From 360feed9b55fb03060c236773867b08b4265645d Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sun, 1 Jan 2023 00:38:58 +0300
Subject: HAPPY NEW YEAR
make save to zip into its own button instead of a checkbox
---
style.css | 6 ++++++
1 file changed, 6 insertions(+)
(limited to 'style.css')
diff --git a/style.css b/style.css
index 3ad78006..f245f674 100644
--- a/style.css
+++ b/style.css
@@ -568,6 +568,12 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h
font-size: 95%;
}
+#image_buttons_txt2img button, #image_buttons_img2img button, #image_buttons_extras button{
+ min-width: auto;
+ padding-left: 0.5em;
+ padding-right: 0.5em;
+}
+
/* The following handles localization for right-to-left (RTL) languages like Arabic.
The rtl media type will only be activated by the logic in javascript/localization.js.
If you change anything above, you need to make sure it is RTL compliant by just running
--
cgit v1.2.3
From a939e82a0b982517aa212197a0e5f6d11daec7d0 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sun, 1 Jan 2023 03:24:58 +0300
Subject: fix weird padding for sampler dropdown in chrome
---
style.css | 5 -----
1 file changed, 5 deletions(-)
(limited to 'style.css')
diff --git a/style.css b/style.css
index f245f674..4b98b84d 100644
--- a/style.css
+++ b/style.css
@@ -245,11 +245,6 @@ input[type="range"]{
margin: 0.5em 0 -0.3em 0;
}
-#txt2img_sampling label{
- padding-left: 0.6em;
- padding-right: 0.6em;
-}
-
#mask_bug_info {
text-align: center;
display: block;
--
cgit v1.2.3
From 11d432d92d63660c516540dcb48faac87669b4f0 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sun, 1 Jan 2023 10:35:38 +0300
Subject: add refresh buttons to checkpoint merger
---
modules/ui.py | 6 ++++++
style.css | 2 +-
2 files changed, 7 insertions(+), 1 deletion(-)
(limited to 'style.css')
diff --git a/modules/ui.py b/modules/ui.py
index c7b8ea5d..4cc2ce4f 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1167,8 +1167,14 @@ def create_ui():
with gr.Row():
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
+ create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
+
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
+ create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
+
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
+ create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
+
custom_name = gr.Textbox(label="Custom Name (Optional)")
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3)
interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method")
diff --git a/style.css b/style.css
index 4b98b84d..516ef7bf 100644
--- a/style.css
+++ b/style.css
@@ -496,7 +496,7 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
+#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_checkpoint_A, #refresh_checkpoint_B, #refresh_checkpoint_C{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;
--
cgit v1.2.3
From e5f1a37cb9b537d95b2df47c96b4a4f7242fd294 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sun, 1 Jan 2023 13:08:40 +0300
Subject: make refresh buttons look more nice
---
modules/ui.py | 6 +++---
modules/ui_components.py | 18 ++++++++++++++++++
style.css | 28 +++++++++++++++++++++-------
3 files changed, 42 insertions(+), 10 deletions(-)
create mode 100644 modules/ui_components.py
(limited to 'style.css')
diff --git a/modules/ui.py b/modules/ui.py
index 4cc2ce4f..32fa80d1 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -19,7 +19,7 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
-from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
+from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, ui_components
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
@@ -532,7 +532,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
return gr.update(**(args or {}))
- refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
+ refresh_button = ui_components.ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn=refresh,
inputs=[],
@@ -1476,7 +1476,7 @@ def create_ui():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
- with gr.Row(variant="compact"):
+ with ui_components.FormRow():
res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {}))
create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
diff --git a/modules/ui_components.py b/modules/ui_components.py
new file mode 100644
index 00000000..d0519d2d
--- /dev/null
+++ b/modules/ui_components.py
@@ -0,0 +1,18 @@
+import gradio as gr
+
+
+class ToolButton(gr.Button, gr.components.FormComponent):
+ """Small button with single emoji as text, fits inside gradio forms"""
+
+ def __init__(self, **kwargs):
+ super().__init__(variant="tool", **kwargs)
+
+ def get_block_name(self):
+ return "button"
+
+
+class FormRow(gr.Row, gr.components.FormComponent):
+ """Same as gr.Row but fits inside gradio forms"""
+
+ def get_block_name(self):
+ return "row"
diff --git a/style.css b/style.css
index 516ef7bf..f168571e 100644
--- a/style.css
+++ b/style.css
@@ -496,13 +496,6 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_vae, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_checkpoint_A, #refresh_checkpoint_B, #refresh_checkpoint_C{
- max-width: 2.5em;
- min-width: 2.5em;
- height: 2.4em;
-}
-
-
canvas[key="mask"] {
z-index: 12 !important;
filter: invert();
@@ -569,6 +562,27 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h
padding-right: 0.5em;
}
+.gr-form{
+ background-color: white;
+}
+
+.dark .gr-form{
+ background-color: rgb(31 41 55 / var(--tw-bg-opacity));
+}
+
+.gr-button-tool{
+ max-width: 2.5em;
+ min-width: 2.5em !important;
+ height: 2.4em;
+ margin: 0.55em 0;
+}
+
+#quicksettings .gr-button-tool{
+ margin: 0;
+}
+
+
+
/* The following handles localization for right-to-left (RTL) languages like Arabic.
The rtl media type will only be activated by the logic in javascript/localization.js.
If you change anything above, you need to make sure it is RTL compliant by just running
--
cgit v1.2.3
From a005fccddd5a37c57f1afe5234660b59b9a41508 Mon Sep 17 00:00:00 2001
From: me <25877290+Kryptortio@users.noreply.github.com>
Date: Sun, 1 Jan 2023 14:51:12 +0100
Subject: Add a lot more elem_id/HTML id, modified some that were duplicates
for seed section
---
modules/generation_parameters_copypaste.py | 2 +-
modules/ui.py | 254 ++++++++++++++---------------
style.css | 12 +-
3 files changed, 134 insertions(+), 134 deletions(-)
(limited to 'style.css')
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 54b3372d..8e7f0df0 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -93,7 +93,7 @@ def integrate_settings_paste_fields(component_dict):
def create_buttons(tabs_list):
buttons = {}
for tab in tabs_list:
- buttons[tab] = gr.Button(f"Send to {tab}")
+ buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
return buttons
diff --git a/modules/ui.py b/modules/ui.py
index 27da2c2c..7070ea15 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -272,17 +272,17 @@ def interrogate_deepbooru(image):
return gr_show(True) if prompt is None else prompt
-def create_seed_inputs():
+def create_seed_inputs(target_interface):
with gr.Row():
with gr.Box():
- with gr.Row(elem_id='seed_row'):
- seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1)
+ with gr.Row(elem_id=target_interface + '_seed_row'):
+ seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
seed.style(container=False)
- random_seed = gr.Button(random_symbol, elem_id='random_seed')
- reuse_seed = gr.Button(reuse_symbol, elem_id='reuse_seed')
+ random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed')
+ reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed')
- with gr.Box(elem_id='subseed_show_box'):
- seed_checkbox = gr.Checkbox(label='Extra', elem_id='subseed_show', value=False)
+ with gr.Box(elem_id=target_interface + '_subseed_show_box'):
+ seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
# Components to show/hide based on the 'Extra' checkbox
seed_extras = []
@@ -290,17 +290,17 @@ def create_seed_inputs():
with gr.Row(visible=False) as seed_extra_row_1:
seed_extras.append(seed_extra_row_1)
with gr.Box():
- with gr.Row(elem_id='subseed_row'):
- subseed = gr.Number(label='Variation seed', value=-1)
+ with gr.Row(elem_id=target_interface + '_subseed_row'):
+ subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed')
subseed.style(container=False)
- random_subseed = gr.Button(random_symbol, elem_id='random_subseed')
- reuse_subseed = gr.Button(reuse_symbol, elem_id='reuse_subseed')
- subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01)
+ random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed')
+ reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed')
+ subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength')
with gr.Row(visible=False) as seed_extra_row_2:
seed_extras.append(seed_extra_row_2)
- seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0)
- seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0)
+ seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w')
+ seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h')
random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed])
random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed])
@@ -678,28 +678,28 @@ def create_ui():
steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img")
with gr.Group():
- width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512)
- height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512)
+ width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
+ height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
with gr.Row():
- restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
- tiling = gr.Checkbox(label='Tiling', value=False)
- enable_hr = gr.Checkbox(label='Highres. fix', value=False)
+ restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
+ tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
+ enable_hr = gr.Checkbox(label='Highres. fix', value=False, elem_id="txt2img_enable_hr")
with gr.Row(visible=False) as hr_options:
- firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0)
- firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0)
- denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
+ firstphase_width = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass width", value=0, elem_id="txt2img_firstphase_width")
+ firstphase_height = gr.Slider(minimum=0, maximum=1024, step=8, label="Firstpass height", value=0, elem_id="txt2img_firstphase_height")
+ denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength")
with gr.Row(equal_height=True):
- batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1)
- batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1)
+ batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
+ batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
- cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0)
+ cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale")
- seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
+ seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img')
- with gr.Group():
+ with gr.Group(elem_id="txt2img_script_container"):
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
@@ -821,10 +821,10 @@ def create_ui():
with gr.Column(variant='panel', elem_id="img2img_settings"):
with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode:
- with gr.TabItem('img2img', id='img2img'):
+ with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"):
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480)
- with gr.TabItem('Inpaint', id='inpaint'):
+ with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"):
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480)
init_img_with_mask_orig = gr.State(None)
@@ -843,24 +843,24 @@ def create_ui():
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask")
with gr.Row():
- mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4)
- mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch)
+ mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur")
+ mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha")
with gr.Row():
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
- inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index")
+ inpainting_mask_invert = gr.Radio(label='Masking mode', show_label=False, choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode")
- inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index")
+ inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill")
with gr.Row():
- inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False)
- inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32)
+ inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False, elem_id="img2img_inpaint_full_res")
+ inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding")
- with gr.TabItem('Batch img2img', id='batch'):
+ with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"):
hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
gr.HTML(f"
Process images in a directory on the same machine where the server is running.
Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}
+S-Lab License 1.0 + +Copyright 2022 S-Lab + +Redistribution and use for non-commercial purpose in source and +binary forms, with or without modification, are permitted provided +that the following conditions are met: + +1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +In the event that redistribution and/or use for commercial purpose in +source or binary forms, with or without modification is required, +please contact the contributor(s) of the work. ++ + +
+MIT License + +Copyright (c) 2021 victorca25 + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. ++ +
+BSD 3-Clause License + +Copyright (c) 2021, Xintao Wang +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ +
+MIT License + +Copyright (c) 2022 InvokeAI Team + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. ++ +
+MIT License + +Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. ++ +
+MIT License + +Copyright (c) 2022 pharmapsychotic + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. ++ +
+ Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] [SwinIR Authors] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. ++ diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py index 06b75772..3c214a35 100644 --- a/modules/sd_hijack_inpainting.py +++ b/modules/sd_hijack_inpainting.py @@ -12,191 +12,6 @@ from ldm.models.diffusion.ddpm import LatentDiffusion from ldm.models.diffusion.plms import PLMSSampler from ldm.models.diffusion.ddim import DDIMSampler, noise_like -# ================================================================================================= -# Monkey patch DDIMSampler methods from RunwayML repo directly. -# Adapted from: -# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py -# ================================================================================================= -@torch.no_grad() -def sample_ddim(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): - ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - ) - return samples, intermediates - -@torch.no_grad() -def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None): - b, *_, device = *x.shape, x.device - - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - e_t = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = dict() - for k in c: - if isinstance(c[k], list): - c_in[k] = [ - torch.cat([unconditional_conditioning[k][i], c[k][i]]) - for i in range(len(c[k])) - ] - else: - c_in[k] = torch.cat([unconditional_conditioning[k], c[k]]) - else: - c_in = torch.cat([unconditional_conditioning, c]) - e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond) - - if score_corrector is not None: - assert self.model.parameterization == "eps" - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - -# ================================================================================================= -# Monkey patch PLMSSampler methods. -# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes. -# Adapted from: -# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py -# ================================================================================================= -@torch.no_grad() -def sample_plms(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, - # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): - ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - # print(f'Data shape for PLMS sampling is {size}') # remove unnecessary message - - samples, intermediates = self.plms_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - ) - return samples, intermediates - @torch.no_grad() def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, @@ -280,44 +95,6 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F return x_prev, pred_x0, e_t -# ================================================================================================= -# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config. -# Adapted from: -# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py -# ================================================================================================= - -@torch.no_grad() -def get_unconditional_conditioning(self, batch_size, null_label=None): - if null_label is not None: - xc = null_label - if isinstance(xc, ListConfig): - xc = list(xc) - if isinstance(xc, dict) or isinstance(xc, list): - c = self.get_learned_conditioning(xc) - else: - if hasattr(xc, "to"): - xc = xc.to(self.device) - c = self.get_learned_conditioning(xc) - else: - # todo: get null label from cond_stage_model - raise NotImplementedError() - c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device) - return c - - -class LatentInpaintDiffusion(LatentDiffusion): - def __init__( - self, - concat_keys=("mask", "masked_image"), - masked_image_key="masked_image", - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.masked_image_key = masked_image_key - assert self.masked_image_key in concat_keys - self.concat_keys = concat_keys - def should_hijack_inpainting(checkpoint_info): ckpt_basename = os.path.basename(checkpoint_info.filename).lower() @@ -326,15 +103,6 @@ def should_hijack_inpainting(checkpoint_info): def do_inpainting_hijack(): - # most of this stuff seems to no longer be needed because it is already included into SD2.0 # p_sample_plms is needed because PLMS can't work with dicts as conditionings - # this file should be cleaned up later if everything turns out to work fine - - # ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning - # ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion - - # ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim - # ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms - # ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms diff --git a/modules/ui.py b/modules/ui.py index f2e7c0d6..d941cb5f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1529,8 +1529,10 @@ def create_ui(): with gr.Blocks(analytics_enabled=False) as settings_interface: with gr.Row(): - settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit") - restart_gradio = gr.Button(value='Restart UI', variant='primary', elem_id="settings_restart_gradio") + with gr.Column(scale=6): + settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit") + with gr.Column(): + restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio") result = gr.HTML(elem_id="settings_result") @@ -1574,6 +1576,11 @@ def create_ui(): download_localization = gr.Button(value='Download localization template', elem_id="download_localization") reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") + if os.path.exists("html/licenses.html"): + with open("html/licenses.html", encoding="utf8") as file: + with gr.TabItem("Licenses"): + gr.HTML(file.read(), elem_id="licenses") + gr.Button(value="Show all pages", elem_id="settings_show_all_pages") request_notifications.click( @@ -1659,6 +1666,10 @@ def create_ui(): if os.path.exists(os.path.join(script_path, "notification.mp3")): audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) + if os.path.exists("html/footer.html"): + with open("html/footer.html", encoding="utf8") as file: + gr.HTML(file.read(), elem_id="footer") + text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False) settings_submit.click( fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]), diff --git a/style.css b/style.css index 7296ce91..2116ec3c 100644 --- a/style.css +++ b/style.css @@ -616,6 +616,17 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h padding-bottom: 0.5em; } +footer { + display: none !important; +} + +#footer{ + text-align: center; +} + +#footer div{ + display: inline-block; +} /* The following handles localization for right-to-left (RTL) languages like Arabic. The rtl media type will only be activated by the logic in javascript/localization.js. -- cgit v1.2.3 From 24d4a0841d3cc0e5908b098f65a9caa3fa889af8 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Wed, 4 Jan 2023 20:10:40 +0300 Subject: train tab visual updates allow setting train tab values from ui-config.json --- modules/ui.py | 35 +++++++++++++++++++++-------------- style.css | 2 +- 2 files changed, 22 insertions(+), 15 deletions(-) (limited to 'style.css') diff --git a/modules/ui.py b/modules/ui.py index 72e7b7d2..44f4f3a4 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1281,42 +1281,48 @@ def create_ui(): with gr.Tab(label="Train"): gr.HTML(value="
Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]
") - with gr.Row(): + with FormRow(): train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") - with gr.Row(): + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") - with gr.Row(): + + with FormRow(): embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") - with gr.Row(): + with FormRow(): clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) - batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") - gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") + with FormRow(): + batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") + gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") + dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"), elem_id="train_template_file") training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") - create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") - save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") + + with FormRow(): + create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") + save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") + save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") - with gr.Row(): - shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") - tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") - with gr.Row(): - latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") + + shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") + tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") + + latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") with gr.Row(): + train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") - train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") params = script_callbacks.UiTrainTabParams(txt2img_preview_params) @@ -1803,6 +1809,7 @@ def create_ui(): visit(img2img_interface, loadsave, "img2img") visit(extras_interface, loadsave, "extras") visit(modelmerger_interface, loadsave, "modelmerger") + visit(train_interface, loadsave, "train") if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)): with open(ui_config_file, "w", encoding="utf8") as file: diff --git a/style.css b/style.css index 2116ec3c..09ee540b 100644 --- a/style.css +++ b/style.css @@ -611,7 +611,7 @@ img2maskimg, #img2maskimg > .h-60, #img2maskimg > .h-60 > div, #img2maskimg > .h padding-top: 0.9em; } -#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form{ +#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form, #train_tabs div.gr-form .gr-form{ border: none; padding-bottom: 0.5em; } -- cgit v1.2.3