From c7543d4940da672d970124ae8f2fec9de7bdc1da Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 2 Oct 2022 22:41:21 +0300 Subject: preprocessing for textual inversion added --- modules/textual_inversion/preprocess.py | 75 +++++++++++++++++++++++++++++++++ 1 file changed, 75 insertions(+) create mode 100644 modules/textual_inversion/preprocess.py (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py new file mode 100644 index 00000000..209e928f --- /dev/null +++ b/modules/textual_inversion/preprocess.py @@ -0,0 +1,75 @@ +import os +from PIL import Image, ImageOps +import tqdm + +from modules import shared, images + + +def preprocess(process_src, process_dst, process_flip, process_split, process_caption): + size = 512 + src = os.path.abspath(process_src) + dst = os.path.abspath(process_dst) + + assert src != dst, 'same directory specified as source and desitnation' + + os.makedirs(dst, exist_ok=True) + + files = os.listdir(src) + + shared.state.textinfo = "Preprocessing..." + shared.state.job_count = len(files) + + if process_caption: + shared.interrogator.load() + + def save_pic_with_caption(image, index): + if process_caption: + caption = "-" + shared.interrogator.generate_caption(image) + else: + caption = "" + + image.save(os.path.join(dst, f"{index:05}-{subindex[0]}{caption}.png")) + subindex[0] += 1 + + def save_pic(image, index): + save_pic_with_caption(image, index) + + if process_flip: + save_pic_with_caption(ImageOps.mirror(image), index) + + for index, imagefile in enumerate(tqdm.tqdm(files)): + subindex = [0] + filename = os.path.join(src, imagefile) + img = Image.open(filename).convert("RGB") + + if shared.state.interrupted: + break + + ratio = img.height / img.width + is_tall = ratio > 1.35 + is_wide = ratio < 1 / 1.35 + + if process_split and is_tall: + img = img.resize((size, size * img.height // img.width)) + + top = img.crop((0, 0, size, size)) + save_pic(top, index) + + bot = img.crop((0, img.height - size, size, img.height)) + save_pic(bot, index) + elif process_split and is_wide: + img = img.resize((size * img.width // img.height, size)) + + left = img.crop((0, 0, size, size)) + save_pic(left, index) + + right = img.crop((img.width - size, 0, img.width, size)) + save_pic(right, index) + else: + img = images.resize_image(1, img, size, size) + save_pic(img, index) + + shared.state.nextjob() + + if process_caption: + shared.interrogator.send_blip_to_ram() -- cgit v1.2.3 From 5ef0baf5eaec7f21a1666af424405cbee19f3764 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Tue, 4 Oct 2022 08:52:11 +0300 Subject: add support for gelbooru tags in filenames for textual inversion --- modules/textual_inversion/dataset.py | 7 +++++-- modules/textual_inversion/preprocess.py | 4 +++- 2 files changed, 8 insertions(+), 3 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index e8394ff6..7c44ea5b 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -9,6 +9,9 @@ from torchvision import transforms import random import tqdm from modules import devices +import re + +re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): @@ -38,8 +41,8 @@ class PersonalizedBase(Dataset): image = image.resize((self.width, self.height), PIL.Image.BICUBIC) filename = os.path.basename(path) - filename_tokens = os.path.splitext(filename)[0].replace('_', '-').replace(' ', '-').split('-') - filename_tokens = [token for token in filename_tokens if token.isalpha()] + filename_tokens = os.path.splitext(filename)[0] + filename_tokens = re_tag.findall(filename_tokens) npimage = np.array(image).astype(np.uint8) npimage = (npimage / 127.5 - 1.0).astype(np.float32) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 209e928f..f545a993 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -26,7 +26,9 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: caption = "-" + shared.interrogator.generate_caption(image) else: - caption = "" + caption = filename + caption = os.path.splitext(caption)[0] + caption = os.path.basename(caption) image.save(os.path.join(dst, f"{index:05}-{subindex[0]}{caption}.png")) subindex[0] += 1 -- cgit v1.2.3 From 2499fb4e1910d31ff12c24110f161b20641b8835 Mon Sep 17 00:00:00 2001 From: Raphael Stoeckli Date: Wed, 5 Oct 2022 21:57:18 +0200 Subject: Add sanitizer for captions in Textual inversion --- modules/textual_inversion/preprocess.py | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f545a993..4f3df4bd 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,5 +1,8 @@ +from cmath import log import os from PIL import Image, ImageOps +import platform +import sys import tqdm from modules import shared, images @@ -25,6 +28,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca def save_pic_with_caption(image, index): if process_caption: caption = "-" + shared.interrogator.generate_caption(image) + caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") else: caption = filename caption = os.path.splitext(caption)[0] @@ -75,3 +79,27 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: shared.interrogator.send_blip_to_ram() + +def sanitize_caption(base_path, original_caption, suffix): + operating_system = platform.system().lower() + if (operating_system == "windows"): + invalid_path_characters = "\\/:*?\"<>|" + max_path_length = 259 + else: + invalid_path_characters = "/" #linux/macos + max_path_length = 1023 + caption = original_caption + for invalid_character in invalid_path_characters: + caption = caption.replace(invalid_character, "") + fixed_path_length = len(base_path) + len(suffix) + if fixed_path_length + len(caption) <= max_path_length: + return caption + caption_tokens = caption.split() + new_caption = "" + for token in caption_tokens: + last_caption = new_caption + new_caption = new_caption + token + " " + if (len(new_caption) + fixed_path_length - 1 > max_path_length): + break + print(f"\nPath will be too long. Truncated caption: {original_caption}\nto: {last_caption}", file=sys.stderr) + return last_caption.strip() -- cgit v1.2.3 From 4288e53fc2ea25fa49715bf5b7f14603553c9e38 Mon Sep 17 00:00:00 2001 From: Raphael Stoeckli Date: Wed, 5 Oct 2022 23:11:32 +0200 Subject: removed unused import, fixed typo --- modules/textual_inversion/preprocess.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 4f3df4bd..f1c002a2 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -1,4 +1,3 @@ -from cmath import log import os from PIL import Image, ImageOps import platform @@ -13,7 +12,7 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) - assert src != dst, 'same directory specified as source and desitnation' + assert src != dst, 'same directory specified as source and destination' os.makedirs(dst, exist_ok=True) -- cgit v1.2.3 From 1f92336be768d235c18a82acb2195b7135101ae7 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Sun, 9 Oct 2022 23:58:18 -0500 Subject: refactored the deepbooru module to improve speed on running multiple interogations in a row. Added the option to generate deepbooru tags for textual inversion preproccessing. --- modules/deepbooru.py | 84 +++++++++++++++++++++++++-------- modules/textual_inversion/preprocess.py | 22 ++++++++- modules/ui.py | 52 ++++++++++++++------ 3 files changed, 122 insertions(+), 36 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 7e3c0618..cee4a3b4 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -1,21 +1,74 @@ import os.path from concurrent.futures import ProcessPoolExecutor -from multiprocessing import get_context +import multiprocessing -def _load_tf_and_return_tags(pil_image, threshold): +def get_deepbooru_tags(pil_image, threshold=0.5): + """ + This method is for running only one image at a time for simple use. Used to the img2img interrogate. + """ + from modules import shared # prevents circular reference + create_deepbooru_process(threshold) + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process_queue.put(pil_image) + while shared.deepbooru_process_return["value"] == -1: + time.sleep(0.2) + release_process() + return ret + + +def deepbooru_process(queue, deepbooru_process_return, threshold): + model, tags = get_deepbooru_tags_model() + while True: # while process is running, keep monitoring queue for new image + pil_image = queue.get() + if pil_image == "QUIT": + break + else: + deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold) + + +def create_deepbooru_process(threshold=0.5): + """ + Creates deepbooru process. A queue is created to send images into the process. This enables multiple images + to be processed in a row without reloading the model or creating a new process. To return the data, a shared + dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned + to the dictionary and the method adding the image to the queue should wait for this value to be updated with + the tags. + """ + from modules import shared # prevents circular reference + shared.deepbooru_process_manager = multiprocessing.Manager() + shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() + shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold)) + shared.deepbooru_process.start() + + +def release_process(): + """ + Stops the deepbooru process to return used memory + """ + from modules import shared # prevents circular reference + shared.deepbooru_process_queue.put("QUIT") + shared.deepbooru_process.join() + shared.deepbooru_process_queue = None + shared.deepbooru_process = None + shared.deepbooru_process_return = None + shared.deepbooru_process_manager = None + +def get_deepbooru_tags_model(): import deepdanbooru as dd import tensorflow as tf import numpy as np - this_folder = os.path.dirname(__file__) model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru')) if not os.path.exists(os.path.join(model_path, 'project.json')): # there is no point importing these every time import zipfile from basicsr.utils.download_util import load_file_from_url - load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip", - model_path) + load_file_from_url( + r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip", + model_path) with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref: zip_ref.extractall(model_path) os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip")) @@ -24,7 +77,13 @@ def _load_tf_and_return_tags(pil_image, threshold): model = dd.project.load_model_from_project( model_path, compile_model=True ) + return model, tags + +def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5): + import deepdanbooru as dd + import tensorflow as tf + import numpy as np width = model.input_shape[2] height = model.input_shape[1] image = np.array(pil_image) @@ -57,17 +116,4 @@ def _load_tf_and_return_tags(pil_image, threshold): print('\n'.join(sorted(result_tags_print, reverse=True))) - return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') - - -def subprocess_init_no_cuda(): - import os - os.environ["CUDA_VISIBLE_DEVICES"] = "-1" - - -def get_deepbooru_tags(pil_image, threshold=0.5): - context = get_context('spawn') - with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor: - f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, ) - ret = f.result() # will rethrow any exceptions - return ret \ No newline at end of file + return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') \ No newline at end of file diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..9f63c9a4 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -3,11 +3,14 @@ from PIL import Image, ImageOps import platform import sys import tqdm +import time from modules import shared, images +from modules.shared import opts, cmd_opts +if cmd_opts.deepdanbooru: + import modules.deepbooru as deepbooru - -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): +def preprocess(process_src, process_dst, process_flip, process_split, process_caption, process_caption_deepbooru=False): size = 512 src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -24,10 +27,21 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: shared.interrogator.load() + if process_caption_deepbooru: + deepbooru.create_deepbooru_process() + def save_pic_with_caption(image, index): if process_caption: caption = "-" + shared.interrogator.generate_caption(image) caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") + elif process_caption_deepbooru: + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process_queue.put(image) + while shared.deepbooru_process_return["value"] == -1: + time.sleep(0.2) + caption = "-" + shared.deepbooru_process_return["value"] + caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") + shared.deepbooru_process_return["value"] = -1 else: caption = filename caption = os.path.splitext(caption)[0] @@ -79,6 +93,10 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca if process_caption: shared.interrogator.send_blip_to_ram() + if process_caption_deepbooru: + deepbooru.release_process() + + def sanitize_caption(base_path, original_caption, suffix): operating_system = platform.system().lower() if (operating_system == "windows"): diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..179e3a83 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1034,6 +1034,9 @@ def create_ui(wrap_gradio_gpu_call): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images into two') process_caption = gr.Checkbox(label='Use BLIP caption as filename') + if cmd_opts.deepdanbooru: + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename') + with gr.Row(): with gr.Column(scale=3): @@ -1086,21 +1089,40 @@ def create_ui(wrap_gradio_gpu_call): ] ) - run_preprocess.click( - fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), - _js="start_training_textual_inversion", - inputs=[ - process_src, - process_dst, - process_flip, - process_split, - process_caption, - ], - outputs=[ - ti_output, - ti_outcome, - ], - ) + if cmd_opts.deepdanbooru: + # if process_caption_deepbooru is None, it will cause an error, as a result only include it if it is enabled + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + process_caption_deepbooru, + ], + outputs=[ + ti_output, + ti_outcome, + ], + ) + else: + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + process_src, + process_dst, + process_flip, + process_split, + process_caption, + ], + outputs=[ + ti_output, + ti_outcome, + ], + ) train_embedding.click( fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), -- cgit v1.2.3 From 3110f895b2718a3a25aae419fdf5c87c177ec9f4 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:07:46 +0900 Subject: Textual Inversion: Added custom training image size and number of repeats per input image in a single epoch --- modules/textual_inversion/dataset.py | 6 +++--- modules/textual_inversion/preprocess.py | 4 ++-- modules/textual_inversion/textual_inversion.py | 15 ++++++++++++--- modules/ui.py | 8 +++++++- 4 files changed, 24 insertions(+), 9 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 7c44ea5b..acc4ce59 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,13 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None): + def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token self.size = size - self.width = width - self.height = height + self.width = size + self.height = size self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..b3de6fd7 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,8 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): - size = 512 +def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): + size = process_size src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index cd9f3498..e34dc2e8 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, if ititial_step > steps: return embedding, filename + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + epoch_len = (tr_img_len * num_repeats) + tr_img_len + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, loss.backward() optimizer.step() - pbar.set_description(f"loss: {losses.mean():.7f}") + epoch_num = math.floor(embedding.step / epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, sd_model=shared.sd_model, prompt=text, steps=20, + height=training_size, + width=training_size, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..f821fd8d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,6 +1029,7 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') + process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1043,13 +1044,15 @@ def create_ui(wrap_gradio_gpu_call): run_preprocess = gr.Button(value="Preprocess", variant='primary') with gr.Group(): - gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") + gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) learn_rate = gr.Number(label='Learning rate', value=5.0e-03) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) + training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) + num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1092,6 +1095,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, + process_size, process_flip, process_split, process_caption, @@ -1110,7 +1114,9 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, + training_size, steps, + num_repeats, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 04c745ea4f81518999927fee5f78500560c25e29 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 22:35:35 +0900 Subject: Custom Width and Height --- modules/textual_inversion/dataset.py | 7 +++---- modules/textual_inversion/preprocess.py | 19 ++++++++++--------- modules/textual_inversion/textual_inversion.py | 11 +++++------ modules/ui.py | 12 ++++++++---- 4 files changed, 26 insertions(+), 23 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index acc4ce59..bcf772d2 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,12 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token - self.size = size - self.width = size - self.height = size + self.width = width + self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b3de6fd7..d7efdef2 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,9 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): - size = process_size +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption): + width = process_width + height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -55,23 +56,23 @@ def preprocess(process_src, process_dst, process_size, process_flip, process_spl is_wide = ratio < 1 / 1.35 if process_split and is_tall: - img = img.resize((size, size * img.height // img.width)) + img = img.resize((width, height * img.height // img.width)) - top = img.crop((0, 0, size, size)) + top = img.crop((0, 0, width, height)) save_pic(top, index) - bot = img.crop((0, img.height - size, size, img.height)) + bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) elif process_split and is_wide: - img = img.resize((size * img.width // img.height, size)) + img = img.resize((width * img.width // img.height, height)) - left = img.crop((0, 0, size, size)) + left = img.crop((0, 0, width, height)) save_pic(left, index) - right = img.crop((img.width - size, 0, img.width, size)) + right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) else: - img = images.resize_image(1, img, size, size) + img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 769682ea..5965c5a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,7 +6,6 @@ import torch import tqdm import html import datetime -import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -157,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -183,7 +182,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -227,7 +226,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = math.floor(embedding.step / epoch_len) + epoch_num = embedding.step // epoch_len epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") @@ -243,8 +242,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini sd_model=shared.sd_model, prompt=text, steps=20, - height=training_size, - width=training_size, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index f821fd8d..8c06ad7c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,7 +1029,8 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') - process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1050,7 +1051,8 @@ def create_ui(wrap_gradio_gpu_call): dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) - training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1095,7 +1097,8 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, - process_size, + process_width, + process_height, process_flip, process_split, process_caption, @@ -1114,7 +1117,8 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, - training_size, + training_width, + training_height, steps, num_repeats, create_image_every, -- cgit v1.2.3 From ea00c1624bbb0dcb5be07f59c9509061baddf5b1 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 17:07:46 +0900 Subject: Textual Inversion: Added custom training image size and number of repeats per input image in a single epoch --- modules/textual_inversion/dataset.py | 6 +++--- modules/textual_inversion/preprocess.py | 4 ++-- modules/textual_inversion/textual_inversion.py | 15 ++++++++++++--- modules/ui.py | 8 +++++++- 4 files changed, 24 insertions(+), 9 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 7c44ea5b..acc4ce59 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,13 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None): + def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token self.size = size - self.width = width - self.height = height + self.width = size + self.height = size self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index f1c002a2..b3de6fd7 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,8 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_flip, process_split, process_caption): - size = 512 +def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): + size = process_size src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index cd9f3498..e34dc2e8 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,6 +6,7 @@ import torch import tqdm import html import datetime +import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -156,7 +157,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -182,7 +183,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -200,6 +201,9 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, if ititial_step > steps: return embedding, filename + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + epoch_len = (tr_img_len * num_repeats) + tr_img_len + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -223,7 +227,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, loss.backward() optimizer.step() - pbar.set_description(f"loss: {losses.mean():.7f}") + epoch_num = math.floor(embedding.step / epoch_len) + epoch_step = embedding.step - (epoch_num * epoch_len) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -236,6 +243,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, sd_model=shared.sd_model, prompt=text, steps=20, + height=training_size, + width=training_size, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index 2231a8ed..f821fd8d 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,6 +1029,7 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') + process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1043,13 +1044,15 @@ def create_ui(wrap_gradio_gpu_call): run_preprocess = gr.Button(value="Preprocess", variant='primary') with gr.Group(): - gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") + gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) learn_rate = gr.Number(label='Learning rate', value=5.0e-03) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) + training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) + num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1092,6 +1095,7 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, + process_size, process_flip, process_split, process_caption, @@ -1110,7 +1114,9 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, + training_size, steps, + num_repeats, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 7a20f914eddfdf09c0ccced157ec108205bc3d0f Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Mon, 10 Oct 2022 22:35:35 +0900 Subject: Custom Width and Height --- modules/textual_inversion/dataset.py | 7 +++---- modules/textual_inversion/preprocess.py | 19 ++++++++++--------- modules/textual_inversion/textual_inversion.py | 11 +++++------ modules/ui.py | 12 ++++++++---- 4 files changed, 26 insertions(+), 23 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index acc4ce59..bcf772d2 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -15,13 +15,12 @@ re_tag = re.compile(r"[a-zA-Z][_\w\d()]+") class PersonalizedBase(Dataset): - def __init__(self, data_root, size, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None): self.placeholder_token = placeholder_token - self.size = size - self.width = size - self.height = size + self.width = width + self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b3de6fd7..d7efdef2 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,8 +7,9 @@ import tqdm from modules import shared, images -def preprocess(process_src, process_dst, process_size, process_flip, process_split, process_caption): - size = process_size +def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption): + width = process_width + height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) @@ -55,23 +56,23 @@ def preprocess(process_src, process_dst, process_size, process_flip, process_spl is_wide = ratio < 1 / 1.35 if process_split and is_tall: - img = img.resize((size, size * img.height // img.width)) + img = img.resize((width, height * img.height // img.width)) - top = img.crop((0, 0, size, size)) + top = img.crop((0, 0, width, height)) save_pic(top, index) - bot = img.crop((0, img.height - size, size, img.height)) + bot = img.crop((0, img.height - height, width, img.height)) save_pic(bot, index) elif process_split and is_wide: - img = img.resize((size * img.width // img.height, size)) + img = img.resize((width * img.width // img.height, height)) - left = img.crop((0, 0, size, size)) + left = img.crop((0, 0, width, height)) save_pic(left, index) - right = img.crop((img.width - size, 0, img.width, size)) + right = img.crop((img.width - width, 0, img.width, height)) save_pic(right, index) else: - img = images.resize_image(1, img, size, size) + img = images.resize_image(1, img, width, height) save_pic(img, index) shared.state.nextjob() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 769682ea..5965c5a0 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -6,7 +6,6 @@ import torch import tqdm import html import datetime -import math from modules import shared, devices, sd_hijack, processing, sd_models @@ -157,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_size, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -183,7 +182,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=training_size, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=num_repeats, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -227,7 +226,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = math.floor(embedding.step / epoch_len) + epoch_num = embedding.step // epoch_len epoch_step = embedding.step - (epoch_num * epoch_len) + 1 pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") @@ -243,8 +242,8 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini sd_model=shared.sd_model, prompt=text, steps=20, - height=training_size, - width=training_size, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) diff --git a/modules/ui.py b/modules/ui.py index f821fd8d..8c06ad7c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1029,7 +1029,8 @@ def create_ui(wrap_gradio_gpu_call): process_src = gr.Textbox(label='Source directory') process_dst = gr.Textbox(label='Destination directory') - process_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') @@ -1050,7 +1051,8 @@ def create_ui(wrap_gradio_gpu_call): dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) - training_size = gr.Slider(minimum=64, maximum=2048, step=64, label="Size (width and height)", value=512) + training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) + training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) num_repeats = gr.Number(label='Number of repeats for a single input image per epoch', value=100, precision=0) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) @@ -1095,7 +1097,8 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ process_src, process_dst, - process_size, + process_width, + process_height, process_flip, process_split, process_caption, @@ -1114,7 +1117,8 @@ def create_ui(wrap_gradio_gpu_call): learn_rate, dataset_directory, log_directory, - training_size, + training_width, + training_height, steps, num_repeats, create_image_every, -- cgit v1.2.3 From bc3e183b739913e7be91213a256f038b10eb71e9 Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 04:30:13 +0900 Subject: Textual Inversion: Preprocess and Training will only pick-up image files --- modules/textual_inversion/dataset.py | 3 ++- modules/textual_inversion/preprocess.py | 3 ++- modules/textual_inversion/textual_inversion.py | 3 ++- 3 files changed, 6 insertions(+), 3 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index bcf772d2..d4baf066 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,6 +22,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) + self.extns = [".jpg",".jpeg",".png"] self.dataset = [] @@ -32,7 +33,7 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' - self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in self.extns] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): image = Image.open(path) diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index d7efdef2..b6c78cf8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,12 +12,13 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) + extns = [".jpg",".jpeg",".png"] assert src != dst, 'same directory specified as source and destination' os.makedirs(dst, exist_ok=True) - files = os.listdir(src) + files = [i for i in os.listdir(src) if os.path.splitext(i.casefold())[1] in extns] shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a0..45397be9 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,6 +161,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps + extns = [".jpg",".jpeg",".png"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') @@ -200,7 +201,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) + tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in extns]) epoch_len = (tr_img_len * num_repeats) + tr_img_len pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) -- cgit v1.2.3 From 907a88b2d0be320575c2129d8d6a1d4f3a68f9eb Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 06:33:08 +0900 Subject: Added .webp .bmp --- modules/textual_inversion/dataset.py | 2 +- modules/textual_inversion/preprocess.py | 2 +- modules/textual_inversion/textual_inversion.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index d4baf066..0dc54fb7 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,7 +22,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) - self.extns = [".jpg",".jpeg",".png"] + self.extns = [".jpg",".jpeg",".png",".webp",".bmp"] self.dataset = [] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index b6c78cf8..8290abe8 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,7 +12,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) - extns = [".jpg",".jpeg",".png"] + extns = [".jpg",".jpeg",".png",".webp",".bmp"] assert src != dst, 'same directory specified as source and destination' diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index a03b299c..33c923d1 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,7 +161,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps - extns = [".jpg",".jpeg",".png"] + extns = [".jpg",".jpeg",".png",".webp",".bmp"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') -- cgit v1.2.3 From bb932dbf9faf43ba918daa4791873078797b2a48 Mon Sep 17 00:00:00 2001 From: JC_Array Date: Mon, 10 Oct 2022 18:37:52 -0500 Subject: added alpha sort and threshold variables to create process method in preprocessing --- modules/textual_inversion/preprocess.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 4a2194da..c0af729b 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -29,7 +29,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.interrogator.load() if process_caption_deepbooru: - deepbooru.create_deepbooru_process() + deepbooru.create_deepbooru_process(opts.deepbooru_threshold, opts.deepbooru_sort_alpha) def save_pic_with_caption(image, index): if process_caption: -- cgit v1.2.3 From b2368a3bce663f19a7209d9cb38617e635ca6e3c Mon Sep 17 00:00:00 2001 From: alg-wiki Date: Tue, 11 Oct 2022 17:32:46 +0900 Subject: Switched to exception handling --- modules/textual_inversion/dataset.py | 10 +++++----- modules/textual_inversion/preprocess.py | 8 +++++--- modules/textual_inversion/textual_inversion.py | 18 ++++++++---------- 3 files changed, 18 insertions(+), 18 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 0dc54fb7..4d006366 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -22,7 +22,6 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) - self.extns = [".jpg",".jpeg",".png",".webp",".bmp"] self.dataset = [] @@ -33,12 +32,13 @@ class PersonalizedBase(Dataset): assert data_root, 'dataset directory not specified' - self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in self.extns] + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): - image = Image.open(path) - image = image.convert('RGB') - image = image.resize((self.width, self.height), PIL.Image.BICUBIC) + try: + image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC) + except Exception: + continue filename = os.path.basename(path) filename_tokens = os.path.splitext(filename)[0] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 8290abe8..1a672725 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -12,13 +12,12 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ height = process_height src = os.path.abspath(process_src) dst = os.path.abspath(process_dst) - extns = [".jpg",".jpeg",".png",".webp",".bmp"] assert src != dst, 'same directory specified as source and destination' os.makedirs(dst, exist_ok=True) - files = [i for i in os.listdir(src) if os.path.splitext(i.casefold())[1] in extns] + files = os.listdir(src) shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) @@ -47,7 +46,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ for index, imagefile in enumerate(tqdm.tqdm(files)): subindex = [0] filename = os.path.join(src, imagefile) - img = Image.open(filename).convert("RGB") + try: + img = Image.open(filename).convert("RGB") + except Exception: + continue if shared.state.interrupted: break diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 33c923d1..91cde04b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -161,7 +161,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps - extns = [".jpg",".jpeg",".png",".webp",".bmp"] filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') @@ -201,10 +200,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root) if os.path.splitext(file_path.casefold())[1] in extns]) - - epoch_len = (tr_img_len * num_repeats) + tr_img_len - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -228,10 +223,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = embedding.step // epoch_len - epoch_step = embedding.step - (epoch_num * epoch_len) + 1 + epoch_num = embedding.step // len(ds) + epoch_step = embedding.step - (epoch_num * len(ds)) + 1 - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') @@ -243,9 +238,12 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, prompt=text, - steps=20, - height=training_height, + steps=28, + height=768, width=training_width, + negative_prompt="lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name", + cfg_scale=7.0, + sampler_index=0, do_not_save_grid=True, do_not_save_samples=True, ) -- cgit v1.2.3 From f53f703aebc801c4204182d52bb1e0bef9808e1f Mon Sep 17 00:00:00 2001 From: JC_Array Date: Tue, 11 Oct 2022 18:12:12 -0500 Subject: resolved conflicts, moved settings under interrogate section, settings only show if deepbooru flag is enabled --- modules/deepbooru.py | 2 +- modules/shared.py | 19 +++++++++---------- modules/textual_inversion/preprocess.py | 2 +- modules/ui.py | 2 +- 4 files changed, 12 insertions(+), 13 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 89dcac3c..29529949 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -8,7 +8,7 @@ def get_deepbooru_tags(pil_image): This method is for running only one image at a time for simple use. Used to the img2img interrogate. """ from modules import shared # prevents circular reference - create_deepbooru_process(shared.opts.deepbooru_threshold, shared.opts.deepbooru_sort_alpha) + create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, shared.opts.deepbooru_sort_alpha) shared.deepbooru_process_return["value"] = -1 shared.deepbooru_process_queue.put(pil_image) while shared.deepbooru_process_return["value"] == -1: diff --git a/modules/shared.py b/modules/shared.py index 817203f8..5456c477 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -248,15 +248,20 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), })) -options_templates.update(options_section(('interrogate', "Interrogate Options"), { +interrogate_option_dictionary = { "interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"), "interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"), "interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), -})) + "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)") +} + +if cmd_opts.deepdanbooru: + interrogate_option_dictionary["interrogate_deepbooru_score_threshold"] = OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}) + interrogate_option_dictionary["deepbooru_sort_alpha"] = OptionInfo(True, "Interrogate: deepbooru sort alphabetically", gr.Checkbox) + +options_templates.update(options_section(('interrogate', "Interrogate Options"), interrogate_option_dictionary)) options_templates.update(options_section(('ui', "User interface"), { "show_progressbar": OptionInfo(True, "Show progressbar"), @@ -282,12 +287,6 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), })) -if cmd_opts.deepdanbooru: - options_templates.update(options_section(('deepbooru-params', "DeepBooru parameters"), { - "deepbooru_sort_alpha": OptionInfo(True, "Sort Alphabetical", gr.Checkbox), - 'deepbooru_threshold': OptionInfo(0.5, "Threshold", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - })) - class Options: data = None diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index a96388d6..113cecf1 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -29,7 +29,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.interrogator.load() if process_caption_deepbooru: - deepbooru.create_deepbooru_process(opts.deepbooru_threshold, opts.deepbooru_sort_alpha) + deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, opts.deepbooru_sort_alpha) def save_pic_with_caption(image, index): if process_caption: diff --git a/modules/ui.py b/modules/ui.py index 2891fc8c..fa45edca 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -317,7 +317,7 @@ def interrogate(image): def interrogate_deepbooru(image): - prompt = get_deepbooru_tags(image, opts.interrogate_deepbooru_score_threshold) + prompt = get_deepbooru_tags(image) return gr_show(True) if prompt is None else prompt -- cgit v1.2.3 From 698d303b04e293635bfb49c525409f3bcf671dce Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 12 Oct 2022 21:55:43 +0300 Subject: deepbooru: added option to use spaces or underscores deepbooru: added option to quote (\) in tags deepbooru/BLIP: write caption to file instead of image filename deepbooru/BLIP: now possible to use both for captions deepbooru: process is stopped even if an exception occurs --- modules/deepbooru.py | 65 ++++++++++++++++++----- modules/shared.py | 2 + modules/textual_inversion/preprocess.py | 92 ++++++++++++++------------------- modules/ui.py | 7 +-- 4 files changed, 95 insertions(+), 71 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 29529949..419e6a9c 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -2,33 +2,44 @@ import os.path from concurrent.futures import ProcessPoolExecutor import multiprocessing import time +import re + +re_special = re.compile(r'([\\()])') def get_deepbooru_tags(pil_image): """ This method is for running only one image at a time for simple use. Used to the img2img interrogate. """ from modules import shared # prevents circular reference - create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, shared.opts.deepbooru_sort_alpha) - shared.deepbooru_process_return["value"] = -1 - shared.deepbooru_process_queue.put(pil_image) - while shared.deepbooru_process_return["value"] == -1: - time.sleep(0.2) - tags = shared.deepbooru_process_return["value"] - release_process() - return tags + try: + create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts()) + return get_tags_from_process(pil_image) + finally: + release_process() + + +def create_deepbooru_opts(): + from modules import shared -def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort): + return { + "use_spaces": shared.opts.deepbooru_use_spaces, + "use_escape": shared.opts.deepbooru_escape, + "alpha_sort": shared.opts.deepbooru_sort_alpha, + } + + +def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts): model, tags = get_deepbooru_tags_model() while True: # while process is running, keep monitoring queue for new image pil_image = queue.get() if pil_image == "QUIT": break else: - deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort) + deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts) -def create_deepbooru_process(threshold, alpha_sort): +def create_deepbooru_process(threshold, deepbooru_opts): """ Creates deepbooru process. A queue is created to send images into the process. This enables multiple images to be processed in a row without reloading the model or creating a new process. To return the data, a shared @@ -41,10 +52,23 @@ def create_deepbooru_process(threshold, alpha_sort): shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue() shared.deepbooru_process_return = shared.deepbooru_process_manager.dict() shared.deepbooru_process_return["value"] = -1 - shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort)) + shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts)) shared.deepbooru_process.start() +def get_tags_from_process(image): + from modules import shared + + shared.deepbooru_process_return["value"] = -1 + shared.deepbooru_process_queue.put(image) + while shared.deepbooru_process_return["value"] == -1: + time.sleep(0.2) + caption = shared.deepbooru_process_return["value"] + shared.deepbooru_process_return["value"] = -1 + + return caption + + def release_process(): """ Stops the deepbooru process to return used memory @@ -81,10 +105,15 @@ def get_deepbooru_tags_model(): return model, tags -def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort): +def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts): import deepdanbooru as dd import tensorflow as tf import numpy as np + + alpha_sort = deepbooru_opts['alpha_sort'] + use_spaces = deepbooru_opts['use_spaces'] + use_escape = deepbooru_opts['use_escape'] + width = model.input_shape[2] height = model.input_shape[1] image = np.array(pil_image) @@ -129,4 +158,12 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort) print('\n'.join(sorted(result_tags_print, reverse=True))) - return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') + tags_text = ', '.join(result_tags_out) + + if use_spaces: + tags_text = tags_text.replace('_', ' ') + + if use_escape: + tags_text = re.sub(re_special, r'\\\1', tags_text) + + return tags_text.replace(':', ' ') diff --git a/modules/shared.py b/modules/shared.py index e64e69fc..78b73aae 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -260,6 +260,8 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), "deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"), + "deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"), + "deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"), })) options_templates.update(options_section(('ui', "User interface"), { diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 113cecf1..3047bede 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -10,7 +10,28 @@ from modules.shared import opts, cmd_opts if cmd_opts.deepdanbooru: import modules.deepbooru as deepbooru + def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): + try: + if process_caption: + shared.interrogator.load() + + if process_caption_deepbooru: + deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, deepbooru.create_deepbooru_opts()) + + preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) + + finally: + + if process_caption: + shared.interrogator.send_blip_to_ram() + + if process_caption_deepbooru: + deepbooru.release_process() + + + +def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False): width = process_width height = process_height src = os.path.abspath(process_src) @@ -25,30 +46,28 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.state.textinfo = "Preprocessing..." shared.state.job_count = len(files) - if process_caption: - shared.interrogator.load() - - if process_caption_deepbooru: - deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, opts.deepbooru_sort_alpha) - def save_pic_with_caption(image, index): + caption = "" + if process_caption: - caption = "-" + shared.interrogator.generate_caption(image) - caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") - elif process_caption_deepbooru: - shared.deepbooru_process_return["value"] = -1 - shared.deepbooru_process_queue.put(image) - while shared.deepbooru_process_return["value"] == -1: - time.sleep(0.2) - caption = "-" + shared.deepbooru_process_return["value"] - caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png") - shared.deepbooru_process_return["value"] = -1 - else: - caption = filename - caption = os.path.splitext(caption)[0] - caption = os.path.basename(caption) + caption += shared.interrogator.generate_caption(image) + + if process_caption_deepbooru: + if len(caption) > 0: + caption += ", " + caption += deepbooru.get_tags_from_process(image) + + filename_part = filename + filename_part = os.path.splitext(filename_part)[0] + filename_part = os.path.basename(filename_part) + + basename = f"{index:05}-{subindex[0]}-{filename_part}" + image.save(os.path.join(dst, f"{basename}.png")) + + if len(caption) > 0: + with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file: + file.write(caption) - image.save(os.path.join(dst, f"{index:05}-{subindex[0]}{caption}.png")) subindex[0] += 1 def save_pic(image, index): @@ -93,34 +112,3 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ save_pic(img, index) shared.state.nextjob() - - if process_caption: - shared.interrogator.send_blip_to_ram() - - if process_caption_deepbooru: - deepbooru.release_process() - - -def sanitize_caption(base_path, original_caption, suffix): - operating_system = platform.system().lower() - if (operating_system == "windows"): - invalid_path_characters = "\\/:*?\"<>|" - max_path_length = 259 - else: - invalid_path_characters = "/" #linux/macos - max_path_length = 1023 - caption = original_caption - for invalid_character in invalid_path_characters: - caption = caption.replace(invalid_character, "") - fixed_path_length = len(base_path) + len(suffix) - if fixed_path_length + len(caption) <= max_path_length: - return caption - caption_tokens = caption.split() - new_caption = "" - for token in caption_tokens: - last_caption = new_caption - new_caption = new_caption + token + " " - if (len(new_caption) + fixed_path_length - 1 > max_path_length): - break - print(f"\nPath will be too long. Truncated caption: {original_caption}\nto: {last_caption}", file=sys.stderr) - return last_caption.strip() diff --git a/modules/ui.py b/modules/ui.py index c42535c8..e07ee0e1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1074,11 +1074,8 @@ def create_ui(wrap_gradio_gpu_call): with gr.Row(): process_flip = gr.Checkbox(label='Create flipped copies') process_split = gr.Checkbox(label='Split oversized images into two') - process_caption = gr.Checkbox(label='Use BLIP caption as filename') - if cmd_opts.deepdanbooru: - process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename') - else: - process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename', visible=False) + process_caption = gr.Checkbox(label='Use BLIP for caption') + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False) with gr.Row(): with gr.Column(scale=3): -- cgit v1.2.3 From f776254b12361b5bae16f6629bcdcb47b450c48d Mon Sep 17 00:00:00 2001 From: Greg Fuller Date: Wed, 12 Oct 2022 13:08:06 -0700 Subject: [2/?] [wip] ignore OPT_INCLUDE_RANKS for training filenames --- modules/deepbooru.py | 3 ++- modules/textual_inversion/preprocess.py | 4 +++- 2 files changed, 5 insertions(+), 2 deletions(-) (limited to 'modules/textual_inversion/preprocess.py') diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 2cbf2cab..fcc05819 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -19,6 +19,7 @@ def get_deepbooru_tags(pil_image): release_process() +OPT_INCLUDE_RANKS = "include_ranks" def create_deepbooru_opts(): from modules import shared @@ -26,7 +27,7 @@ def create_deepbooru_opts(): "use_spaces": shared.opts.deepbooru_use_spaces, "use_escape": shared.opts.deepbooru_escape, "alpha_sort": shared.opts.deepbooru_sort_alpha, - "include_ranks": shared.opts.interrogate_return_ranks, + OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks, } diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 3047bede..886cf0c3 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -17,7 +17,9 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ shared.interrogator.load() if process_caption_deepbooru: - deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, deepbooru.create_deepbooru_opts()) + db_opts = deepbooru.create_deepbooru_opts() + db_opts[deepbooru.OPT_INCLUDE_RANKS] = False + deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts) preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru) -- cgit v1.2.3