From f23a822f1c9cb3bd2e8772c75af429e06515eaef Mon Sep 17 00:00:00 2001
From: Philpax
Date: Sat, 24 Dec 2022 20:45:16 +1100
Subject: feat(api): include job_timestamp in progress
---
modules/shared.py | 1 +
1 file changed, 1 insertion(+)
(limited to 'modules/shared.py')
diff --git a/modules/shared.py b/modules/shared.py
index 8ea3b441..f356dbf7 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -171,6 +171,7 @@ class State:
"interrupted": self.skipped,
"job": self.job,
"job_count": self.job_count,
+ "job_timestamp": self.job_timestamp,
"job_no": self.job_no,
"sampling_step": self.sampling_step,
"sampling_steps": self.sampling_steps,
--
cgit v1.2.3
From bddebe09edeb6a18f2c06986d5658a7be3a563ea Mon Sep 17 00:00:00 2001
From: Shondoit
Date: Tue, 3 Jan 2023 10:26:37 +0100
Subject: Save Optimizer next to TI embedding
Also add check to load only .PT and .BIN files as embeddings. (since we add .optim files in the same directory)
---
modules/shared.py | 2 +-
modules/textual_inversion/textual_inversion.py | 40 ++++++++++++++++++++------
2 files changed, 33 insertions(+), 9 deletions(-)
(limited to 'modules/shared.py')
diff --git a/modules/shared.py b/modules/shared.py
index 23657a93..c541d18c 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -355,7 +355,7 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
- "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fd253477..16176e90 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -28,6 +28,7 @@ class Embedding:
self.cached_checksum = None
self.sd_checkpoint = None
self.sd_checkpoint_name = None
+ self.optimizer_state_dict = None
def save(self, filename):
embedding_data = {
@@ -41,6 +42,13 @@ class Embedding:
torch.save(embedding_data, filename)
+ if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None:
+ optimizer_saved_dict = {
+ 'hash': self.checksum(),
+ 'optimizer_state_dict': self.optimizer_state_dict,
+ }
+ torch.save(optimizer_saved_dict, filename + '.optim')
+
def checksum(self):
if self.cached_checksum is not None:
return self.cached_checksum
@@ -95,9 +103,10 @@ class EmbeddingDatabase:
self.expected_shape = self.get_expected_shape()
def process_file(path, filename):
- name = os.path.splitext(filename)[0]
+ name, ext = os.path.splitext(filename)
+ ext = ext.upper()
- if os.path.splitext(filename.upper())[-1] in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
+ if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']:
embed_image = Image.open(path)
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text:
data = embedding_from_b64(embed_image.text['sd-ti-embedding'])
@@ -105,8 +114,10 @@ class EmbeddingDatabase:
else:
data = extract_image_data_embed(embed_image)
name = data.get('name', name)
- else:
+ elif ext in ['.BIN', '.PT']:
data = torch.load(path, map_location="cpu")
+ else:
+ return
# textual inversion embeddings
if 'string_to_param' in data:
@@ -300,6 +311,20 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0)
+ if shared.opts.save_optimizer_state:
+ optimizer_state_dict = None
+ if os.path.exists(filename + '.optim'):
+ optimizer_saved_dict = torch.load(filename + '.optim', map_location='cpu')
+ if embedding.checksum() == optimizer_saved_dict.get('hash', None):
+ optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
+
+ if optimizer_state_dict is not None:
+ optimizer.load_state_dict(optimizer_state_dict)
+ print("Loaded existing optimizer from checkpoint")
+ else:
+ print("No saved optimizer exists in checkpoint")
+
+
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
@@ -366,9 +391,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
- #if shared.opts.save_optimizer_state:
- #embedding.optimizer_state_dict = optimizer.state_dict()
- save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
@@ -458,7 +481,7 @@ Last saved image: {html.escape(last_saved_image)}
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
- save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
+ save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
@@ -470,7 +493,7 @@ Last saved image: {html.escape(last_saved_image)}
return embedding, filename
-def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True):
old_embedding_name = embedding.name
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
@@ -481,6 +504,7 @@ def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cache
if remove_cached_checksum:
embedding.cached_checksum = None
embedding.name = embedding_name
+ embedding.optimizer_state_dict = optimizer.state_dict()
embedding.save(filename)
except:
embedding.sd_checkpoint = old_sd_checkpoint
--
cgit v1.2.3
From aaa4c2aacbb6523077334093c81bd475d757f7a1 Mon Sep 17 00:00:00 2001
From: Vladimir Mandic
Date: Tue, 3 Jan 2023 09:45:16 -0500
Subject: add api logging
---
modules/api/api.py | 24 +++++++++++++++++++++++-
modules/shared.py | 1 +
2 files changed, 24 insertions(+), 1 deletion(-)
(limited to 'modules/shared.py')
diff --git a/modules/api/api.py b/modules/api/api.py
index 9c670f00..53135470 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -1,11 +1,12 @@
import base64
import io
import time
+import datetime
import uvicorn
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
-from fastapi import APIRouter, Depends, FastAPI, HTTPException
+from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
@@ -67,6 +68,26 @@ def encode_pil_to_base64(image):
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
+def init_api_middleware(app: FastAPI):
+ @app.middleware("http")
+ async def log_and_time(req: Request, call_next):
+ ts = time.time()
+ res: Response = await call_next(req)
+ duration = str(round(time.time() - ts, 4))
+ res.headers["X-Process-Time"] = duration
+ if shared.cmd_opts.api_log:
+ print('API {t} {code} {prot}/{ver} {method} {p} {cli} {duration}'.format(
+ t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
+ code = res.status_code,
+ ver = req.scope.get('http_version', '0.0'),
+ cli = req.scope.get('client', ('0:0.0.0', 0))[0],
+ prot = req.scope.get('scheme', 'err'),
+ method = req.scope.get('method', 'err'),
+ p = req.scope.get('path', 'err'),
+ duration = duration,
+ ))
+ return res
+
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
@@ -78,6 +99,7 @@ class Api:
self.router = APIRouter()
self.app = app
+ init_api_middleware(self.app)
self.queue_lock = queue_lock
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
diff --git a/modules/shared.py b/modules/shared.py
index 23657a93..2a03d716 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -82,6 +82,7 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the API together with the webui (use --nowebui instead for only the API)")
parser.add_argument("--api-auth", type=str, help='Set authentication for API like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
+parser.add_argument("--api-log", action='store_true', help="use api-log=True to enable logging of all API requests")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the API instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
--
cgit v1.2.3
From 02d7abf5141431b9a3a8a189bb3136c71abd5e79 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 4 Jan 2023 12:35:07 +0300
Subject: helpful error message when trying to load 2.0 without config failing
to load model weights from settings won't break generation for currently
loaded model anymore
---
modules/errors.py | 25 +++++++++++++++++++++++--
modules/sd_models.py | 26 ++++++++++++++++++--------
modules/shared.py | 9 +++++++--
webui.py | 12 ++++++++++--
4 files changed, 58 insertions(+), 14 deletions(-)
(limited to 'modules/shared.py')
diff --git a/modules/errors.py b/modules/errors.py
index 372dc51a..a668c014 100644
--- a/modules/errors.py
+++ b/modules/errors.py
@@ -2,9 +2,30 @@ import sys
import traceback
+def print_error_explanation(message):
+ lines = message.strip().split("\n")
+ max_len = max([len(x) for x in lines])
+
+ print('=' * max_len, file=sys.stderr)
+ for line in lines:
+ print(line, file=sys.stderr)
+ print('=' * max_len, file=sys.stderr)
+
+
+def display(e: Exception, task):
+ print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ message = str(e)
+ if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
+ print_error_explanation("""
+The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
+See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
+ """)
+
+
def run(code, task):
try:
code()
except Exception as e:
- print(f"{task}: {type(e).__name__}", file=sys.stderr)
- print(traceback.format_exc(), file=sys.stderr)
+ display(task, e)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index b98b05fc..6846b74a 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -278,6 +278,7 @@ def enable_midas_autodownload():
midas.api.load_model = load_model_wrapper
+
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
@@ -312,6 +313,7 @@ def load_model(checkpoint_info=None):
sd_config.model.params.unet_config.params.use_fp16 = False
sd_model = instantiate_from_config(sd_config.model)
+
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@@ -336,10 +338,12 @@ def load_model(checkpoint_info=None):
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
-
+
if not sd_model:
sd_model = shared.sd_model
+ current_checkpoint_info = sd_model.sd_checkpoint_info
+
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
@@ -356,13 +360,19 @@ def reload_model_weights(sd_model=None, info=None):
sd_hijack.model_hijack.undo_hijack(sd_model)
- load_model_weights(sd_model, checkpoint_info)
-
- sd_hijack.model_hijack.hijack(sd_model)
- script_callbacks.model_loaded_callback(sd_model)
-
- if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
- sd_model.to(devices.device)
+ try:
+ load_model_weights(sd_model, checkpoint_info)
+ except Exception as e:
+ print("Failed to load checkpoint, restoring previous")
+ load_model_weights(sd_model, current_checkpoint_info)
+ raise
+ finally:
+ sd_hijack.model_hijack.hijack(sd_model)
+ script_callbacks.model_loaded_callback(sd_model)
+
+ if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
+ sd_model.to(devices.device)
print("Weights loaded.")
+
return sd_model
diff --git a/modules/shared.py b/modules/shared.py
index 23657a93..7588c47b 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -14,7 +14,7 @@ import modules.interrogate
import modules.memmon
import modules.styles
import modules.devices as devices
-from modules import localization, sd_vae, extensions, script_loading
+from modules import localization, sd_vae, extensions, script_loading, errors
from modules.paths import models_path, script_path, sd_path
@@ -494,7 +494,12 @@ class Options:
return False
if self.data_labels[key].onchange is not None:
- self.data_labels[key].onchange()
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
return True
diff --git a/webui.py b/webui.py
index c7d55a97..13375e71 100644
--- a/webui.py
+++ b/webui.py
@@ -9,7 +9,7 @@ from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
-from modules import import_hook
+from modules import import_hook, errors
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
from modules.paths import script_path
@@ -61,7 +61,15 @@ def initialize():
modelloader.load_upscalers()
modules.sd_vae.refresh_vae_list()
- modules.sd_models.load_model()
+
+ try:
+ modules.sd_models.load_model()
+ except Exception as e:
+ errors.display(e, "loading stable diffusion model")
+ print("", file=sys.stderr)
+ print("Stable diffusion model failed to load, exiting", file=sys.stderr)
+ exit(1)
+
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
--
cgit v1.2.3
From 96cf15bedecbed97ef9b70b8413d543a9aee5adf Mon Sep 17 00:00:00 2001
From: MMaker
Date: Wed, 4 Jan 2023 05:12:06 -0500
Subject: Add new latent upscale modes
---
modules/shared.py | 7 +++++--
1 file changed, 5 insertions(+), 2 deletions(-)
(limited to 'modules/shared.py')
diff --git a/modules/shared.py b/modules/shared.py
index 7588c47b..a10f69a9 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -564,8 +564,11 @@ if os.path.exists(config_filename):
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
- "Latent": "bilinear",
- "Latent (nearest)": "nearest",
+ "Latent": {"mode": "bilinear", "antialias": False},
+ "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
+ "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
+ "Latent (bicubic, antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (nearest)": {"mode": "nearest", "antialias": False},
}
sd_upscalers = []
--
cgit v1.2.3
From b2151b934fe0a3613570c6abd7615d3788fd1c8f Mon Sep 17 00:00:00 2001
From: MMaker
Date: Wed, 4 Jan 2023 05:36:18 -0500
Subject: Rename bicubic antialiased option
Comma was causing the the value in PNG info to be quoted, which causes the upscaler dropdown option to be blank when sending to UI
---
modules/shared.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'modules/shared.py')
diff --git a/modules/shared.py b/modules/shared.py
index a10f69a9..c1b20081 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -567,7 +567,7 @@ latent_upscale_modes = {
"Latent": {"mode": "bilinear", "antialias": False},
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
- "Latent (bicubic, antialiased)": {"mode": "bicubic", "antialias": True},
+ "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
"Latent (nearest)": {"mode": "nearest", "antialias": False},
}
--
cgit v1.2.3
From 1cfd8aec4ae5a6ca1afd67b44cb4ef6dd14d8c34 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 4 Jan 2023 16:05:42 +0300
Subject: make it possible to work with opts.show_progress_every_n_steps = -1
with medvram
---
modules/shared.py | 6 ++++--
1 file changed, 4 insertions(+), 2 deletions(-)
(limited to 'modules/shared.py')
diff --git a/modules/shared.py b/modules/shared.py
index 4fcc6edd..54a6ba23 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -214,12 +214,13 @@ class State:
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
def set_current_image(self):
+ if not parallel_processing_allowed:
+ return
+
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.show_progress_every_n_steps > 0:
self.do_set_current_image()
def do_set_current_image(self):
- if not parallel_processing_allowed:
- return
if self.current_latent is None:
return
@@ -231,6 +232,7 @@ class State:
self.current_image_sampling_step = self.sampling_step
+
state = State()
artist_db = modules.artists.ArtistsDatabase(os.path.join(script_path, 'artists.csv'))
--
cgit v1.2.3
From bc43293c640aef65df3136de9e5bd8b7e79eb3e0 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Wed, 4 Jan 2023 23:56:43 +0300
Subject: fix incorrect display/calculation for number of steps for hires fix
in progress bars
---
modules/processing.py | 9 ++++++---
modules/sd_samplers.py | 5 +++--
modules/shared.py | 4 +++-
3 files changed, 12 insertions(+), 6 deletions(-)
(limited to 'modules/shared.py')
diff --git a/modules/processing.py b/modules/processing.py
index 9cad05f2..f28e7212 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -685,10 +685,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
- if state.job_count == -1:
- state.job_count = self.n_iter * 2
- else:
+ if not state.processing_has_refined_job_count:
+ if state.job_count == -1:
+ state.job_count = self.n_iter
+
+ shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
state.job_count = state.job_count * 2
+ state.processing_has_refined_job_count = True
if self.hr_resize_x == 0 and self.hr_resize_y == 0:
self.extra_generation_params["Hires upscale"] = self.hr_scale
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index e904d860..3851a77f 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -97,8 +97,9 @@ sampler_extra_params = {
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
- steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
- t_enc = p.steps - 1
+ requested_steps = (steps or p.steps)
+ steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
+ t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
diff --git a/modules/shared.py b/modules/shared.py
index 54a6ba23..04c545ee 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -153,6 +153,7 @@ class State:
job = ""
job_no = 0
job_count = 0
+ processing_has_refined_job_count = False
job_timestamp = '0'
sampling_step = 0
sampling_steps = 0
@@ -194,6 +195,7 @@ class State:
def begin(self):
self.sampling_step = 0
self.job_count = -1
+ self.processing_has_refined_job_count = False
self.job_no = 0
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
self.current_latent = None
@@ -608,7 +610,7 @@ class TotalTQDM:
return
if self._tqdm is None:
self.reset()
- self._tqdm.total=new_total
+ self._tqdm.total = new_total
def clear(self):
if self._tqdm is not None:
--
cgit v1.2.3