqrt_one_minus_at * x_out) / a_t.sqrt() diff --git a/modules/sd_samplers_timesteps_impl.py b/modules/sd_samplers_timesteps_impl.py index d32e3521..a72daafd 100644 --- a/modules/sd_samplers_timesteps_impl.py +++ b/modules/sd_samplers_timesteps_impl.py @@ -16,16 +16,17 @@ def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta= sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy())) extra_args = {} if extra_args is None else extra_args - s_in = x.new_ones([x.shape[0]]) + s_in = x.new_ones((x.shape[0])) + s_x = x.new_ones((x.shape[0], 1, 1, 1)) for i in tqdm.trange(len(timesteps) - 1, disable=disable): index = len(timesteps) - 1 - i e_t = model(x, timesteps[index].item() * s_in, **extra_args) - a_t = alphas[index].item() * s_in - a_prev = alphas_prev[index].item() * s_in - sigma_t = sigmas[index].item() * s_in - sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_in + a_t = alphas[index].item() * s_x + a_prev = alphas_prev[index].item() * s_x + sigma_t = sigmas[index].item() * s_x + sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t @@ -47,13 +48,14 @@ def plms(model, x, timesteps, extra_args=None, callback=None, disable=None): extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) + s_x = x.new_ones((x.shape[0], 1, 1, 1)) old_eps = [] def get_x_prev_and_pred_x0(e_t, index): # select parameters corresponding to the currently considered timestep - a_t = alphas[index].item() * s_in - a_prev = alphas_prev[index].item() * s_in - sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_in + a_t = alphas[index].item() * s_x + a_prev = alphas_prev[index].item() * s_x + sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x # current prediction for x_0 pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() -- cgit v1.2.3 From c1a31ec9f75c8dfe4ddcb0061f06e2704db98359 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 08:59:15 +0300 Subject: revert to applying mask before denoising for k-diffusion, like it was before --- modules/sd_samplers_cfg_denoiser.py | 6 +++++- modules/sd_samplers_timesteps.py | 1 + 2 files changed, 6 insertions(+), 1 deletion(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py index 113425b2..bc9b97e4 100644 --- a/modules/sd_samplers_cfg_denoiser.py +++ b/modules/sd_samplers_cfg_denoiser.py @@ -56,6 +56,7 @@ class CFGDenoiser(torch.nn.Module): self.sampler = sampler self.model_wrap = None self.p = None + self.mask_before_denoising = False @property def inner_model(self): @@ -104,7 +105,7 @@ class CFGDenoiser(torch.nn.Module): assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" - if self.mask is not None: + if self.mask_before_denoising and self.mask is not None: x = self.init_latent * self.mask + self.nmask * x batch_size = len(conds_list) @@ -206,6 +207,9 @@ class CFGDenoiser(torch.nn.Module): else: denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) + if not self.mask_before_denoising and self.mask is not None: + denoised = self.init_latent * self.mask + self.nmask * denoised + self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) if opts.live_preview_content == "Prompt": diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 6aed2974..c1f534ed 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -49,6 +49,7 @@ class CFGDenoiserTimesteps(CFGDenoiser): super().__init__(sampler) self.alphas = shared.sd_model.alphas_cumprod + self.mask_before_denoising = True def get_pred_x0(self, x_in, x_out, sigma): ts = sigma.to(dtype=int) -- cgit v1.2.3 From 45be87afc6b173ebda94f427b8d396a2842ddf3c Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Mon, 14 Aug 2023 21:48:05 +0300 Subject: correctly add Eta DDIM to infotext when it's 1.0 and do not add it when it's 0.0. --- modules/sd_samplers_common.py | 3 ++- modules/sd_samplers_timesteps.py | 1 + 2 files changed, 3 insertions(+), 1 deletion(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 07fc4434..8886de7e 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -217,6 +217,7 @@ class Sampler: self.eta_option_field = 'eta_ancestral' self.eta_infotext_field = 'Eta' + self.eta_default = 1.0 self.conditioning_key = shared.sd_model.model.conditioning_key @@ -273,7 +274,7 @@ class Sampler: extra_params_kwargs[param_name] = getattr(p, param_name) if 'eta' in inspect.signature(self.func).parameters: - if self.eta != 1.0: + if self.eta != self.eta_default: p.extra_generation_params[self.eta_infotext_field] = self.eta extra_params_kwargs['eta'] = self.eta diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index c1f534ed..66e83ff7 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -76,6 +76,7 @@ class CompVisSampler(sd_samplers_common.Sampler): self.eta_option_field = 'eta_ddim' self.eta_infotext_field = 'Eta DDIM' + self.eta_default = 0.0 self.model_wrap_cfg = CFGDenoiserTimesteps(self) -- cgit v1.2.3 From 371b24b17c1cf98c9068a4b585b93cc1610702dc Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Tue, 15 Aug 2023 02:19:19 -0400 Subject: Add extra img2img noise --- modules/sd_samplers_kdiffusion.py | 4 ++++ modules/sd_samplers_timesteps.py | 4 ++++ modules/shared_options.py | 3 ++- scripts/xyz_grid.py | 2 ++ 4 files changed, 12 insertions(+), 1 deletion(-) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 08b9e740..08866e41 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -145,6 +145,10 @@ class KDiffusionSampler(sd_samplers_common.Sampler): xi = x + noise * sigma_sched[0] + if opts.img2img_extra_noise > 0: + p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise + xi += noise * opts.img2img_extra_noise + extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index c1f534ed..670e2151 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -103,6 +103,10 @@ class CompVisSampler(sd_samplers_common.Sampler): xi = x * sqrt_alpha_cumprod + noise * sqrt_one_minus_alpha_cumprod + if opts.img2img_extra_noise > 0: + p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise + xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod + extra_params_kwargs = self.initialize(p) parameters = inspect.signature(self.func).parameters diff --git a/modules/shared_options.py b/modules/shared_options.py index fc0de61f..79cbb92e 100644 --- a/modules/shared_options.py +++ b/modules/shared_options.py @@ -166,7 +166,8 @@ For img2img, VAE is used to process user's input image before the sampling, and options_templates.update(options_section(('img2img', "img2img"), { "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Conditional mask weight'), - "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}, infotext='Noise multiplier'), + "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.0, "maximum": 1.5, "step": 0.001}, infotext='Noise multiplier'), + "img2img_extra_noise": OptionInfo(0.0, "Extra noise multiplier for img2img and hires fix", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Extra noise').info("0 = disabled (default); should be lower than denoising strength"), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}), diff --git a/scripts/xyz_grid.py b/scripts/xyz_grid.py index da0e48aa..e36bd3c9 100644 --- a/scripts/xyz_grid.py +++ b/scripts/xyz_grid.py @@ -241,6 +241,8 @@ axis_options = [ AxisOption("Eta", float, apply_field("eta")), AxisOption("Clip skip", int, apply_clip_skip), AxisOption("Denoising", float, apply_field("denoising_strength")), + AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")), + AxisOption("Extra noise", float, apply_override("img2img_extra_noise")), AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]), AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")), AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)), -- cgit v1.2.3 From 254be4eeb259fd3bd2452250fca1bd278fa248ff Mon Sep 17 00:00:00 2001 From: catboxanon <122327233+catboxanon@users.noreply.github.com> Date: Wed, 16 Aug 2023 21:45:19 -0400 Subject: Add extra noise callback --- modules/script_callbacks.py | 26 ++++++++++++++++++++++++++ modules/sd_samplers_kdiffusion.py | 4 ++++ modules/sd_samplers_timesteps.py | 4 ++++ 3 files changed, 34 insertions(+) (limited to 'modules/sd_samplers_timesteps.py') diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index 77ee55ee..fab23551 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -28,6 +28,15 @@ class ImageSaveParams: """dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'""" +class ExtraNoiseParams: + def __init__(self, noise, x): + self.noise = noise + """Random noise generated by the seed""" + + self.x = x + """Latent image representation of the image""" + + class CFGDenoiserParams: def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps, text_cond, text_uncond): self.x = x @@ -100,6 +109,7 @@ callback_map = dict( callbacks_ui_settings=[], callbacks_before_image_saved=[], callbacks_image_saved=[], + callbacks_extra_noise=[], callbacks_cfg_denoiser=[], callbacks_cfg_denoised=[], callbacks_cfg_after_cfg=[], @@ -189,6 +199,14 @@ def image_saved_callback(params: ImageSaveParams): report_exception(c, 'image_saved_callback') +def extra_noise_callback(params: ExtraNoiseParams): + for c in callback_map['callbacks_extra_noise']: + try: + c.callback(params) + except Exception: + report_exception(c, 'callbacks_extra_noise') + + def cfg_denoiser_callback(params: CFGDenoiserParams): for c in callback_map['callbacks_cfg_denoiser']: try: @@ -367,6 +385,14 @@ def on_image_saved(callback): add_callback(callback_map['callbacks_image_saved'], callback) +def on_extra_noise(callback): + """register a function to be called before adding extra noise in img2img or hires fix; + The callback is called with one argument: + - params: ExtraNoiseParams - contains noise determined by seed and latent representation of image + """ + add_callback(callback_map['callbacks_extra_noise'], callback) + + def on_cfg_denoiser(callback): """register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs. The callback is called with one argument: diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 08866e41..b9e0d577 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -3,6 +3,7 @@ import inspect import k_diffusion.sampling from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401 +from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback from modules.shared import opts import modules.shared as shared @@ -147,6 +148,9 @@ class KDiffusionSampler(sd_samplers_common.Sampler): if opts.img2img_extra_noise > 0: p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise + extra_noise_params = ExtraNoiseParams(noise, x) + extra_noise_callback(extra_noise_params) + noise = extra_noise_params.noise xi += noise * opts.img2img_extra_noise extra_params_kwargs = self.initialize(p) diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 68aea454..7a6cbd46 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -3,6 +3,7 @@ import inspect import sys from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl from modules.sd_samplers_cfg_denoiser import CFGDenoiser +from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback from modules.shared import opts import modules.shared as shared @@ -106,6 +107,9 @@ class CompVisSampler(sd_samplers_common.Sampler): if opts.img2img_extra_noise > 0: p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise + extra_noise_params = ExtraNoiseParams(noise, x) + extra_noise_callback(extra_noise_params) + noise = extra_noise_params.noise xi += noise * opts.img2img_extra_noise * sqrt_alpha_cumprod extra_params_kwargs = self.initialize(p) -- cgit v1.2.3