diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-10-21 10:34:48 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-10-21 10:35:01 +0000 |
commit | 7d6b388d71e5854c48847c09b2dfed683b377027 (patch) | |
tree | 35d1ef42a993387f995955ce36dba7b86e081370 | |
parent | bf30673f5132c8f28357b31224c54331e788d3e7 (diff) | |
parent | 2362d5f00eeecbe6a6f67fe6085da01a3d78e407 (diff) | |
download | stable-diffusion-webui-gfx803-7d6b388d71e5854c48847c09b2dfed683b377027.tar.gz stable-diffusion-webui-gfx803-7d6b388d71e5854c48847c09b2dfed683b377027.tar.bz2 stable-diffusion-webui-gfx803-7d6b388d71e5854c48847c09b2dfed683b377027.zip |
Merge branch 'ae'
-rw-r--r-- | README.md | 2 | ||||
-rw-r--r-- | modules/aesthetic_clip.py | 215 | ||||
-rw-r--r-- | modules/img2img.py | 7 | ||||
-rw-r--r-- | modules/sd_hijack.py | 30 | ||||
-rw-r--r-- | modules/sd_models.py | 5 | ||||
-rw-r--r-- | modules/shared.py | 22 | ||||
-rw-r--r-- | modules/textual_inversion/textual_inversion.py | 1 | ||||
-rw-r--r-- | modules/txt2img.py | 10 | ||||
-rw-r--r-- | modules/ui.py | 55 |
9 files changed, 326 insertions, 21 deletions
@@ -71,6 +71,8 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
+- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py new file mode 100644 index 00000000..34efa931 --- /dev/null +++ b/modules/aesthetic_clip.py @@ -0,0 +1,215 @@ +import copy +import itertools +import os +from pathlib import Path +import html +import gc + +import gradio as gr +import torch +from PIL import Image +from torch import optim + +from modules import shared +from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer +from tqdm.auto import tqdm, trange +from modules.shared import opts, device + + +def get_all_images_in_folder(folder): + return [os.path.join(folder, f) for f in os.listdir(folder) if + os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)] + + +def check_is_valid_image_file(filename): + return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp")) + + +def batched(dataset, total, n=1): + for ndx in range(0, total, n): + yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))] + + +def iter_to_batched(iterable, n=1): + it = iter(iterable) + while True: + chunk = tuple(itertools.islice(it, n)) + if not chunk: + return + yield chunk + + +def create_ui(): + with gr.Group(): + with gr.Accordion("Open for Clip Aesthetic!", open=False): + with gr.Row(): + aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", + value=0.9) + aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5) + + with gr.Row(): + aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', + placeholder="Aesthetic learning rate", value="0.0001") + aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False) + aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()), + label="Aesthetic imgs embedding", + value="None") + + with gr.Row(): + aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', + placeholder="This text is used to rotate the feature space of the imgs embs", + value="") + aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01, + value=0.1) + aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False) + + return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative + + +def generate_imgs_embd(name, folder, batch_size): + # clipModel = CLIPModel.from_pretrained( + # shared.sd_model.cond_stage_model.clipModel.name_or_path + # ) + model = shared.clip_model.to(device) + processor = CLIPProcessor.from_pretrained(model.name_or_path) + + with torch.no_grad(): + embs = [] + for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size), + desc=f"Generating embeddings for {name}"): + if shared.state.interrupted: + break + inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device) + outputs = model.get_image_features(**inputs).cpu() + embs.append(torch.clone(outputs)) + inputs.to("cpu") + del inputs, outputs + + embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True) + + # The generated embedding will be located here + path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt") + torch.save(embs, path) + + model = model.cpu() + del processor + del embs + gc.collect() + torch.cuda.empty_cache() + res = f""" + Done generating embedding for {name}! + Aesthetic embedding saved to {html.escape(path)} + """ + shared.update_aesthetic_embeddings() + return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding", + value="None"), \ + gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), + label="Imgs embedding", + value="None"), res, "" + + +def slerp(low, high, val): + low_norm = low / torch.norm(low, dim=1, keepdim=True) + high_norm = high / torch.norm(high, dim=1, keepdim=True) + omega = torch.acos((low_norm * high_norm).sum(1)) + so = torch.sin(omega) + res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high + return res + + +class AestheticCLIP: + def __init__(self): + self.skip = False + self.aesthetic_steps = 0 + self.aesthetic_weight = 0 + self.aesthetic_lr = 0 + self.slerp = False + self.aesthetic_text_negative = "" + self.aesthetic_slerp_angle = 0 + self.aesthetic_imgs_text = "" + + self.image_embs_name = None + self.image_embs = None + self.load_image_embs(None) + + def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None, + aesthetic_slerp=True, aesthetic_imgs_text="", + aesthetic_slerp_angle=0.15, + aesthetic_text_negative=False): + self.aesthetic_imgs_text = aesthetic_imgs_text + self.aesthetic_slerp_angle = aesthetic_slerp_angle + self.aesthetic_text_negative = aesthetic_text_negative + self.slerp = aesthetic_slerp + self.aesthetic_lr = aesthetic_lr + self.aesthetic_weight = aesthetic_weight + self.aesthetic_steps = aesthetic_steps + self.load_image_embs(image_embs_name) + + def set_skip(self, skip): + self.skip = skip + + def load_image_embs(self, image_embs_name): + if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None": + image_embs_name = None + self.image_embs_name = None + if image_embs_name is not None and self.image_embs_name != image_embs_name: + self.image_embs_name = image_embs_name + self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device) + self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True) + self.image_embs.requires_grad_(False) + + def __call__(self, z, remade_batch_tokens): + if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None: + tokenizer = shared.sd_model.cond_stage_model.tokenizer + if not opts.use_old_emphasis_implementation: + remade_batch_tokens = [ + [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in + remade_batch_tokens] + + tokens = torch.asarray(remade_batch_tokens).to(device) + + model = copy.deepcopy(shared.clip_model).to(device) + model.requires_grad_(True) + if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0: + text_embs_2 = model.get_text_features( + **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device)) + if self.aesthetic_text_negative: + text_embs_2 = self.image_embs - text_embs_2 + text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True) + img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle) + else: + img_embs = self.image_embs + + with torch.enable_grad(): + + # We optimize the model to maximize the similarity + optimizer = optim.Adam( + model.text_model.parameters(), lr=self.aesthetic_lr + ) + + for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"): + text_embs = model.get_text_features(input_ids=tokens) + text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True) + sim = text_embs @ img_embs.T + loss = -sim + optimizer.zero_grad() + loss.mean().backward() + optimizer.step() + + zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers) + if opts.CLIP_stop_at_last_layers > 1: + zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers] + zn = model.text_model.final_layer_norm(zn) + else: + zn = zn.last_hidden_state + model.cpu() + del model + gc.collect() + torch.cuda.empty_cache() + zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1) + if self.slerp: + z = slerp(z, zn, self.aesthetic_weight) + else: + z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight + + return z diff --git a/modules/img2img.py b/modules/img2img.py index 24126774..bc7c66bc 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args): processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@@ -109,6 +109,11 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro inpainting_mask_invert=inpainting_mask_invert,
)
+ shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
+ aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative)
+
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 984b35c4..36198a3c 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -19,6 +19,7 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
+
def apply_optimizations():
undo_optimizations()
@@ -167,11 +168,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): remade_tokens = remade_tokens[:last_comma]
length = len(remade_tokens)
-
+
rem = int(math.ceil(length / 75)) * 75 - length
remade_tokens += [id_end] * rem + reloc_tokens
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
-
+
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
@@ -223,7 +224,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
@@ -280,7 +280,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
- remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
+ remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
@@ -290,7 +290,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
+
def forward(self, text):
use_old = opts.use_old_emphasis_implementation
if use_old:
@@ -302,11 +302,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): if len(used_custom_terms) > 0:
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
-
+
if use_old:
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
-
+
z = None
i = 0
while max(map(len, remade_batch_tokens)) != 0:
@@ -320,7 +320,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): if fix[0] == i:
fixes.append(fix[1])
self.hijack.fixes.append(fixes)
-
+
tokens = []
multipliers = []
for j in range(len(remade_batch_tokens)):
@@ -333,19 +333,19 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
-
+ z = shared.aesthetic_clip(z, remade_batch_tokens)
+
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
-
+
return z
-
-
+
def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
-
+
tokens = torch.asarray(remade_batch_tokens).to(device)
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
@@ -385,8 +385,8 @@ class EmbeddingsWithFixes(torch.nn.Module): for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
- emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
- tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
+ emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
+ tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)
diff --git a/modules/sd_models.py b/modules/sd_models.py index fea84630..05a1df28 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -21,7 +21,7 @@ checkpoints_loaded = collections.OrderedDict() try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
- from transformers import logging
+ from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
@@ -234,6 +234,9 @@ def load_model(checkpoint_info=None): sd_hijack.model_hijack.hijack(sd_model)
+ if shared.clip_model is None or shared.clip_model.transformer.name_or_path != sd_model.cond_stage_model.wrapped.transformer.name_or_path:
+ shared.clip_model = CLIPModel.from_pretrained(sd_model.cond_stage_model.wrapped.transformer.name_or_path)
+
sd_model.eval()
print(f"Model loaded.")
diff --git a/modules/shared.py b/modules/shared.py index faede821..5c675b80 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -3,6 +3,7 @@ import datetime import json
import os
import sys
+from collections import OrderedDict
import gradio as gr
import tqdm
@@ -30,6 +31,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
+parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@@ -106,6 +108,21 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
+
+os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
+aesthetic_embeddings = {}
+
+
+def update_aesthetic_embeddings():
+ global aesthetic_embeddings
+ aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
+ os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
+ aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
+
+
+update_aesthetic_embeddings()
+
+
def reload_hypernetworks():
global hypernetworks
@@ -387,6 +404,11 @@ sd_upscalers = [] sd_model = None
+clip_model = None
+
+from modules.aesthetic_clip import AestheticCLIP
+aesthetic_clip = AestheticCLIP()
+
progress_print_out = sys.stdout
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5776778b..529ed3e2 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -276,6 +276,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc loss.backward()
optimizer.step()
+
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
diff --git a/modules/txt2img.py b/modules/txt2img.py index 2381347f..32ed1d8d 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -1,12 +1,13 @@ import modules.scripts
-from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
+from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
+ StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -35,6 +36,10 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: firstphase_height=firstphase_height if enable_hr else None,
)
+ shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
+ aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle,
+ aesthetic_text_negative)
+
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
@@ -53,4 +58,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)
-
diff --git a/modules/ui.py b/modules/ui.py index f6a92ddc..381ca925 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -25,7 +25,9 @@ import gradio.routes from modules import sd_hijack, sd_models, localization
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts
+
+from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
+
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
@@ -41,8 +43,11 @@ from modules import prompt_parser from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
+
+import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
+
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
@@ -655,6 +660,8 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
+ aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
+
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@@ -709,7 +716,16 @@ def create_ui(wrap_gradio_gpu_call): denoising_strength,
firstphase_width,
firstphase_height,
+ aesthetic_lr,
+ aesthetic_weight,
+ aesthetic_steps,
+ aesthetic_imgs,
+ aesthetic_slerp,
+ aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative
] + custom_inputs,
+
outputs=[
txt2img_gallery,
generation_info,
@@ -870,6 +886,8 @@ def create_ui(wrap_gradio_gpu_call): seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
+ aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
+
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@@ -960,6 +978,14 @@ def create_ui(wrap_gradio_gpu_call): inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
+ aesthetic_lr_im,
+ aesthetic_weight_im,
+ aesthetic_steps_im,
+ aesthetic_imgs_im,
+ aesthetic_slerp_im,
+ aesthetic_imgs_text_im,
+ aesthetic_slerp_angle_im,
+ aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1220,6 +1246,18 @@ def create_ui(wrap_gradio_gpu_call): with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
+ with gr.Tab(label="Create aesthetic images embedding"):
+
+ new_embedding_name_ae = gr.Textbox(label="Name")
+ process_src_ae = gr.Textbox(label='Source directory')
+ batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
+ with gr.Row():
+ with gr.Column(scale=3):
+ gr.HTML(value="")
+
+ with gr.Column():
+ create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
+
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1309,6 +1347,21 @@ def create_ui(wrap_gradio_gpu_call): ]
)
+ create_embedding_ae.click(
+ fn=aesthetic_clip.generate_imgs_embd,
+ inputs=[
+ new_embedding_name_ae,
+ process_src_ae,
+ batch_ae
+ ],
+ outputs=[
+ aesthetic_imgs,
+ aesthetic_imgs_im,
+ ti_output,
+ ti_outcome,
+ ]
+ )
+
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
|