aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJC_Array <justin318@att.net>2022-10-10 04:58:18 +0000
committerJC_Array <justin318@att.net>2022-10-10 04:58:18 +0000
commit1f92336be768d235c18a82acb2195b7135101ae7 (patch)
tree6a8bf0d5f8f0397f414f321ee8da4a52c9ac154c
parent45fbd1c5fec887988ab555aac75a999d4f3aff40 (diff)
downloadstable-diffusion-webui-gfx803-1f92336be768d235c18a82acb2195b7135101ae7.tar.gz
stable-diffusion-webui-gfx803-1f92336be768d235c18a82acb2195b7135101ae7.tar.bz2
stable-diffusion-webui-gfx803-1f92336be768d235c18a82acb2195b7135101ae7.zip
refactored the deepbooru module to improve speed on running multiple interogations in a row. Added the option to generate deepbooru tags for textual inversion preproccessing.
-rw-r--r--modules/deepbooru.py84
-rw-r--r--modules/textual_inversion/preprocess.py22
-rw-r--r--modules/ui.py52
3 files changed, 122 insertions, 36 deletions
diff --git a/modules/deepbooru.py b/modules/deepbooru.py
index 7e3c0618..cee4a3b4 100644
--- a/modules/deepbooru.py
+++ b/modules/deepbooru.py
@@ -1,21 +1,74 @@
import os.path
from concurrent.futures import ProcessPoolExecutor
-from multiprocessing import get_context
+import multiprocessing
-def _load_tf_and_return_tags(pil_image, threshold):
+def get_deepbooru_tags(pil_image, threshold=0.5):
+ """
+ This method is for running only one image at a time for simple use. Used to the img2img interrogate.
+ """
+ from modules import shared # prevents circular reference
+ create_deepbooru_process(threshold)
+ shared.deepbooru_process_return["value"] = -1
+ shared.deepbooru_process_queue.put(pil_image)
+ while shared.deepbooru_process_return["value"] == -1:
+ time.sleep(0.2)
+ release_process()
+ return ret
+
+
+def deepbooru_process(queue, deepbooru_process_return, threshold):
+ model, tags = get_deepbooru_tags_model()
+ while True: # while process is running, keep monitoring queue for new image
+ pil_image = queue.get()
+ if pil_image == "QUIT":
+ break
+ else:
+ deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold)
+
+
+def create_deepbooru_process(threshold=0.5):
+ """
+ Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
+ to be processed in a row without reloading the model or creating a new process. To return the data, a shared
+ dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
+ to the dictionary and the method adding the image to the queue should wait for this value to be updated with
+ the tags.
+ """
+ from modules import shared # prevents circular reference
+ shared.deepbooru_process_manager = multiprocessing.Manager()
+ shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
+ shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
+ shared.deepbooru_process_return["value"] = -1
+ shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold))
+ shared.deepbooru_process.start()
+
+
+def release_process():
+ """
+ Stops the deepbooru process to return used memory
+ """
+ from modules import shared # prevents circular reference
+ shared.deepbooru_process_queue.put("QUIT")
+ shared.deepbooru_process.join()
+ shared.deepbooru_process_queue = None
+ shared.deepbooru_process = None
+ shared.deepbooru_process_return = None
+ shared.deepbooru_process_manager = None
+
+def get_deepbooru_tags_model():
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
-
this_folder = os.path.dirname(__file__)
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
if not os.path.exists(os.path.join(model_path, 'project.json')):
# there is no point importing these every time
import zipfile
from basicsr.utils.download_util import load_file_from_url
- load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
- model_path)
+ load_file_from_url(
+ r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
+ model_path)
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
zip_ref.extractall(model_path)
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
@@ -24,7 +77,13 @@ def _load_tf_and_return_tags(pil_image, threshold):
model = dd.project.load_model_from_project(
model_path, compile_model=True
)
+ return model, tags
+
+def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
+ import deepdanbooru as dd
+ import tensorflow as tf
+ import numpy as np
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
@@ -57,17 +116,4 @@ def _load_tf_and_return_tags(pil_image, threshold):
print('\n'.join(sorted(result_tags_print, reverse=True)))
- return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
-
-
-def subprocess_init_no_cuda():
- import os
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
-
-
-def get_deepbooru_tags(pil_image, threshold=0.5):
- context = get_context('spawn')
- with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
- f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, )
- ret = f.result() # will rethrow any exceptions
- return ret \ No newline at end of file
+ return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ') \ No newline at end of file
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index f1c002a2..9f63c9a4 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -3,11 +3,14 @@ from PIL import Image, ImageOps
import platform
import sys
import tqdm
+import time
from modules import shared, images
+from modules.shared import opts, cmd_opts
+if cmd_opts.deepdanbooru:
+ import modules.deepbooru as deepbooru
-
-def preprocess(process_src, process_dst, process_flip, process_split, process_caption):
+def preprocess(process_src, process_dst, process_flip, process_split, process_caption, process_caption_deepbooru=False):
size = 512
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
@@ -24,10 +27,21 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
if process_caption:
shared.interrogator.load()
+ if process_caption_deepbooru:
+ deepbooru.create_deepbooru_process()
+
def save_pic_with_caption(image, index):
if process_caption:
caption = "-" + shared.interrogator.generate_caption(image)
caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
+ elif process_caption_deepbooru:
+ shared.deepbooru_process_return["value"] = -1
+ shared.deepbooru_process_queue.put(image)
+ while shared.deepbooru_process_return["value"] == -1:
+ time.sleep(0.2)
+ caption = "-" + shared.deepbooru_process_return["value"]
+ caption = sanitize_caption(os.path.join(dst, f"{index:05}-{subindex[0]}"), caption, ".png")
+ shared.deepbooru_process_return["value"] = -1
else:
caption = filename
caption = os.path.splitext(caption)[0]
@@ -79,6 +93,10 @@ def preprocess(process_src, process_dst, process_flip, process_split, process_ca
if process_caption:
shared.interrogator.send_blip_to_ram()
+ if process_caption_deepbooru:
+ deepbooru.release_process()
+
+
def sanitize_caption(base_path, original_caption, suffix):
operating_system = platform.system().lower()
if (operating_system == "windows"):
diff --git a/modules/ui.py b/modules/ui.py
index 2231a8ed..179e3a83 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1034,6 +1034,9 @@ def create_ui(wrap_gradio_gpu_call):
process_flip = gr.Checkbox(label='Create flipped copies')
process_split = gr.Checkbox(label='Split oversized images into two')
process_caption = gr.Checkbox(label='Use BLIP caption as filename')
+ if cmd_opts.deepdanbooru:
+ process_caption_deepbooru = gr.Checkbox(label='Use deepbooru caption as filename')
+
with gr.Row():
with gr.Column(scale=3):
@@ -1086,21 +1089,40 @@ def create_ui(wrap_gradio_gpu_call):
]
)
- run_preprocess.click(
- fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
- _js="start_training_textual_inversion",
- inputs=[
- process_src,
- process_dst,
- process_flip,
- process_split,
- process_caption,
- ],
- outputs=[
- ti_output,
- ti_outcome,
- ],
- )
+ if cmd_opts.deepdanbooru:
+ # if process_caption_deepbooru is None, it will cause an error, as a result only include it if it is enabled
+ run_preprocess.click(
+ fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
+ _js="start_training_textual_inversion",
+ inputs=[
+ process_src,
+ process_dst,
+ process_flip,
+ process_split,
+ process_caption,
+ process_caption_deepbooru,
+ ],
+ outputs=[
+ ti_output,
+ ti_outcome,
+ ],
+ )
+ else:
+ run_preprocess.click(
+ fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
+ _js="start_training_textual_inversion",
+ inputs=[
+ process_src,
+ process_dst,
+ process_flip,
+ process_split,
+ process_caption,
+ ],
+ outputs=[
+ ti_output,
+ ti_outcome,
+ ],
+ )
train_embedding.click(
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]),