From 7613ea12f267143ceb70a9aeb45eb20aca086e3e Mon Sep 17 00:00:00 2001 From: random_thoughtss Date: Fri, 21 Oct 2022 11:32:56 -0700 Subject: Fixed img2imgalt after inpainting update --- scripts/img2imgalt.py | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'scripts/img2imgalt.py') diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index d438175c..88abc093 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -34,6 +34,9 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i] * s_in] * 2) cond_in = torch.cat([uncond, cond]) + image_conditioning = torch.cat([p.image_conditioning] * 2) + cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] t = dnw.sigma_to_t(sigma_in) @@ -78,6 +81,9 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps): sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2) cond_in = torch.cat([uncond, cond]) + image_conditioning = torch.cat([p.image_conditioning] * 2) + cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]} + c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)] if i == 1: @@ -194,7 +200,7 @@ class Script(scripts.Script): p.seed = p.seed + 1 - return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning) + return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning) p.sample = sample_extra -- cgit v1.2.3 From eb5e82c7ddf5e72fa13b83bd1f12d3a07a4de1a4 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 2 Nov 2022 12:45:03 +0300 Subject: do not unnecessarily run VAE one more time when saving intermediate image with hires fix --- modules/processing.py | 39 ++++++++++++++++++++------------------- modules/sd_samplers.py | 1 + modules/shared.py | 2 +- scripts/img2imgalt.py | 3 +-- 4 files changed, 23 insertions(+), 22 deletions(-) (limited to 'scripts/img2imgalt.py') diff --git a/modules/processing.py b/modules/processing.py index 2dcf4879..3a364b5f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -199,7 +199,7 @@ class StableDiffusionProcessing(): def init(self, all_prompts, all_seeds, all_subseeds): pass - def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): + def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): raise NotImplementedError() def close(self): @@ -521,11 +521,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: shared.state.job = f"Batch {n+1} out of {p.n_iter}" with devices.autocast(): - # Only Txt2Img needs an extra argument, n, when saving intermediate images pre highres fix. - if isinstance(p, StableDiffusionProcessingTxt2Img): - samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, n=n) - else: - samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength) + samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) samples_ddim = samples_ddim.to(devices.dtype_vae) x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) @@ -653,7 +649,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f - def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, n=0): + def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) if not self.enable_hr: @@ -666,9 +662,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2] + """saves image before applying hires fix, if enabled in options; takes as an arguyment either an image or batch with latent space images""" + def save_intermediate(image, index): + if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix: + return + + if not isinstance(image, Image.Image): + image = sd_samplers.sample_to_image(image, index) + + images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, suffix="-before-highres-fix") + if opts.use_scale_latent_for_hires_fix: samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + for i in range(samples.shape[0]): + save_intermediate(samples, i) else: decoded_samples = decode_first_stage(self.sd_model, samples) lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) @@ -678,6 +686,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) image = Image.fromarray(x_sample) + + save_intermediate(image, i) + image = images.resize_image(0, image, self.width, self.height) image = np.array(image).astype(np.float32) / 255.0 image = np.moveaxis(image, 2, 0) @@ -689,15 +700,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) - # Save a copy of the image/s before doing highres fix, if applicable. - if opts.save and not self.do_not_save_samples and opts.save_images_before_highres_fix: - for i in range(self.batch_size): - # This batch's ith image. - img = sd_samplers.sample_to_image(samples, i) - # Index that accounts for both batch size and batch count. - ind = i + self.batch_size*n - images.save_image(img, self.outpath_samples, "", self.all_seeds[ind], self.all_prompts[ind], opts.samples_format, suffix=f"-before-highres-fix") - shared.state.nextjob() self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) @@ -844,8 +846,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask) - - def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): + def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) @@ -856,4 +857,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): del x devices.torch_gc() - return samples \ No newline at end of file + return samples diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index d7fa89a0..c7c414ef 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -96,6 +96,7 @@ def single_sample_to_image(sample): def sample_to_image(samples, index=0): return single_sample_to_image(samples[index]) + def samples_to_image_grid(samples): return images.image_grid([single_sample_to_image(sample) for sample in samples]) diff --git a/modules/shared.py b/modules/shared.py index ce991424..01f47e38 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -256,6 +256,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids" "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), + "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), @@ -322,7 +323,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), - "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."), "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."), "enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"), diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index 88abc093..964b75c7 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -166,8 +166,7 @@ class Script(scripts.Script): if override_strength: p.denoising_strength = 1.0 - - def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): + def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): lat = (p.init_latent.cpu().numpy() * 10).astype(int) same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \ -- cgit v1.2.3 From cdc8020d13c5eef099c609b0a911ccf3568afc0d Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sat, 19 Nov 2022 12:01:51 +0300 Subject: change StableDiffusionProcessing to internally use sampler name instead of sampler index --- modules/api/api.py | 26 ++++++++--------------- modules/hypernetworks/hypernetwork.py | 4 ++-- modules/images.py | 2 +- modules/img2img.py | 4 ++-- modules/processing.py | 29 +++++++++++--------------- modules/sd_samplers.py | 13 +++++++++--- modules/textual_inversion/textual_inversion.py | 4 ++-- modules/txt2img.py | 3 ++- modules/ui.py | 2 +- scripts/img2imgalt.py | 4 ++-- scripts/xy_grid.py | 12 +++++------ 11 files changed, 49 insertions(+), 54 deletions(-) (limited to 'scripts/img2imgalt.py') diff --git a/modules/api/api.py b/modules/api/api.py index 596a6616..0eccccbb 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -6,9 +6,9 @@ from threading import Lock from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image from fastapi import APIRouter, Depends, FastAPI, HTTPException import modules.shared as shared +from modules import sd_samplers from modules.api.models import * from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images -from modules.sd_samplers import all_samplers from modules.extras import run_extras, run_pnginfo from PIL import PngImagePlugin from modules.sd_models import checkpoints_list @@ -25,8 +25,12 @@ def upscaler_to_index(name: str): raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}") -sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) +def validate_sampler_name(name): + config = sd_samplers.all_samplers_map.get(name, None) + if config is None: + raise HTTPException(status_code=404, detail="Sampler not found") + return name def setUpscalers(req: dict): reqDict = vars(req) @@ -82,14 +86,9 @@ class Api: self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem]) def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): - sampler_index = sampler_to_index(txt2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - populate = txt2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(txt2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True } @@ -109,12 +108,6 @@ class Api: return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): - sampler_index = sampler_to_index(img2imgreq.sampler_index) - - if sampler_index is None: - raise HTTPException(status_code=404, detail="Sampler not found") - - init_images = img2imgreq.init_images if init_images is None: raise HTTPException(status_code=404, detail="Init image not found") @@ -123,10 +116,9 @@ class Api: if mask: mask = decode_base64_to_image(mask) - populate = img2imgreq.copy(update={ # Override __init__ params "sd_model": shared.sd_model, - "sampler_index": sampler_index[0], + "sampler_name": validate_sampler_name(img2imgreq.sampler_index), "do_not_save_samples": True, "do_not_save_grid": True, "mask": mask @@ -272,7 +264,7 @@ class Api: return vars(shared.cmd_opts) def get_samplers(self): - return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers] + return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] def get_upscalers(self): upscalers = [] diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 7f182712..fbb87dd1 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -12,7 +12,7 @@ import torch import tqdm from einops import rearrange, repeat from ldm.util import default -from modules import devices, processing, sd_models, shared +from modules import devices, processing, sd_models, shared, sd_samplers from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler from torch import einsum @@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log p.prompt = preview_prompt p.negative_prompt = preview_negative_prompt p.steps = preview_steps - p.sampler_index = preview_sampler_index + p.sampler_name = sd_samplers.samplers[preview_sampler_index].name p.cfg_scale = preview_cfg_scale p.seed = preview_seed p.width = preview_width diff --git a/modules/images.py b/modules/images.py index ae705cbd..26d5b7a9 100644 --- a/modules/images.py +++ b/modules/images.py @@ -303,7 +303,7 @@ class FilenameGenerator: 'width': lambda self: self.image.width, 'height': lambda self: self.image.height, 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), - 'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False), + 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime