diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-10-22 09:23:45 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-10-22 09:23:58 +0000 |
commit | 2b91251637078e04472c91a06a8d9c4db9c1dcf0 (patch) | |
tree | d2c09617adb426eac493a0976057aefe415745b6 | |
parent | 26d107374569836161326aae8cd3cc26c1edc372 (diff) | |
download | stable-diffusion-webui-gfx803-2b91251637078e04472c91a06a8d9c4db9c1dcf0.tar.gz stable-diffusion-webui-gfx803-2b91251637078e04472c91a06a8d9c4db9c1dcf0.tar.bz2 stable-diffusion-webui-gfx803-2b91251637078e04472c91a06a8d9c4db9c1dcf0.zip |
removed aesthetic gradients as built-in
added support for extensions
-rw-r--r-- | .gitignore | 2 | ||||
-rw-r--r-- | extensions/put extension here.txt | 0 | ||||
-rw-r--r-- | modules/aesthetic_clip.py | 241 | ||||
-rw-r--r-- | modules/images_history.py | 2 | ||||
-rw-r--r-- | modules/img2img.py | 5 | ||||
-rw-r--r-- | modules/processing.py | 35 | ||||
-rw-r--r-- | modules/script_callbacks.py | 42 | ||||
-rw-r--r-- | modules/scripts.py | 210 | ||||
-rw-r--r-- | modules/sd_hijack.py | 1 | ||||
-rw-r--r-- | modules/sd_models.py | 7 | ||||
-rw-r--r-- | modules/shared.py | 19 | ||||
-rw-r--r-- | modules/txt2img.py | 5 | ||||
-rw-r--r-- | modules/ui.py | 83 | ||||
-rw-r--r-- | webui.py | 7 |
14 files changed, 249 insertions, 410 deletions
@@ -27,4 +27,4 @@ __pycache__ notification.mp3 /SwinIR /textual_inversion -.vscode
\ No newline at end of file +.vscode diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/extensions/put extension here.txt diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py deleted file mode 100644 index 8c828541..00000000 --- a/modules/aesthetic_clip.py +++ /dev/null @@ -1,241 +0,0 @@ -import copy -import itertools -import os -from pathlib import Path -import html -import gc - -import gradio as gr -import torch -from PIL import Image -from torch import optim - -from modules import shared -from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer -from tqdm.auto import tqdm, trange -from modules.shared import opts, device - - -def get_all_images_in_folder(folder): - return [os.path.join(folder, f) for f in os.listdir(folder) if - os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)] - - -def check_is_valid_image_file(filename): - return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp")) - - -def batched(dataset, total, n=1): - for ndx in range(0, total, n): - yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))] - - -def iter_to_batched(iterable, n=1): - it = iter(iterable) - while True: - chunk = tuple(itertools.islice(it, n)) - if not chunk: - return - yield chunk - - -def create_ui(): - import modules.ui - - with gr.Group(): - with gr.Accordion("Open for Clip Aesthetic!", open=False): - with gr.Row(): - aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", - value=0.9) - aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) - - with gr.Row(): - aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', - placeholder="Aesthetic learning rate", value="0.0001") - aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) - aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()), - label="Aesthetic imgs embedding", - value="None") - - modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings") - - with gr.Row(): - aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', - placeholder="This text is used to rotate the feature space of the imgs embs", - value="") - aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01, - value=0.1) - aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) - - return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative - - -aesthetic_clip_model = None - - -def aesthetic_clip(): - global aesthetic_clip_model - - if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path: - aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path) - aesthetic_clip_model.cpu() - - return aesthetic_clip_model - - -def generate_imgs_embd(name, folder, batch_size): - model = aesthetic_clip().to(device) - processor = CLIPProcessor.from_pretrained(model.name_or_path) - - with torch.no_grad(): - embs = [] - for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size), - desc=f"Generating embeddings for {name}"): - if shared.state.interrupted: - break - inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device) - outputs = model.get_image_features(**inputs).cpu() - embs.append(torch.clone(outputs)) - inputs.to("cpu") - del inputs, outputs - - embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True) - - # The generated embedding will be located here - path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt") - torch.save(embs, path) - - model.cpu() - del processor - del embs - gc.collect() - torch.cuda.empty_cache() - res = f""" - Done generating embedding for {name}! - Aesthetic embedding saved to {html.escape(path)} - """ - shared.update_aesthetic_embeddings() - return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding", - value="None"), \ - gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), - label="Imgs embedding", - value="None"), res, "" - - -def slerp(low, high, val): - low_norm = low / torch.norm(low, dim=1, keepdim=True) - high_norm = high / torch.norm(high, dim=1, keepdim=True) - omega = torch.acos((low_norm * high_norm).sum(1)) - so = torch.sin(omega) - res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high - return res - - -class AestheticCLIP: - def __init__(self): - self.skip = False - self.aesthetic_steps = 0 - self.aesthetic_weight = 0 - self.aesthetic_lr = 0 - self.slerp = False - self.aesthetic_text_negative = "" - self.aesthetic_slerp_angle = 0 - self.aesthetic_imgs_text = "" - - self.image_embs_name = None - self.image_embs = None - self.load_image_embs(None) - - def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None, - aesthetic_slerp=True, aesthetic_imgs_text="", - aesthetic_slerp_angle=0.15, - aesthetic_text_negative=False): - self.aesthetic_imgs_text = aesthetic_imgs_text - self.aesthetic_slerp_angle = aesthetic_slerp_angle - self.aesthetic_text_negative = aesthetic_text_negative - self.slerp = aesthetic_slerp - self.aesthetic_lr = aesthetic_lr - self.aesthetic_weight = aesthetic_weight - self.aesthetic_steps = aesthetic_steps - self.load_image_embs(image_embs_name) - - if self.image_embs_name is not None: - p.extra_generation_params.update({ - "Aesthetic LR": aesthetic_lr, - "Aesthetic weight": aesthetic_weight, - "Aesthetic steps": aesthetic_steps, - "Aesthetic embedding": self.image_embs_name, - "Aesthetic slerp": aesthetic_slerp, - "Aesthetic text": aesthetic_imgs_text, - "Aesthetic text negative": aesthetic_text_negative, - "Aesthetic slerp angle": aesthetic_slerp_angle, - }) - - def set_skip(self, skip): - self.skip = skip - - def load_image_embs(self, image_embs_name): - if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None": - image_embs_name = None - self.image_embs_name = None - if image_embs_name is not None and self.image_embs_name != image_embs_name: - self.image_embs_name = image_embs_name - self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device) - self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True) - self.image_embs.requires_grad_(False) - - def __call__(self, z, remade_batch_tokens): - if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None: - tokenizer = shared.sd_model.cond_stage_model.tokenizer - if not opts.use_old_emphasis_implementation: - remade_batch_tokens = [ - [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in - remade_batch_tokens] - - tokens = torch.asarray(remade_batch_tokens).to(device) - - model = copy.deepcopy(aesthetic_clip()).to(device) - model.requires_grad_(True) - if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0: - text_embs_2 = model.get_text_features( - **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device)) - if self.aesthetic_text_negative: - text_embs_2 = self.image_embs - text_embs_2 - text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True) - img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle) - else: - img_embs = self.image_embs - - with torch.enable_grad(): - - # We optimize the model to maximize the similarity - optimizer = optim.Adam( - model.text_model.parameters(), lr=self.aesthetic_lr - ) - - for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"): - text_embs = model.get_text_features(input_ids=tokens) - text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True) - sim = text_embs @ img_embs.T - loss = -sim - optimizer.zero_grad() - loss.mean().backward() - optimizer.step() - - zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) - if opts.CLIP_stop_at_last_layers > 1: - zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers] - zn = model.text_model.final_layer_norm(zn) - else: - zn = zn.last_hidden_state - model.cpu() - del model - gc.collect() - torch.cuda.empty_cache() - zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1) - if self.slerp: - z = slerp(z, zn, self.aesthetic_weight) - else: - z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight - - return z diff --git a/modules/images_history.py b/modules/images_history.py index 78fd0543..bc5cf11f 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -310,7 +310,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): forward = gr.Button('Prev batch') backward = gr.Button('Next batch') with gr.Column(scale=3): - load_info = gr.HTML(visible=not custom_dir) + load_info = gr.HTML(visible=not custom_dir) with gr.Row(visible=False) as warning: warning_box = gr.Textbox("Message", interactive=False) diff --git a/modules/img2img.py b/modules/img2img.py index eea5199b..8d9f7cf9 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args): processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@@ -109,7 +109,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro inpainting_mask_invert=inpainting_mask_invert,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/processing.py b/modules/processing.py index ff1ec4c9..372489f7 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -104,6 +104,12 @@ class StableDiffusionProcessing(): self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
+ self.scripts = None
+ self.script_args = None
+ self.all_prompts = None
+ self.all_seeds = None
+ self.all_subseeds = None
+
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed: shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
- all_prompts = p.prompt
+ p.all_prompts = p.prompt
else:
- all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
if type(seed) == list:
- all_seeds = seed
+ p.all_seeds = seed
else:
- all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
+ p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
- all_subseeds = subseed
+ p.all_subseeds = subseed
else:
- all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
+ p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
- return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
+ return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
+ if p.scripts is not None:
+ p.scripts.run_alwayson_scripts(p)
+
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast():
- p.init(all_prompts, all_seeds, all_subseeds)
+ p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
@@ -387,9 +396,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed: if state.interrupted:
break
- prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
+ subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0):
break
@@ -490,10 +499,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed: index_of_first_image = 1
if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
+ images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
- return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py new file mode 100644 index 00000000..866b7acd --- /dev/null +++ b/modules/script_callbacks.py @@ -0,0 +1,42 @@ +
+callbacks_model_loaded = []
+callbacks_ui_tabs = []
+
+
+def clear_callbacks():
+ callbacks_model_loaded.clear()
+ callbacks_ui_tabs.clear()
+
+
+def model_loaded_callback(sd_model):
+ for callback in callbacks_model_loaded:
+ callback(sd_model)
+
+
+def ui_tabs_callback():
+ res = []
+
+ for callback in callbacks_ui_tabs:
+ res += callback() or []
+
+ return res
+
+
+def on_model_loaded(callback):
+ """register a function to be called when the stable diffusion model is created; the model is
+ passed as an argument"""
+ callbacks_model_loaded.append(callback)
+
+
+def on_ui_tabs(callback):
+ """register a function to be called when the UI is creating new tabs.
+ The function must either return a None, which means no new tabs to be added, or a list, where
+ each element is a tuple:
+ (gradio_component, title, elem_id)
+
+ gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
+ title is tab text displayed to user in the UI
+ elem_id is HTML id for the tab
+ """
+ callbacks_ui_tabs.append(callback)
+
diff --git a/modules/scripts.py b/modules/scripts.py index 1039fa9c..65f25f49 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -1,86 +1,153 @@ import os
import sys
import traceback
+from collections import namedtuple
import modules.ui as ui
import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared
+from modules import shared, paths, script_callbacks
+
+AlwaysVisible = object()
+
class Script:
filename = None
args_from = None
args_to = None
+ alwayson = False
+
+ infotext_fields = None
+ """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
+ parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
+ """
- # The title of the script. This is what will be displayed in the dropdown menu.
def title(self):
+ """this function should return the title of the script. This is what will be displayed in the dropdown menu."""
+
raise NotImplementedError()
- # How the script is displayed in the UI. See https://gradio.app/docs/#components
- # for the different UI components you can use and how to create them.
- # Most UI components can return a value, such as a boolean for a checkbox.
- # The returned values are passed to the run method as parameters.
def ui(self, is_img2img):
+ """this function should create gradio UI elements. See https://gradio.app/docs/#components
+ The return value should be an array of all components that are used in processing.
+ Values of those returned componenbts will be passed to run() and process() functions.
+ """
+
pass
- # Determines when the script should be shown in the dropdown menu via the
- # returned value. As an example:
- # is_img2img is True if the current tab is img2img, and False if it is txt2img.
- # Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img):
+ """
+ is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
+
+ This function should return:
+ - False if the script should not be shown in UI at all
+ - True if the script should be shown in UI if it's scelected in the scripts drowpdown
+ - script.AlwaysVisible if the script should be shown in UI at all times
+ """
+
return True
- # This is where the additional processing is implemented. The parameters include
- # self, the model object "p" (a StableDiffusionProcessing class, see
- # processing.py), and the parameters returned by the ui method.
- # Custom functions can be defined here, and additional libraries can be imported
- # to be used in processing. The return value should be a Processed object, which is
- # what is returned by the process_images method.
- def run(self, *args):
+ def run(self, p, *args):
+ """
+ This function is called if the script has been selected in the script dropdown.
+ It must do all processing and return the Processed object with results, same as
+ one returned by processing.process_images.
+
+ Usually the processing is done by calling the processing.process_images function.
+
+ args contains all values returned by components from ui()
+ """
+
raise NotImplementedError()
- # The description method is currently unused.
- # To add a description that appears when hovering over the title, amend the "titles"
- # dict in script.js to include the script title (returned by title) as a key, and
- # your description as the value.
+ def process(self, p, *args):
+ """
+ This function is called before processing begins for AlwaysVisible scripts.
+ scripts. You can modify the processing object (p) here, inject hooks, etc.
+ """
+
+ pass
+
def describe(self):
+ """unused"""
return ""
+current_basedir = paths.script_path
+
+
+def basedir():
+ """returns the base directory for the current script. For scripts in the main scripts directory,
+ this is the main directory (where webui.py resides), and for scripts in extensions directory
+ (ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
+ """
+ return current_basedir
+
+
scripts_data = []
+ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
+ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
+
+
+def list_scripts(scriptdirname, extension):
+ scripts_list = []
+
+ basedir = os.path.join(paths.script_path, scriptdirname)
+ if os.path.exists(basedir):
+ for filename in sorted(os.listdir(basedir)):
+ scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
+
+ extdir = os.path.join(paths.script_path, "extensions")
+ if os.path.exists(extdir):
+ for dirname in sorted(os.listdir(extdir)):
+ dirpath = os.path.join(extdir, dirname)
+ if not os.path.isdir(dirpath):
+ continue
+ for filename in sorted(os.listdir(os.path.join(dirpath, scriptdirname))):
+ scripts_list.append(ScriptFile(dirpath, filename, os.path.join(dirpath, scriptdirname, filename)))
-def load_scripts(basedir):
- if not os.path.exists(basedir):
- return
+ scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
- for filename in sorted(os.listdir(basedir)):
- path = os.path.join(basedir, filename)
+ return scripts_list
- if os.path.splitext(path)[1].lower() != '.py':
- continue
- if not os.path.isfile(path):
- continue
+def load_scripts():
+ global current_basedir
+ scripts_data.clear()
+ script_callbacks.clear_callbacks()
+
+ scripts_list = list_scripts("scripts", ".py")
+
+ syspath = sys.path
+ for scriptfile in sorted(scripts_list):
try:
- with open(path, "r", encoding="utf8") as file:
+ if scriptfile.basedir != paths.script_path:
+ sys.path = [scriptfile.basedir] + sys.path
+ current_basedir = scriptfile.basedir
+
+ with open(scriptfile.path, "r", encoding="utf8") as file:
text = file.read()
from types import ModuleType
- compiled = compile(text, path, 'exec')
- module = ModuleType(filename)
+ compiled = compile(text, scriptfile.path, 'exec')
+ module = ModuleType(scriptfile.filename)
exec(compiled, module.__dict__)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
- scripts_data.append((script_class, path))
+ scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception:
- print(f"Error loading script: {filename}", file=sys.stderr)
+ print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ sys.path = syspath
+ current_basedir = paths.script_path
+
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
@@ -96,56 +163,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs): class ScriptRunner:
def __init__(self):
self.scripts = []
+ self.selectable_scripts = []
+ self.alwayson_scripts = []
self.titles = []
+ self.infotext_fields = []
def setup_ui(self, is_img2img):
- for script_class, path in scripts_data:
+ for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
- if not script.show(is_img2img):
- continue
+ visibility = script.show(is_img2img)
- self.scripts.append(script)
+ if visibility == AlwaysVisible:
+ self.scripts.append(script)
+ self.alwayson_scripts.append(script)
+ script.alwayson = True
- self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
+ elif visibility:
+ self.scripts.append(script)
+ self.selectable_scripts.append(script)
- dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
- dropdown.save_to_config = True
- inputs = [dropdown]
+ self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
+
+ inputs = [None]
+ inputs_alwayson = [True]
- for script in self.scripts:
+ def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
if controls is None:
- continue
+ return
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
- control.visible = False
+ if not script.alwayson:
+ control.visible = False
+
+ if script.infotext_fields is not None:
+ self.infotext_fields += script.infotext_fields
inputs += controls
+ inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
+ for script in self.alwayson_scripts:
+ with gr.Group():
+ create_script_ui(script, inputs, inputs_alwayson)
+
+ dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
+ dropdown.save_to_config = True
+ inputs[0] = dropdown
+
+ for script in self.selectable_scripts:
+ create_script_ui(script, inputs, inputs_alwayson)
+
def select_script(script_index):
- if 0 < script_index <= len(self.scripts):
- script = self.scripts[script_index-1]
+ if 0 < script_index <= len(self.selectable_scripts):
+ script = self.selectable_scripts[script_index-1]
args_from = script.args_from
args_to = script.args_to
else:
args_from = 0
args_to = 0
- return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
+ return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
def init_field(title):
if title == 'None':
return
script_index = self.titles.index(title)
- script = self.scripts[script_index]
+ script = self.selectable_scripts[script_index]
for i in range(script.args_from, script.args_to):
inputs[i].visible = True
@@ -164,7 +255,7 @@ class ScriptRunner: if script_index == 0:
return None
- script = self.scripts[script_index-1]
+ script = self.selectable_scripts[script_index-1]
if script is None:
return None
@@ -176,6 +267,15 @@ class ScriptRunner: return processed
+ def run_alwayson_scripts(self, p):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.process(p, *script_args)
+ except Exception:
+ print(f"Error running alwayson script: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
def reload_sources(self):
for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file:
@@ -197,19 +297,21 @@ class ScriptRunner: self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to
+
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
def reload_script_body_only():
scripts_txt2img.reload_sources()
scripts_img2img.reload_sources()
-def reload_scripts(basedir):
+def reload_scripts():
global scripts_txt2img, scripts_img2img
- scripts_data.clear()
- load_scripts(basedir)
+ load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 1f8587d1..0f10828e 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -332,7 +332,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
- z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
diff --git a/modules/sd_models.py b/modules/sd_models.py index d99dbce8..f9b3063d 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -7,7 +7,7 @@ from omegaconf import OmegaConf from ldm.util import instantiate_from_config
-from modules import shared, modelloader, devices
+from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
@@ -238,6 +238,9 @@ def load_model(checkpoint_info=None): sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
+ shared.sd_model = sd_model
+
+ script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
@@ -252,7 +255,7 @@ def reload_model_weights(sd_model, info=None): if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
- shared.sd_model = load_model(checkpoint_info)
+ load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
diff --git a/modules/shared.py b/modules/shared.py index 0dbe360d..7d786f07 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -31,7 +31,6 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
-parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@@ -109,21 +108,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
-
-os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
-aesthetic_embeddings = {}
-
-
-def update_aesthetic_embeddings():
- global aesthetic_embeddings
- aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
- os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
- aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
-
-
-update_aesthetic_embeddings()
-
-
def reload_hypernetworks():
global hypernetworks
@@ -415,9 +399,6 @@ sd_model = None clip_model = None
-from modules.aesthetic_clip import AestheticCLIP
-aesthetic_clip = AestheticCLIP()
-
progress_print_out = sys.stdout
diff --git a/modules/txt2img.py b/modules/txt2img.py index 1761cfa2..c9d5a090 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -7,7 +7,7 @@ import modules.processing as processing from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -36,7 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: firstphase_height=firstphase_height if enable_hr else None,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/ui.py b/modules/ui.py index 70a9cf10..c977482c 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -23,10 +23,10 @@ import gradio as gr import gradio.utils
import gradio.routes
-from modules import sd_hijack, sd_models, localization
+from modules import sd_hijack, sd_models, localization, script_callbacks
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
+from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
@@ -44,7 +44,6 @@ from modules.images import save_image import modules.textual_inversion.ui
import modules.hypernetworks.ui
-import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
@@ -662,8 +661,6 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@@ -718,14 +715,6 @@ def create_ui(wrap_gradio_gpu_call): denoising_strength,
firstphase_width,
firstphase_height,
- aesthetic_lr,
- aesthetic_weight,
- aesthetic_steps,
- aesthetic_imgs,
- aesthetic_slerp,
- aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative
] + custom_inputs,
outputs=[
@@ -804,14 +793,7 @@ def create_ui(wrap_gradio_gpu_call): (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
- (aesthetic_lr, "Aesthetic LR"),
- (aesthetic_weight, "Aesthetic weight"),
- (aesthetic_steps, "Aesthetic steps"),
- (aesthetic_imgs, "Aesthetic embedding"),
- (aesthetic_slerp, "Aesthetic slerp"),
- (aesthetic_imgs_text, "Aesthetic text"),
- (aesthetic_text_negative, "Aesthetic text negative"),
- (aesthetic_slerp_angle, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_txt2img.infotext_fields
]
txt2img_preview_params = [
@@ -896,8 +878,6 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@@ -988,14 +968,6 @@ def create_ui(wrap_gradio_gpu_call): inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
- aesthetic_lr_im,
- aesthetic_weight_im,
- aesthetic_steps_im,
- aesthetic_imgs_im,
- aesthetic_slerp_im,
- aesthetic_imgs_text_im,
- aesthetic_slerp_angle_im,
- aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1087,14 +1059,7 @@ def create_ui(wrap_gradio_gpu_call): (seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
- (aesthetic_lr_im, "Aesthetic LR"),
- (aesthetic_weight_im, "Aesthetic weight"),
- (aesthetic_steps_im, "Aesthetic steps"),
- (aesthetic_imgs_im, "Aesthetic embedding"),
- (aesthetic_slerp_im, "Aesthetic slerp"),
- (aesthetic_imgs_text_im, "Aesthetic text"),
- (aesthetic_text_negative_im, "Aesthetic text negative"),
- (aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_img2img.infotext_fields
]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
@@ -1217,9 +1182,9 @@ def create_ui(wrap_gradio_gpu_call): )
#images history
images_history_switch_dict = {
- "fn":modules.generation_parameters_copypaste.connect_paste,
- "t2i":txt2img_paste_fields,
- "i2i":img2img_paste_fields
+ "fn": modules.generation_parameters_copypaste.connect_paste,
+ "t2i": txt2img_paste_fields,
+ "i2i": img2img_paste_fields
}
images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
@@ -1264,18 +1229,6 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Tab(label="Create aesthetic images embedding"):
-
- new_embedding_name_ae = gr.Textbox(label="Name")
- process_src_ae = gr.Textbox(label='Source directory')
- batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
- with gr.Row():
- with gr.Column(scale=3):
- gr.HTML(value="")
-
- with gr.Column():
- create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
-
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1375,21 +1328,6 @@ def create_ui(wrap_gradio_gpu_call): ]
)
- create_embedding_ae.click(
- fn=aesthetic_clip.generate_imgs_embd,
- inputs=[
- new_embedding_name_ae,
- process_src_ae,
- batch_ae
- ],
- outputs=[
- aesthetic_imgs,
- aesthetic_imgs_im,
- ti_output,
- ti_outcome,
- ]
- )
-
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
@@ -1580,10 +1518,10 @@ Requested path was: {f} if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
+ oldval = opts.data.get(key, None)
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
return gr.update(value=oldval), opts.dumpjson()
- oldval = opts.data.get(key, None)
opts.data[key] = value
if oldval != value:
@@ -1692,9 +1630,12 @@ Requested path was: {f} (images_history, "Image Browser", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
- (settings_interface, "Settings", "settings"),
]
+ interfaces += script_callbacks.ui_tabs_callback()
+
+ interfaces += [(settings_interface, "Settings", "settings")]
+
with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
css = file.read()
@@ -71,6 +71,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
+
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
@@ -79,9 +80,9 @@ def initialize(): shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
- modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.load_scripts()
- shared.sd_model = modules.sd_models.load_model()
+ modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
@@ -145,7 +146,7 @@ def webui(): sd_samplers.set_samplers()
print('Reloading Custom Scripts')
- modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.reload_scripts()
print('Reloading modules: modules.ui')
importlib.reload(modules.ui)
print('Refreshing Model List')
|