diff options
author | v0xie <28695009+v0xie@users.noreply.github.com> | 2023-10-18 11:16:01 +0000 |
---|---|---|
committer | v0xie <28695009+v0xie@users.noreply.github.com> | 2023-10-18 11:16:01 +0000 |
commit | 1c6efdbba774d603c592debaccd6f5ad827bd1b2 (patch) | |
tree | 85c8ec94308b242732e7534ae93c194abda2d7ee | |
parent | ec718f76b58b183859ed732e11ec748c41a13f76 (diff) | |
download | stable-diffusion-webui-gfx803-1c6efdbba774d603c592debaccd6f5ad827bd1b2.tar.gz stable-diffusion-webui-gfx803-1c6efdbba774d603c592debaccd6f5ad827bd1b2.tar.bz2 stable-diffusion-webui-gfx803-1c6efdbba774d603c592debaccd6f5ad827bd1b2.zip |
inference working but SLOW
-rw-r--r-- | extensions-builtin/Lora/network_oft.py | 73 | ||||
-rw-r--r-- | extensions-builtin/Lora/networks.py | 42 |
2 files changed, 75 insertions, 40 deletions
diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index 9ddb175c..f085eca5 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -12,6 +12,7 @@ class ModuleTypeOFT(network.ModuleType): # adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): + super().__init__(net, weights) self.oft_blocks = weights.w["oft_blocks"] @@ -20,24 +21,29 @@ class NetworkModuleOFT(network.NetworkModule): self.dim = self.oft_blocks.shape[0] self.num_blocks = self.dim - #if type(self.alpha) == torch.Tensor: - # self.alpha = self.alpha.detach().numpy() - if "Linear" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_features elif "Conv" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_channels - self.constraint = self.alpha * self.out_dim + self.constraint = self.alpha + #self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.num_blocks - self.oft_multiplier = self.multiplier() + self.org_module: list[torch.Module] = [self.sd_module] + + self.R = self.get_weight() - # replace forward method of original linear rather than replacing the module - # self.org_forward = self.sd_module.forward - # self.sd_module.forward = self.forward + self.apply_to() + + # replace forward method of original linear rather than replacing the module + def apply_to(self): + self.org_forward = self.org_module[0].forward + self.org_module[0].forward = self.forward - def get_weight(self): + def get_weight(self, multiplier=None): + if not multiplier: + multiplier = self.multiplier() block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) @@ -45,38 +51,31 @@ class NetworkModuleOFT(network.NetworkModule): I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) - block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I + block_R_weighted = multiplier * block_R + (1 - multiplier) * I R = torch.block_diag(*block_R_weighted) return R def calc_updown(self, orig_weight): - oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - block_Q = oft_blocks - oft_blocks.transpose(1, 2) - norm_Q = torch.norm(block_Q.flatten()) - new_norm_Q = torch.clamp(norm_Q, max=self.constraint) - block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) - I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) - block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) - - block_R_weighted = self.oft_multiplier * block_R + (1 - self.oft_multiplier) * I - R = torch.block_diag(*block_R_weighted) - #R = self.get_weight().to(orig_weight.device, dtype=orig_weight.dtype) - # W = R*W_0 - updown = orig_weight + R - output_shape = [R.size(0), orig_weight.size(1)] + R = self.R + if orig_weight.dim() == 4: + weight = torch.einsum("oihw, op -> pihw", orig_weight, R) + else: + weight = torch.einsum("oi, op -> pi", orig_weight, R) + updown = orig_weight @ R + output_shape = [orig_weight.size(0), R.size(1)] + #output_shape = [R.size(0), orig_weight.size(1)] return self.finalize_updown(updown, orig_weight, output_shape) - # def forward(self, x, y=None): - # x = self.org_forward(x) - # if self.oft_multiplier == 0.0: - # return x - - # R = self.get_weight().to(x.device, dtype=x.dtype) - # if x.dim() == 4: - # x = x.permute(0, 2, 3, 1) - # x = torch.matmul(x, R) - # x = x.permute(0, 3, 1, 2) - # else: - # x = torch.matmul(x, R) - # return x + def forward(self, x, y=None): + x = self.org_forward(x) + if self.multiplier() == 0.0: + return x + R = self.get_weight().to(x.device, dtype=x.dtype) + if x.dim() == 4: + x = x.permute(0, 2, 3, 1) + x = torch.matmul(x, R) + x = x.permute(0, 3, 1, 2) + else: + x = torch.matmul(x, R) + return x diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index bd1f1b75..e5e73450 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -169,6 +169,10 @@ def load_network(name, network_on_disk): else:
emb_dict[vec_name] = weight
bundle_embeddings[emb_name] = emb_dict
+
+ #if key_network_without_network_parts == "oft_unet":
+ # print(key_network_without_network_parts)
+ # pass
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
@@ -185,15 +189,39 @@ def load_network(name, network_on_disk): elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
- elif sd_module is None and "oft_unet" in key_network_without_network_parts:
- key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
- sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# some SD1 Loras also have correct compvis keys
if sd_module is None:
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+ elif sd_module is None and "oft_unet" in key_network_without_network_parts:
+ # UNET_TARGET_REPLACE_MODULE_ALL_LINEAR = ["Transformer2DModel"]
+ # UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
+ UNET_TARGET_REPLACE_MODULE_ATTN_ONLY = ["CrossAttention"]
+ # TODO: Change matchedm odules based on whether all linear, conv, etc
+
+ key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
+ sd_module = shared.sd_model.network_layer_mapping.get(key, None)
+ #key_no_suffix = key.rsplit("_to_", 1)[0]
+ ## Match all modules of class CrossAttention
+ #replace_module_list = []
+ #for module_type in UNET_TARGET_REPLACE_MODULE_ATTN_ONLY:
+ # replace_module_list += [module for k, module in shared.sd_model.network_layer_mapping.items() if module_type in module.__class__.__name__]
+
+ #matched_module = replace_module_list.get(key_no_suffix, None)
+ #if key.endswith('to_q'):
+ # sd_module = matched_module.to_q or None
+ #if key.endswith('to_k'):
+ # sd_module = matched_module.to_k or None
+ #if key.endswith('to_v'):
+ # sd_module = matched_module.to_v or None
+ #if key.endswith('to_out_0'):
+ # sd_module = matched_module.to_out[0] or None
+ #if key.endswith('to_out_1'):
+ # sd_module = matched_module.to_out[1] or None
+
+
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
@@ -214,6 +242,14 @@ def load_network(name, network_on_disk): raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
net.modules[key] = net_module
+
+ # replaces forward method of original Linear
+ # applied_to_count = 0
+ #for key, created_module in net.modules.items():
+ # if isinstance(created_module, network_oft.NetworkModuleOFT):
+ # net_module.apply_to()
+ #applied_to_count += 1
+ # print(f'Applied OFT modules: {applied_to_count}')
embeddings = {}
for emb_name, data in bundle_embeddings.items():
|