From bb57f30c2de46cfca5419ad01738a41705f96cc3 Mon Sep 17 00:00:00 2001 From: MalumaDev Date: Fri, 14 Oct 2022 10:56:41 +0200 Subject: init --- modules/textual_inversion/textual_inversion.py | 35 ++++++++++++++++++-------- 1 file changed, 25 insertions(+), 10 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fa0e33a2..b12a8e6d 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -172,7 +172,15 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt): +def batched(dataset, total, n=1): + for ndx in range(0, total, n): + yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))] + + +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, + create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, + preview_image_prompt, batch_size=1, + gradient_accumulation=1): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -204,7 +212,11 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, + height=training_height, + repeats=shared.opts.training_image_repeats_per_epoch, + placeholder_token=embedding_name, model=shared.sd_model, + device=devices.device, template_file=template_file) hijack = sd_hijack.model_hijack @@ -223,7 +235,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + pbar = tqdm.tqdm(enumerate(batched(ds, steps - ititial_step, batch_size)), total=steps - ititial_step) for i, entry in pbar: embedding.step = i + ititial_step @@ -235,17 +247,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini break with torch.autocast("cuda"): - c = cond_model([entry.cond_text]) + c = cond_model([e.cond_text for e in entry]) + + x = torch.stack([e.latent for e in entry]).to(devices.device) + loss = shared.sd_model(x, c)[0] - x = entry.latent.to(devices.device) - loss = shared.sd_model(x.unsqueeze(0), c)[0] del x losses[embedding.step % losses.shape[0]] = loss.item() - optimizer.zero_grad() loss.backward() - optimizer.step() + if ((i + 1) % gradient_accumulation == 0) or (i + 1 == steps - ititial_step): + optimizer.step() + optimizer.zero_grad() + epoch_num = embedding.step // len(ds) epoch_step = embedding.step - (epoch_num * len(ds)) + 1 @@ -259,7 +274,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') - preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt + preview_text = entry[0].cond_text if preview_image_prompt == "" else preview_image_prompt p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, @@ -305,7 +320,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini

Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entry[-1].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

-- cgit v1.2.3 From 0087079c2d487b67b06ffc30f36ce486a74e6318 Mon Sep 17 00:00:00 2001 From: DepFA <35278260+dfaker@users.noreply.github.com> Date: Thu, 20 Oct 2022 00:10:59 +0100 Subject: allow overwrite old embedding --- modules/textual_inversion/textual_inversion.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 3be69562..5776778b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -153,7 +153,7 @@ class EmbeddingDatabase: return None, None -def create_embedding(name, num_vectors_per_token, init_text='*'): +def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'): cond_model = shared.sd_model.cond_stage_model embedding_layer = cond_model.wrapped.transformer.text_model.embeddings @@ -165,7 +165,8 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") - assert not os.path.exists(fn), f"file {fn} already exists" + if not overwrite_old: + assert not os.path.exists(fn), f"file {fn} already exists" embedding = Embedding(vec, name) embedding.step = 0 -- cgit v1.2.3 From cbb857b675cf0f169b21515c29da492b513cc8c4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 26 Oct 2022 09:44:02 +0300 Subject: enable creating embedding with --medvram --- modules/textual_inversion/textual_inversion.py | 3 +++ 1 file changed, 3 insertions(+) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 529ed3e2..647ffe3e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -157,6 +157,9 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'): cond_model = shared.sd_model.cond_stage_model embedding_layer = cond_model.wrapped.transformer.text_model.embeddings + with devices.autocast(): + cond_model([""]) # will send cond model to GPU if lowvram/medvram is active + ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"] embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device) -- cgit v1.2.3 From c2dc9bfa89070b8e1d857f8773a790b752f1b709 Mon Sep 17 00:00:00 2001 From: timntorres Date: Mon, 24 Oct 2022 23:22:58 -0700 Subject: Implement PR #3189 but for embeddings. --- modules/textual_inversion/textual_inversion.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 647ffe3e..22c7b54b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -10,7 +10,7 @@ import csv from PIL import Image, PngImagePlugin -from modules import shared, devices, sd_hijack, processing, sd_models +from modules import shared, devices, sd_hijack, processing, sd_models, images import modules.textual_inversion.dataset from modules.textual_inversion.learn_schedule import LearnRateScheduler @@ -247,6 +247,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc last_saved_file = "" last_saved_image = "" + forced_filename = "" embedding_yet_to_be_embedded = False ititial_step = embedding.step or 0 @@ -296,8 +297,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc }) if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: - last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') - + forced_filename = f'{embedding_name}-{embedding.step}' + last_saved_image = os.path.join(images_dir, forced_filename) p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, do_not_save_grid=True, @@ -353,8 +354,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) embedding_yet_to_be_embedded = False - image.save(last_saved_image) - + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename) last_saved_image += f", prompt: {preview_text}" shared.state.job_no = embedding.step -- cgit v1.2.3 From 4875a6c217df5cc06ee2bf11fb645b172c7156a8 Mon Sep 17 00:00:00 2001 From: timntorres Date: Mon, 24 Oct 2022 23:38:07 -0700 Subject: Implement PR #3309 but for embeddings. --- modules/textual_inversion/textual_inversion.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 22c7b54b..4921bd01 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -167,6 +167,8 @@ def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'): for i in range(num_vectors_per_token): vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] + # Remove illegal characters from name. + name = "".join( x for x in name if (x.isalnum() or x in "._- ")) fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") if not overwrite_old: assert not os.path.exists(fn), f"file {fn} already exists" @@ -287,7 +289,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: - last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') + # Before saving, change name to match current checkpoint. + embedding.name = f'{embedding_name}-{embedding.step}' + last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') embedding.save(last_saved_file) embedding_yet_to_be_embedded = True @@ -374,6 +378,9 @@ Last saved image: {html.escape(last_saved_image)}
embedding.sd_checkpoint = checkpoint.hash embedding.sd_checkpoint_name = checkpoint.model_name embedding.cached_checksum = None + # Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention). + embedding.name = embedding_name + filename = os.path.join(shared.cmd_opts.embedding_dir, f'{embedding.name}.pt') embedding.save(filename) return embedding, filename -- cgit v1.2.3 From f4e14642173a04723200b131deb417c6c79cab17 Mon Sep 17 00:00:00 2001 From: timntorres Date: Tue, 25 Oct 2022 00:04:25 -0700 Subject: Implement PR #3625 but for embeddings. --- modules/textual_inversion/textual_inversion.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 4921bd01..4fcebe74 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -358,7 +358,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) embedding_yet_to_be_embedded = False - last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename) + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) last_saved_image += f", prompt: {preview_text}" shared.state.job_no = embedding.step -- cgit v1.2.3 From 737eb28faca8be2bb996ee0930ec77d1f7ebd939 Mon Sep 17 00:00:00 2001 From: DepFA <35278260+dfaker@users.noreply.github.com> Date: Wed, 26 Oct 2022 14:45:33 +0100 Subject: typo: cmd_opts.embedding_dir to cmd_opts.embeddings_dir --- modules/textual_inversion/textual_inversion.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 4fcebe74..ff002d3e 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -380,7 +380,7 @@ Last saved image: {html.escape(last_saved_image)}
embedding.cached_checksum = None # Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention). embedding.name = embedding_name - filename = os.path.join(shared.cmd_opts.embedding_dir, f'{embedding.name}.pt') + filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding.name}.pt') embedding.save(filename) return embedding, filename -- cgit v1.2.3 From 1618df41bad092e068c61bf510b1e20856821ad5 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Fri, 28 Oct 2022 10:31:27 +0700 Subject: Gradient clipping for textual embedding --- modules/textual_inversion/textual_inversion.py | 11 ++++++++++- modules/ui.py | 2 ++ 2 files changed, 12 insertions(+), 1 deletion(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index ff002d3e..7bad73a6 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -206,7 +206,7 @@ def write_loss(log_directory, filename, step, epoch_len, values): }) -def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -256,6 +256,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if ititial_step > steps: return embedding, filename + clip_grad_mode_value = clip_grad_mode == "value" + clip_grad_mode_norm = clip_grad_mode == "norm" + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) @@ -280,6 +283,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc optimizer.zero_grad() loss.backward() + + if clip_grad_mode_value: + torch.nn.utils.clip_grad_value_(embedding.vec, clip_value=clip_grad_value) + elif clip_grad_mode_norm: + torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=clip_grad_value) + optimizer.step() diff --git a/modules/ui.py b/modules/ui.py index ba5e92a7..97de7da2 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1409,6 +1409,8 @@ def create_ui(wrap_gradio_gpu_call): training_width, training_height, steps, + clip_grad_mode, + clip_grad_value, create_image_every, save_embedding_every, template_file, -- cgit v1.2.3 From 16451ca573220e49f2eaaab97580b6b91287c8c4 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Fri, 28 Oct 2022 17:16:23 +0700 Subject: Learning rate sched syntax support for grad clipping --- modules/hypernetworks/hypernetwork.py | 13 ++++++++++--- modules/textual_inversion/learn_schedule.py | 11 ++++++++--- modules/textual_inversion/textual_inversion.py | 12 +++++++++--- modules/ui.py | 7 +++---- 4 files changed, 30 insertions(+), 13 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index c5d60654..86532063 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -383,11 +383,15 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log ititial_step = hypernetwork.step or 0 if ititial_step > steps: return hypernetwork, filename - + clip_grad_mode_value = clip_grad_mode == "value" clip_grad_mode_norm = clip_grad_mode == "norm" + clip_grad_enabled = clip_grad_mode_value or clip_grad_mode_norm + if clip_grad_enabled: + clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False) scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) @@ -407,6 +411,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log if shared.state.interrupted: break + if clip_grad_enabled: + clip_grad_sched.step(hypernetwork.step) + with torch.autocast("cuda"): c = stack_conds([entry.cond for entry in entries]).to(devices.device) # c = torch.vstack([entry.cond for entry in entries]).to(devices.device) @@ -430,9 +437,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' if clip_grad_mode_value: - torch.nn.utils.clip_grad_value_(weights, clip_value=clip_grad_value) + torch.nn.utils.clip_grad_value_(weights, clip_value=clip_grad_sched.learn_rate) elif clip_grad_mode_norm: - torch.nn.utils.clip_grad_norm_(weights, max_norm=clip_grad_value) + torch.nn.utils.clip_grad_norm_(weights, max_norm=clip_grad_sched.learn_rate) optimizer.step() diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index 2062726a..ffec3e1b 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -51,14 +51,19 @@ class LearnRateScheduler: self.finished = False - def apply(self, optimizer, step_number): + def step(self, step_number): if step_number <= self.end_step: - return + return False try: (self.learn_rate, self.end_step) = next(self.schedules) - except Exception: + except StopIteration: self.finished = True + return False + return True + + def apply(self, optimizer, step_number): + if not self.step(step_number): return if self.verbose: diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 7bad73a6..6b00c6a1 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -255,9 +255,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc ititial_step = embedding.step or 0 if ititial_step > steps: return embedding, filename - + clip_grad_mode_value = clip_grad_mode == "value" clip_grad_mode_norm = clip_grad_mode == "norm" + clip_grad_enabled = clip_grad_mode_value or clip_grad_mode_norm + if clip_grad_enabled: + clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False) scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) @@ -273,6 +276,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if shared.state.interrupted: break + if clip_grad_enabled: + clip_grad_sched.step(embedding.step) + with torch.autocast("cuda"): c = cond_model([entry.cond_text for entry in entries]) x = torch.stack([entry.latent for entry in entries]).to(devices.device) @@ -285,9 +291,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc loss.backward() if clip_grad_mode_value: - torch.nn.utils.clip_grad_value_(embedding.vec, clip_value=clip_grad_value) + torch.nn.utils.clip_grad_value_(embedding.vec, clip_value=clip_grad_sched.learn_rate) elif clip_grad_mode_norm: - torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=clip_grad_value) + torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=clip_grad_sched.learn_rate) optimizer.step() diff --git a/modules/ui.py b/modules/ui.py index 97de7da2..47d16429 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1305,7 +1305,9 @@ def create_ui(wrap_gradio_gpu_call): with gr.Row(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005") hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001") - + with gr.Row(): + clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) + clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="1.0", show_label=False) batch_size = gr.Number(label='Batch size', value=1, precision=0) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") @@ -1313,9 +1315,6 @@ def create_ui(wrap_gradio_gpu_call): training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512) training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512) steps = gr.Number(label='Max steps', value=100000, precision=0) - with gr.Row(): - clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) - clip_grad_value = gr.Number(value=1.0, show_label=False) create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) -- cgit v1.2.3 From 9ceef81f77ecce89f0c8f412c4d849210d852e82 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Fri, 28 Oct 2022 20:48:08 +0700 Subject: Fix log off by 1 --- modules/hypernetworks/hypernetwork.py | 12 +++++++----- modules/textual_inversion/learn_schedule.py | 2 +- modules/textual_inversion/textual_inversion.py | 24 ++++++++++++------------ 3 files changed, 20 insertions(+), 18 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 8113b35b..a0297997 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -428,7 +428,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log optimizer.step() - if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): + steps_done = hypernetwork.step + 1 + + if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): raise RuntimeError("Loss diverged.") if len(previous_mean_losses) > 1: @@ -438,9 +440,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" pbar.set_description(dataset_loss_info) - if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: + if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: # Before saving, change name to match current checkpoint. - hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}' + hypernetwork.name = f'{hypernetwork_name}-{steps_done}' last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') hypernetwork.save(last_saved_file) @@ -449,8 +451,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log "learn_rate": scheduler.learn_rate }) - if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: - forced_filename = f'{hypernetwork_name}-{hypernetwork.step}' + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{hypernetwork_name}-{steps_done}' last_saved_image = os.path.join(images_dir, forced_filename) optimizer.zero_grad() diff --git a/modules/textual_inversion/learn_schedule.py b/modules/textual_inversion/learn_schedule.py index 2062726a..3a736065 100644 --- a/modules/textual_inversion/learn_schedule.py +++ b/modules/textual_inversion/learn_schedule.py @@ -52,7 +52,7 @@ class LearnRateScheduler: self.finished = False def apply(self, optimizer, step_number): - if step_number <= self.end_step: + if step_number < self.end_step: return try: diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index ff002d3e..17dfb223 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -184,9 +184,8 @@ def write_loss(log_directory, filename, step, epoch_len, values): if shared.opts.training_write_csv_every == 0: return - if step % shared.opts.training_write_csv_every != 0: + if (step + 1) % shared.opts.training_write_csv_every != 0: return - write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True with open(os.path.join(log_directory, filename), "a+", newline='') as fout: @@ -196,11 +195,11 @@ def write_loss(log_directory, filename, step, epoch_len, values): csv_writer.writeheader() epoch = step // epoch_len - epoch_step = step - epoch * epoch_len + epoch_step = step % epoch_len csv_writer.writerow({ "step": step + 1, - "epoch": epoch + 1, + "epoch": epoch, "epoch_step": epoch_step + 1, **values, }) @@ -282,15 +281,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc loss.backward() optimizer.step() + steps_done = embedding.step + 1 epoch_num = embedding.step // len(ds) - epoch_step = embedding.step - (epoch_num * len(ds)) + 1 + epoch_step = embedding.step % len(ds) - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}") + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}") - if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: + if embedding_dir is not None and steps_done % save_embedding_every == 0: # Before saving, change name to match current checkpoint. - embedding.name = f'{embedding_name}-{embedding.step}' + embedding.name = f'{embedding_name}-{steps_done}' last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') embedding.save(last_saved_file) embedding_yet_to_be_embedded = True @@ -300,8 +300,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc "learn_rate": scheduler.learn_rate }) - if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: - forced_filename = f'{embedding_name}-{embedding.step}' + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{embedding_name}-{steps_done}' last_saved_image = os.path.join(images_dir, forced_filename) p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, @@ -334,7 +334,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: - last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png') + last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') info = PngImagePlugin.PngInfo() data = torch.load(last_saved_file) @@ -350,7 +350,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc checkpoint = sd_models.select_checkpoint() footer_left = checkpoint.model_name footer_mid = '[{}]'.format(checkpoint.hash) - footer_right = '{}v {}s'.format(vectorSize, embedding.step) + footer_right = '{}v {}s'.format(vectorSize, steps_done) captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) captioned_image = insert_image_data_embed(captioned_image, data) -- cgit v1.2.3 From ab27c111d06ec920791c73eea25ad9a61671852e Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sat, 29 Oct 2022 18:09:17 +0700 Subject: Add input validations before loading dataset for training --- modules/hypernetworks/hypernetwork.py | 38 +++++++++++--------- modules/textual_inversion/textual_inversion.py | 48 +++++++++++++++++++------- 2 files changed, 58 insertions(+), 28 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 2e84583b..38f35c58 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -332,7 +332,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images - assert hypernetwork_name, 'hypernetwork not selected' + save_hypernetwork_every = save_hypernetwork_every or 0 + create_image_every = create_image_every or 0 + textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") path = shared.hypernetworks.get(hypernetwork_name, None) shared.loaded_hypernetwork = Hypernetwork() @@ -358,39 +360,43 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log else: images_dir = None + hypernetwork = shared.loaded_hypernetwork + + ititial_step = hypernetwork.step or 0 + if ititial_step > steps: + shared.state.textinfo = f"Model has already been trained beyond specified max steps" + return hypernetwork, filename + + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + + # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + if unload: shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu) - hypernetwork = shared.loaded_hypernetwork - weights = hypernetwork.weights() - for weight in weights: - weight.requires_grad = True - size = len(ds.indexes) loss_dict = defaultdict(lambda : deque(maxlen = 1024)) losses = torch.zeros((size,)) previous_mean_losses = [0] previous_mean_loss = 0 print("Mean loss of {} elements".format(size)) - - last_saved_file = "" - last_saved_image = "" - forced_filename = "" - - ititial_step = hypernetwork.step or 0 - if ititial_step > steps: - return hypernetwork, filename - - scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + + weights = hypernetwork.weights() + for weight in weights: + weight.requires_grad = True # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) steps_without_grad = 0 + last_saved_file = "" + last_saved_image = "" + forced_filename = "" + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 17dfb223..44f06443 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -204,9 +204,30 @@ def write_loss(log_directory, filename, step, epoch_len, values): **values, }) +def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"): + assert model_name, f"{name} not selected" + assert learn_rate, "Learning rate is empty or 0" + assert isinstance(batch_size, int), "Batch size must be integer" + assert batch_size > 0, "Batch size must be positive" + assert data_root, "Dataset directory is empty" + assert os.path.isdir(data_root), "Dataset directory doesn't exist" + assert os.listdir(data_root), "Dataset directory is empty" + assert template_file, "Prompt template file is empty" + assert os.path.isfile(template_file), "Prompt template file doesn't exist" + assert steps, "Max steps is empty or 0" + assert isinstance(steps, int), "Max steps must be integer" + assert steps > 0 , "Max steps must be positive" + assert isinstance(save_model_every, int), "Save {name} must be integer" + assert save_model_every >= 0 , "Save {name} must be positive or 0" + assert isinstance(create_image_every, int), "Create image must be integer" + assert create_image_every >= 0 , "Create image must be positive or 0" + if save_model_every or create_image_every: + assert log_directory, "Log directory is empty" def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): - assert embedding_name, 'embedding not selected' + save_embedding_every = save_embedding_every or 0 + create_image_every = create_image_every or 0 + validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") shared.state.textinfo = "Initializing textual inversion training..." shared.state.job_count = steps @@ -232,17 +253,27 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc os.makedirs(images_embeds_dir, exist_ok=True) else: images_embeds_dir = None - + cond_model = shared.sd_model.cond_stage_model + hijack = sd_hijack.model_hijack + + embedding = hijack.embedding_db.word_embeddings[embedding_name] + + ititial_step = embedding.step or 0 + if ititial_step > steps: + shared.state.textinfo = f"Model has already been trained beyond specified max steps" + return embedding, filename + + scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) + + # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) - hijack = sd_hijack.model_hijack - - embedding = hijack.embedding_db.word_embeddings[embedding_name] embedding.vec.requires_grad = True + optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) losses = torch.zeros((32,)) @@ -251,13 +282,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc forced_filename = "" embedding_yet_to_be_embedded = False - ititial_step = embedding.step or 0 - if ititial_step > steps: - return embedding, filename - - scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, entries in pbar: embedding.step = i + ititial_step -- cgit v1.2.3 From 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sat, 29 Oct 2022 19:43:21 +0700 Subject: Add cleanup after training --- modules/hypernetworks/hypernetwork.py | 201 +++++++++++++------------ modules/textual_inversion/textual_inversion.py | 185 ++++++++++++----------- 2 files changed, 200 insertions(+), 186 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 38f35c58..170d5ea4 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -398,110 +398,112 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log forced_filename = "" pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - for i, entries in pbar: - hypernetwork.step = i + ititial_step - if len(loss_dict) > 0: - previous_mean_losses = [i[-1] for i in loss_dict.values()] - previous_mean_loss = mean(previous_mean_losses) - - scheduler.apply(optimizer, hypernetwork.step) - if scheduler.finished: - break - - if shared.state.interrupted: - break - - with torch.autocast("cuda"): - c = stack_conds([entry.cond for entry in entries]).to(devices.device) - # c = torch.vstack([entry.cond for entry in entries]).to(devices.device) - x = torch.stack([entry.latent for entry in entries]).to(devices.device) - loss = shared.sd_model(x, c)[0] - del x - del c - - losses[hypernetwork.step % losses.shape[0]] = loss.item() - for entry in entries: - loss_dict[entry.filename].append(loss.item()) - - optimizer.zero_grad() - weights[0].grad = None - loss.backward() - if weights[0].grad is None: - steps_without_grad += 1 + try: + for i, entries in pbar: + hypernetwork.step = i + ititial_step + if len(loss_dict) > 0: + previous_mean_losses = [i[-1] for i in loss_dict.values()] + previous_mean_loss = mean(previous_mean_losses) + + scheduler.apply(optimizer, hypernetwork.step) + if scheduler.finished: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = stack_conds([entry.cond for entry in entries]).to(devices.device) + # c = torch.vstack([entry.cond for entry in entries]).to(devices.device) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] + del x + del c + + losses[hypernetwork.step % losses.shape[0]] = loss.item() + for entry in entries: + loss_dict[entry.filename].append(loss.item()) + + optimizer.zero_grad() + weights[0].grad = None + loss.backward() + + if weights[0].grad is None: + steps_without_grad += 1 + else: + steps_without_grad = 0 + assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' + + optimizer.step() + + steps_done = hypernetwork.step + 1 + + if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): + raise RuntimeError("Loss diverged.") + + if len(previous_mean_losses) > 1: + std = stdev(previous_mean_losses) else: - steps_without_grad = 0 - assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' - - optimizer.step() - - steps_done = hypernetwork.step + 1 - - if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): - raise RuntimeError("Loss diverged.") - - if len(previous_mean_losses) > 1: - std = stdev(previous_mean_losses) - else: - std = 0 - dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" - pbar.set_description(dataset_loss_info) - - if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: - # Before saving, change name to match current checkpoint. - hypernetwork.name = f'{hypernetwork_name}-{steps_done}' - last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') - hypernetwork.save(last_saved_file) - - textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { - "loss": f"{previous_mean_loss:.7f}", - "learn_rate": scheduler.learn_rate - }) - - if images_dir is not None and steps_done % create_image_every == 0: - forced_filename = f'{hypernetwork_name}-{steps_done}' - last_saved_image = os.path.join(images_dir, forced_filename) - - optimizer.zero_grad() - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) - - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - ) + std = 0 + dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" + pbar.set_description(dataset_loss_info) + + if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: + # Before saving, change name to match current checkpoint. + hypernetwork.name = f'{hypernetwork_name}-{steps_done}' + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') + hypernetwork.save(last_saved_file) + + textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { + "loss": f"{previous_mean_loss:.7f}", + "learn_rate": scheduler.learn_rate + }) + + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{hypernetwork_name}-{steps_done}' + last_saved_image = os.path.join(images_dir, forced_filename) + + optimizer.zero_grad() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 - preview_text = p.prompt + preview_text = p.prompt - processed = processing.process_images(p) - image = processed.images[0] if len(processed.images)>0 else None + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images)>0 else None - if unload: - shared.sd_model.cond_stage_model.to(devices.cpu) - shared.sd_model.first_stage_model.to(devices.cpu) + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) - if image is not None: - shared.state.current_image = image - last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) - last_saved_image += f", prompt: {preview_text}" + if image is not None: + shared.state.current_image = image + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) + last_saved_image += f", prompt: {preview_text}" - shared.state.job_no = hypernetwork.step + shared.state.job_no = hypernetwork.step - shared.state.textinfo = f""" + shared.state.textinfo = f"""

Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -510,7 +512,14 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

""" - + finally: + if weights: + for weight in weights: + weight.requires_grad = False + if unload: + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + report_statistics(loss_dict) checkpoint = sd_models.select_checkpoint() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 44f06443..fd7f0897 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -283,111 +283,113 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding_yet_to_be_embedded = False pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) - for i, entries in pbar: - embedding.step = i + ititial_step - scheduler.apply(optimizer, embedding.step) - if scheduler.finished: - break - - if shared.state.interrupted: - break - - with torch.autocast("cuda"): - c = cond_model([entry.cond_text for entry in entries]) - x = torch.stack([entry.latent for entry in entries]).to(devices.device) - loss = shared.sd_model(x, c)[0] - del x - - losses[embedding.step % losses.shape[0]] = loss.item() - - optimizer.zero_grad() - loss.backward() - optimizer.step() - - steps_done = embedding.step + 1 - - epoch_num = embedding.step // len(ds) - epoch_step = embedding.step % len(ds) - - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}") - - if embedding_dir is not None and steps_done % save_embedding_every == 0: - # Before saving, change name to match current checkpoint. - embedding.name = f'{embedding_name}-{steps_done}' - last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') - embedding.save(last_saved_file) - embedding_yet_to_be_embedded = True - - write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate - }) - - if images_dir is not None and steps_done % create_image_every == 0: - forced_filename = f'{embedding_name}-{steps_done}' - last_saved_image = os.path.join(images_dir, forced_filename) - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - do_not_reload_embeddings=True, - ) - - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 - p.width = training_width - p.height = training_height + try: + for i, entries in pbar: + embedding.step = i + ititial_step + + scheduler.apply(optimizer, embedding.step) + if scheduler.finished: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([entry.cond_text for entry in entries]) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] + del x + + losses[embedding.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + steps_done = embedding.step + 1 + + epoch_num = embedding.step // len(ds) + epoch_step = embedding.step % len(ds) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}") + + if embedding_dir is not None and steps_done % save_embedding_every == 0: + # Before saving, change name to match current checkpoint. + embedding.name = f'{embedding_name}-{steps_done}' + last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') + embedding.save(last_saved_file) + embedding_yet_to_be_embedded = True + + write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) + + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{embedding_name}-{steps_done}' + last_saved_image = os.path.join(images_dir, forced_filename) + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + do_not_reload_embeddings=True, + ) + + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 + p.width = training_width + p.height = training_height - preview_text = p.prompt + preview_text = p.prompt - processed = processing.process_images(p) - image = processed.images[0] + processed = processing.process_images(p) + image = processed.images[0] - shared.state.current_image = image + shared.state.current_image = image - if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: + if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: - last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') + last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') - info = PngImagePlugin.PngInfo() - data = torch.load(last_saved_file) - info.add_text("sd-ti-embedding", embedding_to_b64(data)) + info = PngImagePlugin.PngInfo() + data = torch.load(last_saved_file) + info.add_text("sd-ti-embedding", embedding_to_b64(data)) - title = "<{}>".format(data.get('name', '???')) + title = "<{}>".format(data.get('name', '???')) - try: - vectorSize = list(data['string_to_param'].values())[0].shape[0] - except Exception as e: - vectorSize = '?' + try: + vectorSize = list(data['string_to_param'].values())[0].shape[0] + except Exception as e: + vectorSize = '?' - checkpoint = sd_models.select_checkpoint() - footer_left = checkpoint.model_name - footer_mid = '[{}]'.format(checkpoint.hash) - footer_right = '{}v {}s'.format(vectorSize, steps_done) + checkpoint = sd_models.select_checkpoint() + footer_left = checkpoint.model_name + footer_mid = '[{}]'.format(checkpoint.hash) + footer_right = '{}v {}s'.format(vectorSize, steps_done) - captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) - captioned_image = insert_image_data_embed(captioned_image, data) + captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) + captioned_image = insert_image_data_embed(captioned_image, data) - captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) - embedding_yet_to_be_embedded = False + captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) + embedding_yet_to_be_embedded = False - last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) - last_saved_image += f", prompt: {preview_text}" + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) + last_saved_image += f", prompt: {preview_text}" - shared.state.job_no = embedding.step + shared.state.job_no = embedding.step - shared.state.textinfo = f""" + shared.state.textinfo = f"""

Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -396,6 +398,9 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

""" + finally: + if embedding and embedding.vec is not None: + embedding.vec.requires_grad = False checkpoint = sd_models.select_checkpoint() -- cgit v1.2.3 From ab05a74ead9fabb45dd099990e34061c7eb02ca3 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 00:32:02 +0700 Subject: Revert "Add cleanup after training" This reverts commit 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1. --- modules/hypernetworks/hypernetwork.py | 201 ++++++++++++------------- modules/textual_inversion/textual_inversion.py | 185 +++++++++++------------ 2 files changed, 186 insertions(+), 200 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 170d5ea4..38f35c58 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -398,112 +398,110 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log forced_filename = "" pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) - - try: - for i, entries in pbar: - hypernetwork.step = i + ititial_step - if len(loss_dict) > 0: - previous_mean_losses = [i[-1] for i in loss_dict.values()] - previous_mean_loss = mean(previous_mean_losses) - - scheduler.apply(optimizer, hypernetwork.step) - if scheduler.finished: - break - - if shared.state.interrupted: - break - - with torch.autocast("cuda"): - c = stack_conds([entry.cond for entry in entries]).to(devices.device) - # c = torch.vstack([entry.cond for entry in entries]).to(devices.device) - x = torch.stack([entry.latent for entry in entries]).to(devices.device) - loss = shared.sd_model(x, c)[0] - del x - del c - - losses[hypernetwork.step % losses.shape[0]] = loss.item() - for entry in entries: - loss_dict[entry.filename].append(loss.item()) - - optimizer.zero_grad() - weights[0].grad = None - loss.backward() - - if weights[0].grad is None: - steps_without_grad += 1 - else: - steps_without_grad = 0 - assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' - - optimizer.step() - - steps_done = hypernetwork.step + 1 - - if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): - raise RuntimeError("Loss diverged.") + for i, entries in pbar: + hypernetwork.step = i + ititial_step + if len(loss_dict) > 0: + previous_mean_losses = [i[-1] for i in loss_dict.values()] + previous_mean_loss = mean(previous_mean_losses) - if len(previous_mean_losses) > 1: - std = stdev(previous_mean_losses) + scheduler.apply(optimizer, hypernetwork.step) + if scheduler.finished: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = stack_conds([entry.cond for entry in entries]).to(devices.device) + # c = torch.vstack([entry.cond for entry in entries]).to(devices.device) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] + del x + del c + + losses[hypernetwork.step % losses.shape[0]] = loss.item() + for entry in entries: + loss_dict[entry.filename].append(loss.item()) + + optimizer.zero_grad() + weights[0].grad = None + loss.backward() + + if weights[0].grad is None: + steps_without_grad += 1 else: - std = 0 - dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" - pbar.set_description(dataset_loss_info) - - if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: - # Before saving, change name to match current checkpoint. - hypernetwork.name = f'{hypernetwork_name}-{steps_done}' - last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') - hypernetwork.save(last_saved_file) - - textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { - "loss": f"{previous_mean_loss:.7f}", - "learn_rate": scheduler.learn_rate - }) - - if images_dir is not None and steps_done % create_image_every == 0: - forced_filename = f'{hypernetwork_name}-{steps_done}' - last_saved_image = os.path.join(images_dir, forced_filename) - - optimizer.zero_grad() - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) - - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - ) + steps_without_grad = 0 + assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 + optimizer.step() - preview_text = p.prompt + steps_done = hypernetwork.step + 1 - processed = processing.process_images(p) - image = processed.images[0] if len(processed.images)>0 else None + if torch.isnan(losses[hypernetwork.step % losses.shape[0]]): + raise RuntimeError("Loss diverged.") + + if len(previous_mean_losses) > 1: + std = stdev(previous_mean_losses) + else: + std = 0 + dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})" + pbar.set_description(dataset_loss_info) + + if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: + # Before saving, change name to match current checkpoint. + hypernetwork.name = f'{hypernetwork_name}-{steps_done}' + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') + hypernetwork.save(last_saved_file) + + textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { + "loss": f"{previous_mean_loss:.7f}", + "learn_rate": scheduler.learn_rate + }) + + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{hypernetwork_name}-{steps_done}' + last_saved_image = os.path.join(images_dir, forced_filename) + + optimizer.zero_grad() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) - if unload: - shared.sd_model.cond_stage_model.to(devices.cpu) - shared.sd_model.first_stage_model.to(devices.cpu) + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) - if image is not None: - shared.state.current_image = image - last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) - last_saved_image += f", prompt: {preview_text}" + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 + + preview_text = p.prompt + + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images)>0 else None + + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) - shared.state.job_no = hypernetwork.step + if image is not None: + shared.state.current_image = image + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) + last_saved_image += f", prompt: {preview_text}" - shared.state.textinfo = f""" + shared.state.job_no = hypernetwork.step + + shared.state.textinfo = f"""

Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -512,14 +510,7 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

""" - finally: - if weights: - for weight in weights: - weight.requires_grad = False - if unload: - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) - + report_statistics(loss_dict) checkpoint = sd_models.select_checkpoint() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index fd7f0897..44f06443 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -283,113 +283,111 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding_yet_to_be_embedded = False pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + for i, entries in pbar: + embedding.step = i + ititial_step - try: - for i, entries in pbar: - embedding.step = i + ititial_step - - scheduler.apply(optimizer, embedding.step) - if scheduler.finished: - break - - if shared.state.interrupted: - break - - with torch.autocast("cuda"): - c = cond_model([entry.cond_text for entry in entries]) - x = torch.stack([entry.latent for entry in entries]).to(devices.device) - loss = shared.sd_model(x, c)[0] - del x - - losses[embedding.step % losses.shape[0]] = loss.item() - - optimizer.zero_grad() - loss.backward() - optimizer.step() - - steps_done = embedding.step + 1 - - epoch_num = embedding.step // len(ds) - epoch_step = embedding.step % len(ds) - - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}") - - if embedding_dir is not None and steps_done % save_embedding_every == 0: - # Before saving, change name to match current checkpoint. - embedding.name = f'{embedding_name}-{steps_done}' - last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') - embedding.save(last_saved_file) - embedding_yet_to_be_embedded = True - - write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { - "loss": f"{losses.mean():.7f}", - "learn_rate": scheduler.learn_rate - }) - - if images_dir is not None and steps_done % create_image_every == 0: - forced_filename = f'{embedding_name}-{steps_done}' - last_saved_image = os.path.join(images_dir, forced_filename) - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - do_not_reload_embeddings=True, - ) - - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 - p.width = training_width - p.height = training_height + scheduler.apply(optimizer, embedding.step) + if scheduler.finished: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([entry.cond_text for entry in entries]) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) + loss = shared.sd_model(x, c)[0] + del x + + losses[embedding.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + steps_done = embedding.step + 1 + + epoch_num = embedding.step // len(ds) + epoch_step = embedding.step % len(ds) + + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}") + + if embedding_dir is not None and steps_done % save_embedding_every == 0: + # Before saving, change name to match current checkpoint. + embedding.name = f'{embedding_name}-{steps_done}' + last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') + embedding.save(last_saved_file) + embedding_yet_to_be_embedded = True + + write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { + "loss": f"{losses.mean():.7f}", + "learn_rate": scheduler.learn_rate + }) + + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{embedding_name}-{steps_done}' + last_saved_image = os.path.join(images_dir, forced_filename) + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + do_not_reload_embeddings=True, + ) + + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 + p.width = training_width + p.height = training_height - preview_text = p.prompt + preview_text = p.prompt - processed = processing.process_images(p) - image = processed.images[0] + processed = processing.process_images(p) + image = processed.images[0] - shared.state.current_image = image + shared.state.current_image = image - if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: + if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: - last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') + last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') - info = PngImagePlugin.PngInfo() - data = torch.load(last_saved_file) - info.add_text("sd-ti-embedding", embedding_to_b64(data)) + info = PngImagePlugin.PngInfo() + data = torch.load(last_saved_file) + info.add_text("sd-ti-embedding", embedding_to_b64(data)) - title = "<{}>".format(data.get('name', '???')) + title = "<{}>".format(data.get('name', '???')) - try: - vectorSize = list(data['string_to_param'].values())[0].shape[0] - except Exception as e: - vectorSize = '?' + try: + vectorSize = list(data['string_to_param'].values())[0].shape[0] + except Exception as e: + vectorSize = '?' - checkpoint = sd_models.select_checkpoint() - footer_left = checkpoint.model_name - footer_mid = '[{}]'.format(checkpoint.hash) - footer_right = '{}v {}s'.format(vectorSize, steps_done) + checkpoint = sd_models.select_checkpoint() + footer_left = checkpoint.model_name + footer_mid = '[{}]'.format(checkpoint.hash) + footer_right = '{}v {}s'.format(vectorSize, steps_done) - captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) - captioned_image = insert_image_data_embed(captioned_image, data) + captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) + captioned_image = insert_image_data_embed(captioned_image, data) - captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) - embedding_yet_to_be_embedded = False + captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) + embedding_yet_to_be_embedded = False - last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) - last_saved_image += f", prompt: {preview_text}" + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) + last_saved_image += f", prompt: {preview_text}" - shared.state.job_no = embedding.step + shared.state.job_no = embedding.step - shared.state.textinfo = f""" + shared.state.textinfo = f"""

Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -398,9 +396,6 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}

""" - finally: - if embedding and embedding.vec is not None: - embedding.vec.requires_grad = False checkpoint = sd_models.select_checkpoint() -- cgit v1.2.3 From a07f054c86f33360ff620d6a3fffdee366ab2d99 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 00:49:29 +0700 Subject: Add missing info on hypernetwork/embedding model log Mentioned here: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/1528#discussioncomment-3991513 Also group the saving into one --- modules/hypernetworks/hypernetwork.py | 31 +++++++++++++------- modules/textual_inversion/textual_inversion.py | 39 +++++++++++++++++--------- 2 files changed, 47 insertions(+), 23 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 38f35c58..86daf825 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -361,6 +361,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log images_dir = None hypernetwork = shared.loaded_hypernetwork + checkpoint = sd_models.select_checkpoint() ititial_step = hypernetwork.step or 0 if ititial_step > steps: @@ -449,9 +450,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: # Before saving, change name to match current checkpoint. - hypernetwork.name = f'{hypernetwork_name}-{steps_done}' - last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt') - hypernetwork.save(last_saved_file) + hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}' + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt') + save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { "loss": f"{previous_mean_loss:.7f}", @@ -512,13 +513,23 @@ Last saved image: {html.escape(last_saved_image)}
""" report_statistics(loss_dict) - checkpoint = sd_models.select_checkpoint() - hypernetwork.sd_checkpoint = checkpoint.hash - hypernetwork.sd_checkpoint_name = checkpoint.model_name - # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention). - hypernetwork.name = hypernetwork_name - filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt') - hypernetwork.save(filename) + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) return hypernetwork, filename + +def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): + old_hypernetwork_name = hypernetwork.name + old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None + old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None + try: + hypernetwork.sd_checkpoint = checkpoint.hash + hypernetwork.sd_checkpoint_name = checkpoint.model_name + hypernetwork.name = hypernetwork_name + hypernetwork.save(filename) + except: + hypernetwork.sd_checkpoint = old_sd_checkpoint + hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name + hypernetwork.name = old_hypernetwork_name + raise diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 44f06443..ee9917ce 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -119,7 +119,7 @@ class EmbeddingDatabase: vec = emb.detach().to(devices.device, dtype=torch.float32) embedding = Embedding(vec, name) embedding.step = data.get('step', None) - embedding.sd_checkpoint = data.get('hash', None) + embedding.sd_checkpoint = data.get('sd_checkpoint', None) embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) self.register_embedding(embedding, shared.sd_model) @@ -259,6 +259,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc hijack = sd_hijack.model_hijack embedding = hijack.embedding_db.word_embeddings[embedding_name] + checkpoint = sd_models.select_checkpoint() ititial_step = embedding.step or 0 if ititial_step > steps: @@ -314,9 +315,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if embedding_dir is not None and steps_done % save_embedding_every == 0: # Before saving, change name to match current checkpoint. - embedding.name = f'{embedding_name}-{steps_done}' - last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt') - embedding.save(last_saved_file) + embedding_name_every = f'{embedding_name}-{steps_done}' + last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt') + save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True) embedding_yet_to_be_embedded = True write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { @@ -397,14 +398,26 @@ Last saved image: {html.escape(last_saved_image)}

""" - checkpoint = sd_models.select_checkpoint() - - embedding.sd_checkpoint = checkpoint.hash - embedding.sd_checkpoint_name = checkpoint.model_name - embedding.cached_checksum = None - # Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention). - embedding.name = embedding_name - filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding.name}.pt') - embedding.save(filename) + filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') + save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True) return embedding, filename + +def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True): + old_embedding_name = embedding.name + old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None + old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None + old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None + try: + embedding.sd_checkpoint = checkpoint.hash + embedding.sd_checkpoint_name = checkpoint.model_name + if remove_cached_checksum: + embedding.cached_checksum = None + embedding.name = embedding_name + embedding.save(filename) + except: + embedding.sd_checkpoint = old_sd_checkpoint + embedding.sd_checkpoint_name = old_sd_checkpoint_name + embedding.name = old_embedding_name + embedding.cached_checksum = old_cached_checksum + raise -- cgit v1.2.3 From 3d58510f214c645ce5cdb261aa47df6573b239e9 Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sun, 30 Oct 2022 00:54:59 +0700 Subject: Fix dataset still being loaded even when training will be skipped --- modules/hypernetworks/hypernetwork.py | 2 +- modules/textual_inversion/textual_inversion.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 86daf825..07acadc9 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -364,7 +364,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log checkpoint = sd_models.select_checkpoint() ititial_step = hypernetwork.step or 0 - if ititial_step > steps: + if ititial_step >= steps: shared.state.textinfo = f"Model has already been trained beyond specified max steps" return hypernetwork, filename diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index ee9917ce..e0babb46 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -262,7 +262,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc checkpoint = sd_models.select_checkpoint() ititial_step = embedding.step or 0 - if ititial_step > steps: + if ititial_step >= steps: shared.state.textinfo = f"Model has already been trained beyond specified max steps" return embedding, filename -- cgit v1.2.3 From 006756f9cd6258eae418e9209cfc13f940ec53e1 Mon Sep 17 00:00:00 2001 From: Fampai <> Date: Mon, 31 Oct 2022 07:26:08 -0400 Subject: Added TI training optimizations option to use xattention optimizations when training option to unload vae when training --- modules/shared.py | 3 ++- modules/textual_inversion/textual_inversion.py | 9 +++++++++ modules/textual_inversion/ui.py | 7 +++++-- 3 files changed, 16 insertions(+), 3 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/shared.py b/modules/shared.py index fb84afd8..4c3d0ce7 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -256,11 +256,12 @@ options_templates.update(options_section(('system', "System"), { })) options_templates.update(options_section(('training', "Training"), { - "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM."), + "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), + "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"), })) options_templates.update(options_section(('sd', "Stable Diffusion"), { diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 17dfb223..b0a1d26b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -214,6 +214,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name) + unload = shared.opts.unload_models_when_training if save_embedding_every > 0: embedding_dir = os.path.join(log_directory, "embeddings") @@ -238,6 +239,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) + if unload: + shared.sd_model.first_stage_model.to(devices.cpu) hijack = sd_hijack.model_hijack @@ -303,6 +306,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if images_dir is not None and steps_done % create_image_every == 0: forced_filename = f'{embedding_name}-{steps_done}' last_saved_image = os.path.join(images_dir, forced_filename) + + shared.sd_model.first_stage_model.to(devices.device) + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, do_not_save_grid=True, @@ -330,6 +336,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc processed = processing.process_images(p) image = processed.images[0] + if unload: + shared.sd_model.first_stage_model.to(devices.cpu) + shared.state.current_image = image if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py index e712284d..d679e6f4 100644 --- a/modules/textual_inversion/ui.py +++ b/modules/textual_inversion/ui.py @@ -25,8 +25,10 @@ def train_embedding(*args): assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible' + apply_optimizations = shared.opts.training_xattention_optimizations try: - sd_hijack.undo_optimizations() + if not apply_optimizations: + sd_hijack.undo_optimizations() embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args) @@ -38,5 +40,6 @@ Embedding saved to {html.escape(filename)} except Exception: raise finally: - sd_hijack.apply_optimizations() + if not apply_optimizations: + sd_hijack.apply_optimizations() -- cgit v1.2.3 From 890e68aaf75ae80d5eb2fa95b4bf1adf78b96881 Mon Sep 17 00:00:00 2001 From: Fampai <> Date: Mon, 31 Oct 2022 10:07:12 -0400 Subject: Fixed minor bug when unloading vae during TI training, generating images after training will error out --- modules/textual_inversion/textual_inversion.py | 1 + 1 file changed, 1 insertion(+) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 54a734f1..0aeb0459 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -409,6 +409,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True) + shared.sd_model.first_stage_model.to(devices.device) return embedding, filename -- cgit v1.2.3 From cffc240a7327ae60671ff533469fc4ed4bf605de Mon Sep 17 00:00:00 2001 From: Nerogar Date: Sun, 23 Oct 2022 14:05:25 +0200 Subject: fixed textual inversion training with inpainting models --- modules/textual_inversion/textual_inversion.py | 27 +++++++++++++++++++++++++- 1 file changed, 26 insertions(+), 1 deletion(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 0aeb0459..2630c7c9 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -224,6 +224,26 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" +def create_dummy_mask(x, width=None, height=None): + if shared.sd_model.model.conditioning_key in {'hybrid', 'concat'}: + + # The "masked-image" in this case will just be all zeros since the entire image is masked. + image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device) + image_conditioning = shared.sd_model.get_first_stage_encoding(shared.sd_model.encode_first_stage(image_conditioning)) + + # Add the fake full 1s mask to the first dimension. + image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) + image_conditioning = image_conditioning.to(x.dtype) + + else: + # Dummy zero conditioning if we're not using inpainting model. + # Still takes up a bit of memory, but no encoder call. + # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. + image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) + + return image_conditioning + + def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 @@ -286,6 +306,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc forced_filename = "" embedding_yet_to_be_embedded = False + img_c = None pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, entries in pbar: embedding.step = i + ititial_step @@ -299,8 +320,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc with torch.autocast("cuda"): c = cond_model([entry.cond_text for entry in entries]) + if img_c is None: + img_c = create_dummy_mask(c, training_width, training_height) + x = torch.stack([entry.latent for entry in entries]).to(devices.device) - loss = shared.sd_model(x, c)[0] + cond = {"c_concat": [img_c], "c_crossattn": [c]} + loss = shared.sd_model(x, cond)[0] del x losses[embedding.step % losses.shape[0]] = loss.item() -- cgit v1.2.3 From 39541d7725bc42f456a604b07c50aba503a5a09a Mon Sep 17 00:00:00 2001 From: Fampai <> Date: Fri, 4 Nov 2022 04:50:22 -0400 Subject: Fixes race condition in training when VAE is unloaded set_current_image can attempt to use the VAE when it is unloaded to the CPU while training --- modules/hypernetworks/hypernetwork.py | 4 ++++ modules/textual_inversion/textual_inversion.py | 5 +++++ 2 files changed, 9 insertions(+) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 6e1a10cf..fcb96059 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -390,7 +390,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log with torch.autocast("cuda"): ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + old_parallel_processing_allowed = shared.parallel_processing_allowed + if unload: + shared.parallel_processing_allowed = False shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu) @@ -531,6 +534,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) + shared.parallel_processing_allowed = old_parallel_processing_allowed return hypernetwork, filename diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 0aeb0459..55892c57 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -273,7 +273,11 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) + + old_parallel_processing_allowed = shared.parallel_processing_allowed + if unload: + shared.parallel_processing_allowed = False shared.sd_model.first_stage_model.to(devices.cpu) embedding.vec.requires_grad = True @@ -410,6 +414,7 @@ Last saved image: {html.escape(last_saved_image)}
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True) shared.sd_model.first_stage_model.to(devices.device) + shared.parallel_processing_allowed = old_parallel_processing_allowed return embedding, filename -- cgit v1.2.3 From bb832d7725187f8a8ab44faa6ee1b38cb5f600aa Mon Sep 17 00:00:00 2001 From: Muhammad Rizqi Nur Date: Sat, 5 Nov 2022 11:48:38 +0700 Subject: Simplify grad clip --- modules/hypernetworks/hypernetwork.py | 16 +++++++--------- modules/textual_inversion/textual_inversion.py | 16 +++++++--------- 2 files changed, 14 insertions(+), 18 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index f4c2668f..02b624e1 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -385,10 +385,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - clip_grad_mode_value = clip_grad_mode == "value" - clip_grad_mode_norm = clip_grad_mode == "norm" - clip_grad_enabled = clip_grad_mode_value or clip_grad_mode_norm - if clip_grad_enabled: + clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ + torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ + None + if clip_grad: clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False) # dataset loading may take a while, so input validations and early returns should be done before this @@ -433,7 +433,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log if shared.state.interrupted: break - if clip_grad_enabled: + if clip_grad: clip_grad_sched.step(hypernetwork.step) with torch.autocast("cuda"): @@ -458,10 +458,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log steps_without_grad = 0 assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue' - if clip_grad_mode_value: - torch.nn.utils.clip_grad_value_(weights, clip_value=clip_grad_sched.learn_rate) - elif clip_grad_mode_norm: - torch.nn.utils.clip_grad_norm_(weights, max_norm=clip_grad_sched.learn_rate) + if clip_grad: + clip_grad(weights, clip_grad_sched.learn_rate) optimizer.step() diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index c567ec3f..687d97bb 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -269,10 +269,10 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - clip_grad_mode_value = clip_grad_mode == "value" - clip_grad_mode_norm = clip_grad_mode == "norm" - clip_grad_enabled = clip_grad_mode_value or clip_grad_mode_norm - if clip_grad_enabled: + clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ + torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ + None + if clip_grad: clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False) # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." @@ -302,7 +302,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc if shared.state.interrupted: break - if clip_grad_enabled: + if clip_grad: clip_grad_sched.step(embedding.step) with torch.autocast("cuda"): @@ -316,10 +316,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc optimizer.zero_grad() loss.backward() - if clip_grad_mode_value: - torch.nn.utils.clip_grad_value_(embedding.vec, clip_value=clip_grad_sched.learn_rate) - elif clip_grad_mode_norm: - torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=clip_grad_sched.learn_rate) + if clip_grad: + clip_grad(embedding.vec, clip_grad_sched.learn_rate) optimizer.step() -- cgit v1.2.3 From cdc8020d13c5eef099c609b0a911ccf3568afc0d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 19 Nov 2022 12:01:51 +0300 Subject: change StableDiffusionProcessing to internally use sampler name instead of sampler index --- modules/api/api.py | 26 ++++++++--------------- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/images.py | 2 +- modules/img2img.py | 4 ++-- modules/processing.py | 29 +++++++++++--------------- modules/sd_samplers.py | 13 +++++++++--- modules/textual_inversion/textual_inversion.py | 4 ++-- modules/txt2img.py | 3 ++- modules/ui.py | 2 +- scripts/img2imgalt.py | 4 ++-- scripts/xy_grid.py | 12 +++++------ 11 files changed, 49 insertions(+), 54 deletions(-) (limited to 'modules/textual_inversion/textual_inversion.py') diff --git a/modules/api/api.py b/modules/api/api.py index 596a6616..0eccccbb 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -6,9 +6,9 @@ from threading import Lock from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image from fastapi import APIRouter, Depends, FastAPI, HTTPException import modules.shared as shared +from modules import sd_samplers from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images -from modules.sd_samplers import all_samplers from modules.extras import run_extras, run_pnginfo from PIL import PngImagePlugin from modules.sd_models import checkpoints_list @@ -25,8 +25,12 @@ def upscaler_to_index(name: str): raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") -sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) +def validate_sampler_name(name): + config = sd_samplers.all_samplers_map.get(name, None) + if config is None: + raise HTTPException(status_code=404, detail="Sampler not found") + return name def setUpscalers(req: dict): reqDict = vars(req) @@ -82,14 +86,9 @@ class Api: self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem]) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): - sampler_index = sampler_to_index(txt2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - populate = txt2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(txt2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True } @@ -109,12 +108,6 @@ class Api: return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): - sampler_index = sampler_to_index(img2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - - init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -123,10 +116,9 @@ class Api: if mask: mask = decode_base64_to_image(mask) - populate = img2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(img2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True, "mask": mask @@ -272,7 +264,7 @@ class Api: return vars(shared.cmd_opts) def get_samplers(self): - return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers] + return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] def get_upscalers(self): upscalers = [] diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 7f182712..fbb87dd1 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm from einops import rearrange, repeat from ldm.util import default -from modules import devices, processing, sd_models, shared +from modules import devices, processing, sd_models, shared, sd_samplers from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum @@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log p.prompt = preview_prompt p.negative_prompt = preview_negative_prompt p.steps = preview_steps - p.sampler_index = preview_sampler_index + p.sampler_name = sd_samplers.samplers[preview_sampler_index].name p.cfg_scale = preview_cfg_scale p.seed = preview_seed p.width = preview_width diff --git a/modules/images.py b/modules/images.py index ae705cbd..26d5b7a9 100644 --- a/modules/images.py +++ b/modules/images.py @@ -303,7 +303,7 @@ class FilenameGenerator: 'width': lambda self: self.image.width, 'height': lambda self: self.image.height, 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), - 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False), + 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime