From 8ab4927452b04dcd30847eaf92ea7a9f3b9c74e1 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Wed, 2 Nov 2022 22:54:09 +0700 Subject: Fix model wasn't restored even when choosing "None" --- modules/sd_vae.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 71e7a6e6..7a79239f 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -50,8 +50,8 @@ def delete_base_vae(): def restore_base_vae(model): - global base_vae, checkpoint_info if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: + print("Restoring base VAE") load_vae_dict(model, base_vae) delete_base_vae() @@ -143,6 +143,7 @@ def load_vae(model, vae_file=None): vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} load_vae_dict(model, vae_dict_1) + store_base_vae(model) # If vae used is not in dict, update it # It will be removed on refresh though @@ -150,6 +151,9 @@ def load_vae(model, vae_file=None): if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) + # shared.opts.data['sd_vae'] = vae_opt + else: + restore_base_vae(model) loaded_vae_file = vae_file @@ -166,12 +170,8 @@ def load_vae(model, vae_file=None): # don't call this from outside -def load_vae_dict(model, vae_dict_1=None): - if vae_dict_1: - store_base_vae(model) - model.first_stage_model.load_state_dict(vae_dict_1) - else: - restore_base_vae() +def load_vae_dict(model, vae_dict_1): + model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.to(devices.dtype_vae) -- cgit v1.2.3 From abc1e79a5da24a1ea0f4bceedcdf225f32010aa8 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Thu, 3 Nov 2022 11:10:53 +0700 Subject: Fix base VAE caching was done after loading VAE, also add safeguard --- modules/sd_models.py | 1 + modules/sd_vae.py | 19 ++++++++----------- 2 files changed, 9 insertions(+), 11 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 80addf03..e4dba62c 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -220,6 +220,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.clear_loaded_vae() sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 7a79239f..dd69a5e6 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -15,7 +15,7 @@ vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -default_vae_dict = {"auto": "auto", "None": "None"} +default_vae_dict = {"auto": "auto", "None": None, None: None} default_vae_list = ["auto", "None"] @@ -39,6 +39,7 @@ def get_base_vae(model): def store_base_vae(model): global base_vae, checkpoint_info if checkpoint_info != model.sd_checkpoint_info: + assert not loaded_vae_file, "Trying to store non-base VAE!" base_vae = model.first_stage_model.state_dict().copy() checkpoint_info = model.sd_checkpoint_info @@ -50,9 +51,11 @@ def delete_base_vae(): def restore_base_vae(model): + global loaded_vae_file if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: print("Restoring base VAE") load_vae_dict(model, base_vae) + loaded_vae_file = None delete_base_vae() @@ -140,10 +143,10 @@ def load_vae(model, vae_file=None): if vae_file: print(f"Loading VAE weights from: {vae_file}") + store_base_vae(model) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} load_vae_dict(model, vae_dict_1) - store_base_vae(model) # If vae used is not in dict, update it # It will be removed on refresh though @@ -157,15 +160,6 @@ def load_vae(model, vae_file=None): loaded_vae_file = vae_file - """ - # Save current VAE to VAE settings, maybe? will it work? - if save_settings: - if vae_file is None: - vae_opt = "None" - - # shared.opts.sd_vae = vae_opt - """ - first_load = False @@ -174,6 +168,9 @@ def load_vae_dict(model, vae_dict_1): model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.to(devices.dtype_vae) +def clear_loaded_vae(): + global loaded_vae_file + loaded_vae_file = None def reload_vae_weights(sd_model=None, vae_file="auto"): from modules import lowvram, devices, sd_hijack -- cgit v1.2.3 From c7be83bf0240498d9382e2afeaa3f0677d26c7f6 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 13 Nov 2022 11:11:14 +0700 Subject: Misc Misc --- modules/sd_models.py | 1 + modules/sd_vae.py | 3 +-- modules/shared.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index e4dba62c..cd7fe37a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -220,6 +220,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.delete_base_vae() sd_vae.clear_loaded_vae() sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index dd69a5e6..13bf3d31 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -154,8 +154,7 @@ def load_vae(model, vae_file=None): if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) - # shared.opts.data['sd_vae'] = vae_opt - else: + elif loaded_vae_file: restore_base_vae(model) loaded_vae_file = vae_file diff --git a/modules/shared.py b/modules/shared.py index 17132e42..a9daf800 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -335,7 +335,7 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list), + "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), -- cgit v1.2.3 From 9fdc343dcaee70f1a0ff15c0cc668dbd487abc61 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Thu, 17 Nov 2022 18:04:10 +0700 Subject: Fix model caching requiring deepcopy --- modules/sd_vae.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 13bf3d31..5b4709b5 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -4,6 +4,7 @@ from collections import namedtuple from modules import shared, devices, script_callbacks from modules.paths import models_path import glob +from copy import deepcopy model_dir = "Stable-diffusion" @@ -40,7 +41,7 @@ def store_base_vae(model): global base_vae, checkpoint_info if checkpoint_info != model.sd_checkpoint_info: assert not loaded_vae_file, "Trying to store non-base VAE!" - base_vae = model.first_stage_model.state_dict().copy() + base_vae = deepcopy(model.first_stage_model.state_dict()) checkpoint_info = model.sd_checkpoint_info -- cgit v1.2.3 From 028b67b6357b5a00ccbd6ea72d2f244a6664162b Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sat, 19 Nov 2022 01:27:54 +0700 Subject: Use underscore naming for "private" functions in sd_vae --- modules/sd_vae.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 5b4709b5..d82a7bad 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -55,7 +55,7 @@ def restore_base_vae(model): global loaded_vae_file if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: print("Restoring base VAE") - load_vae_dict(model, base_vae) + _load_vae_dict(model, base_vae) loaded_vae_file = None delete_base_vae() @@ -147,7 +147,7 @@ def load_vae(model, vae_file=None): store_base_vae(model) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - load_vae_dict(model, vae_dict_1) + _load_vae_dict(model, vae_dict_1) # If vae used is not in dict, update it # It will be removed on refresh though @@ -164,7 +164,7 @@ def load_vae(model, vae_file=None): # don't call this from outside -def load_vae_dict(model, vae_dict_1): +def _load_vae_dict(model, vae_dict_1): model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.to(devices.dtype_vae) -- cgit v1.2.3 From 0663706d4405b4f76ce653097f4f8989ee8b8684 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Thu, 3 Nov 2022 13:47:03 +0700 Subject: Option to use selected VAE as default fallback instead of primary option --- modules/sd_vae.py | 25 ++++++++++++++++--------- modules/shared.py | 1 + webui.py | 1 + 3 files changed, 18 insertions(+), 9 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 71e7a6e6..0b5f0213 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -83,7 +83,19 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path): return vae_list -def resolve_vae(checkpoint_file, vae_file="auto"): +def get_vae_from_settings(vae_file="auto"): + # else, we load from settings, if not set to be default + if vae_file == "auto" and shared.opts.sd_vae is not None: + # if saved VAE settings isn't recognized, fallback to auto + vae_file = vae_dict.get(shared.opts.sd_vae, "auto") + # if VAE selected but not found, fallback to auto + if vae_file not in default_vae_values and not os.path.isfile(vae_file): + vae_file = "auto" + print("Selected VAE doesn't exist") + return vae_file + + +def resolve_vae(checkpoint_file=None, vae_file="auto"): global first_load, vae_dict, vae_list # if vae_file argument is provided, it takes priority, but not saved @@ -98,14 +110,9 @@ def resolve_vae(checkpoint_file, vae_file="auto"): shared.opts.data['sd_vae'] = get_filename(vae_file) else: print("VAE provided as command line argument doesn't exist") - # else, we load from settings - if vae_file == "auto" and shared.opts.sd_vae is not None: - # if saved VAE settings isn't recognized, fallback to auto - vae_file = vae_dict.get(shared.opts.sd_vae, "auto") - # if VAE selected but not found, fallback to auto - if vae_file not in default_vae_values and not os.path.isfile(vae_file): - vae_file = "auto" - print("Selected VAE doesn't exist") + # fallback to selector in settings, if vae selector not set to act as default fallback + if not shared.opts.sd_vae_as_default: + vae_file = get_vae_from_settings(vae_file) # vae-path cmd arg takes priority for auto if vae_file == "auto" and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): diff --git a/modules/shared.py b/modules/shared.py index 17132e42..b84767f0 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -336,6 +336,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list), + "sd_vae_as_default": OptionInfo(False, "Use selected VAE as default fallback instead"), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), diff --git a/webui.py b/webui.py index f4f1d74d..2cd3bae9 100644 --- a/webui.py +++ b/webui.py @@ -82,6 +82,7 @@ def initialize(): modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) + shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) -- cgit v1.2.3 From 2c5ca706a7e624d268545ba3318ba230b7b33477 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 13 Nov 2022 10:55:47 +0700 Subject: Remove no longer necessary parts and add vae_file safeguard --- modules/sd_models.py | 10 ++-------- modules/sd_vae.py | 1 + 2 files changed, 3 insertions(+), 8 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_models.py b/modules/sd_models.py index 80addf03..c59151e0 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -165,16 +165,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): cache_enabled = shared.opts.sd_checkpoint_cache > 0 - if cache_enabled: - sd_vae.restore_base_vae(model) - - vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - if cache_enabled and checkpoint_info in checkpoints_loaded: # use checkpoint cache - vae_name = sd_vae.get_filename(vae_file) if vae_file else None - vae_message = f" with {vae_name} VAE" if vae_name else "" - print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") + print(f"Loading weights [{sd_model_hash}] from cache") model.load_state_dict(checkpoints_loaded[checkpoint_info]) else: # load from file @@ -220,6 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 71e7a6e6..8bdb2c17 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -139,6 +139,7 @@ def load_vae(model, vae_file=None): # save_settings = False if vae_file: + assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} -- cgit v1.2.3 From 271fd2d700a59e80d9dc9f23ad3ef08c988e8b24 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 13 Nov 2022 10:58:15 +0700 Subject: More verbose messages --- modules/sd_vae.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 8bdb2c17..fa8de905 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -89,15 +89,15 @@ def resolve_vae(checkpoint_file, vae_file="auto"): # if vae_file argument is provided, it takes priority, but not saved if vae_file and vae_file not in default_vae_list: if not os.path.isfile(vae_file): + print(f"VAE provided as function argument doesn't exist: {vae_file}") vae_file = "auto" - print("VAE provided as function argument doesn't exist") # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported if first_load and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path shared.opts.data['sd_vae'] = get_filename(vae_file) else: - print("VAE provided as command line argument doesn't exist") + print(f"VAE provided as command line argument doesn't exist: {vae_file}") # else, we load from settings if vae_file == "auto" and shared.opts.sd_vae is not None: # if saved VAE settings isn't recognized, fallback to auto @@ -105,25 +105,25 @@ def resolve_vae(checkpoint_file, vae_file="auto"): # if VAE selected but not found, fallback to auto if vae_file not in default_vae_values and not os.path.isfile(vae_file): vae_file = "auto" - print("Selected VAE doesn't exist") + print(f"Selected VAE doesn't exist: {vae_file}") # vae-path cmd arg takes priority for auto if vae_file == "auto" and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path - print("Using VAE provided as command line argument") + print(f"Using VAE provided as command line argument: {vae_file}") # if still not found, try look for ".vae.pt" beside model model_path = os.path.splitext(checkpoint_file)[0] if vae_file == "auto": vae_file_try = model_path + ".vae.pt" if os.path.isfile(vae_file_try): vae_file = vae_file_try - print("Using VAE found beside selected model") + print(f"Using VAE found similar to selected model: {vae_file}") # if still not found, try look for ".vae.ckpt" beside model if vae_file == "auto": vae_file_try = model_path + ".vae.ckpt" if os.path.isfile(vae_file_try): vae_file = vae_file_try - print("Using VAE found beside selected model") + print(f"Using VAE found similar to selected model: {vae_file}") # No more fallbacks for auto if vae_file == "auto": vae_file = None -- cgit v1.2.3 From 3bf5591efe9a9f219c6088be322a87adc4f48f95 Mon Sep 17 00:00:00 2001 From: Yuval Aboulafia Date: Sat, 24 Dec 2022 21:35:29 +0200 Subject: fix F541 f-string without any placeholders --- extensions-builtin/LDSR/ldsr_model_arch.py | 2 +- modules/codeformer/vqgan_arch.py | 4 ++-- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/images.py | 2 +- modules/interrogate.py | 2 +- modules/safe.py | 8 ++++---- modules/sd_models.py | 8 ++++---- modules/sd_vae.py | 2 +- modules/textual_inversion/textual_inversion.py | 2 +- scripts/prompts_from_file.py | 2 +- 10 files changed, 18 insertions(+), 18 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py index f5bd8ae4..0ad49f4e 100644 --- a/extensions-builtin/LDSR/ldsr_model_arch.py +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -26,7 +26,7 @@ class LDSR: global cached_ldsr_model if shared.opts.ldsr_cached and cached_ldsr_model is not None: - print(f"Loading model from cache") + print("Loading model from cache") model: torch.nn.Module = cached_ldsr_model else: print(f"Loading model from {self.modelPath}") diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py index c06c590c..e7293683 100644 --- a/modules/codeformer/vqgan_arch.py +++ b/modules/codeformer/vqgan_arch.py @@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module): self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) logger.info(f'vqgan is loaded from: {model_path} [params]') else: - raise ValueError(f'Wrong params!') + raise ValueError('Wrong params!') def forward(self, x): @@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module): elif 'params' in chkpt: self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) else: - raise ValueError(f'Wrong params!') + raise ValueError('Wrong params!') def forward(self, x): return self.main(x) \ No newline at end of file diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index c406ffb3..9d3034ae 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -277,7 +277,7 @@ def load_hypernetwork(filename): print(traceback.format_exc(), file=sys.stderr) else: if shared.loaded_hypernetwork is not None: - print(f"Unloading hypernetwork") + print("Unloading hypernetwork") shared.loaded_hypernetwork = None @@ -417,7 +417,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, initial_step = hypernetwork.step or 0 if initial_step >= steps: - shared.state.textinfo = f"Model has already been trained beyond specified max steps" + shared.state.textinfo = "Model has already been trained beyond specified max steps" return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) diff --git a/modules/images.py b/modules/images.py index 809ad9f7..31d4528d 100644 --- a/modules/images.py +++ b/modules/images.py @@ -599,7 +599,7 @@ def read_info_from_image(image): Negative prompt: {json_info["uc"]} Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337""" except Exception: - print(f"Error parsing NovelAI image generation parameters:", file=sys.stderr) + print("Error parsing NovelAI image generation parameters:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) return geninfo, items diff --git a/modules/interrogate.py b/modules/interrogate.py index 0068b81c..46935210 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -172,7 +172,7 @@ class InterrogateModels: res += ", " + match except Exception: - print(f"Error interrogating", file=sys.stderr) + print("Error interrogating", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) res += "" diff --git a/modules/safe.py b/modules/safe.py index 479c8b86..1d4c20b9 100644 --- a/modules/safe.py +++ b/modules/safe.py @@ -137,15 +137,15 @@ def load_with_extra(filename, extra_handler=None, *args, **kwargs): except pickle.UnpicklingError: print(f"Error verifying pickled file from {filename}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - print(f"-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr) - print(f"You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr) + print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr) + print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr) return None except Exception: print(f"Error verifying pickled file from {filename}:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) - print(f"You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) + print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr) + print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr) return None return unsafe_torch_load(filename, *args, **kwargs) diff --git a/modules/sd_models.py b/modules/sd_models.py index 6ca06211..ecdd91c5 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -117,13 +117,13 @@ def select_checkpoint(): return checkpoint_info if len(checkpoints_list) == 0: - print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) + print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) if shared.cmd_opts.ckpt is not None: print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) print(f" - directory {model_path}", file=sys.stderr) if shared.cmd_opts.ckpt_dir is not None: print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) - print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) + print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) exit(1) checkpoint_info = next(iter(checkpoints_list.values())) @@ -324,7 +324,7 @@ def load_model(checkpoint_info=None): script_callbacks.model_loaded_callback(sd_model) - print(f"Model loaded.") + print("Model loaded.") return sd_model @@ -359,5 +359,5 @@ def reload_model_weights(sd_model=None, info=None): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print(f"Weights loaded.") + print("Weights loaded.") return sd_model diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 25638a83..3856418e 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -208,5 +208,5 @@ def reload_vae_weights(sd_model=None, vae_file="auto"): if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: sd_model.to(devices.device) - print(f"VAE Weights loaded.") + print("VAE Weights loaded.") return sd_model diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index daf3997b..f6112578 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -263,7 +263,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_ initial_step = embedding.step or 0 if initial_step >= steps: - shared.state.textinfo = f"Model has already been trained beyond specified max steps" + shared.state.textinfo = "Model has already been trained beyond specified max steps" return embedding, filename scheduler = LearnRateScheduler(learn_rate, steps, initial_step) diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 6e118ddb..e8386ed2 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -140,7 +140,7 @@ class Script(scripts.Script): try: args = cmdargs(line) except Exception: - print(f"Error parsing line [line] as commandline:", file=sys.stderr) + print(f"Error parsing line {line} as commandline:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) args = {"prompt": line} else: -- cgit v1.2.3 From 893933e05ad267778111b4fad6d1ecb80937afdf Mon Sep 17 00:00:00 2001 From: hitomi Date: Sun, 25 Dec 2022 20:49:25 +0800 Subject: Add memory cache for VAE weights --- modules/sd_vae.py | 31 +++++++++++++++++++++++++------ modules/shared.py | 1 + 2 files changed, 26 insertions(+), 6 deletions(-) (limited to 'modules/sd_vae.py') diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 3856418e..ac71d62d 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -1,5 +1,6 @@ import torch import os +import collections from collections import namedtuple from modules import shared, devices, script_callbacks from modules.paths import models_path @@ -30,6 +31,7 @@ base_vae = None loaded_vae_file = None checkpoint_info = None +checkpoints_loaded = collections.OrderedDict() def get_base_vae(model): if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: @@ -149,13 +151,30 @@ def load_vae(model, vae_file=None): global first_load, vae_dict, vae_list, loaded_vae_file # save_settings = False + cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0 + if vae_file: - assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" - print(f"Loading VAE weights from: {vae_file}") - store_base_vae(model) - vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) - vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - _load_vae_dict(model, vae_dict_1) + if cache_enabled and vae_file in checkpoints_loaded: + # use vae checkpoint cache + print(f"Loading VAE weights [{get_filename(vae_file)}] from cache") + store_base_vae(model) + _load_vae_dict(model, checkpoints_loaded[vae_file]) + else: + assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" + print(f"Loading VAE weights from: {vae_file}") + store_base_vae(model) + vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) + vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} + _load_vae_dict(model, vae_dict_1) + + if cache_enabled: + # cache newly loaded vae + checkpoints_loaded[vae_file] = vae_dict_1.copy() + + # clean up cache if limit is reached + if cache_enabled: + while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model + checkpoints_loaded.popitem(last=False) # LRU # If vae used is not in dict, update it # It will be removed on refresh though diff --git a/modules/shared.py b/modules/shared.py index d4ddeea0..671d30e1 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -356,6 +356,7 @@ options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), + "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list), "sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), -- cgit v1.2.3