aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorbrkirch <brkirch@users.noreply.github.com>2022-11-29 02:36:35 +0000
committerbrkirch <brkirch@users.noreply.github.com>2022-11-30 15:33:42 +0000
commit4d5f1691dda971ec7b461dd880426300fd54ccee (patch)
treec9ebed9f119ae66c13e716ff867a8c20108389a9
parent21effd629d0fdfdbbff2b20a9f4a3767e7e8bd33 (diff)
downloadstable-diffusion-webui-gfx803-4d5f1691dda971ec7b461dd880426300fd54ccee.tar.gz
stable-diffusion-webui-gfx803-4d5f1691dda971ec7b461dd880426300fd54ccee.tar.bz2
stable-diffusion-webui-gfx803-4d5f1691dda971ec7b461dd880426300fd54ccee.zip
Use devices.autocast instead of torch.autocast
-rw-r--r--modules/hypernetworks/hypernetwork.py2
-rw-r--r--modules/interrogate.py3
-rw-r--r--modules/swinir_model.py6
-rw-r--r--modules/textual_inversion/dataset.py4
-rw-r--r--modules/textual_inversion/textual_inversion.py2
5 files changed, 6 insertions, 11 deletions
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 8466887f..eb5ae372 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -495,7 +495,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if shared.state.interrupted:
break
- with torch.autocast("cuda"):
+ with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 9769aa34..40c6b082 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -148,8 +148,7 @@ class InterrogateModels:
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
- precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
- with torch.no_grad(), precision_scope("cuda"):
+ with torch.no_grad(), devices.autocast():
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True)
diff --git a/modules/swinir_model.py b/modules/swinir_model.py
index facd262d..483eabd4 100644
--- a/modules/swinir_model.py
+++ b/modules/swinir_model.py
@@ -13,10 +13,6 @@ from modules.swinir_model_arch import SwinIR as net
from modules.swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
-precision_scope = (
- torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
-)
-
class UpscalerSwinIR(Upscaler):
def __init__(self, dirname):
@@ -112,7 +108,7 @@ def upscale(
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(devices.device_swinir)
- with torch.no_grad(), precision_scope("cuda"):
+ with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index e5725f33..2dc64c3c 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -82,7 +82,7 @@ class PersonalizedBase(Dataset):
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
latent_sample = None
- with torch.autocast("cuda"):
+ with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
@@ -101,7 +101,7 @@ class PersonalizedBase(Dataset):
entry.cond_text = self.create_text(filename_text)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
- with torch.autocast("cuda"):
+ with devices.autocast():
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 4eb75cb5..daf8d1b8 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -316,7 +316,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
if shared.state.interrupted:
break
- with torch.autocast("cuda"):
+ with devices.autocast():
# c = stack_conds(batch.cond).to(devices.device)
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# print(mask)