diff options
author | AUTOMATIC <16777216c@gmail.com> | 2022-09-16 16:24:48 +0000 |
---|---|---|
committer | AUTOMATIC <16777216c@gmail.com> | 2022-09-16 16:24:48 +0000 |
commit | b64994b973ad8f4268bf785f25f92b66c8dced40 (patch) | |
tree | 3b0ad3f24985f4e904557290fffde1b937602e71 | |
parent | e49b1c5d73ede818adb624590934f051b94493ac (diff) | |
download | stable-diffusion-webui-gfx803-b64994b973ad8f4268bf785f25f92b66c8dced40.tar.gz stable-diffusion-webui-gfx803-b64994b973ad8f4268bf785f25f92b66c8dced40.tar.bz2 stable-diffusion-webui-gfx803-b64994b973ad8f4268bf785f25f92b66c8dced40.zip |
added original negative prompt to img2img alt
-rw-r--r-- | scripts/img2imgalt.py | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/scripts/img2imgalt.py b/scripts/img2imgalt.py index dbda3255..7f1f53a7 100644 --- a/scripts/img2imgalt.py +++ b/scripts/img2imgalt.py @@ -59,7 +59,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps): return x / x.std()
-Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt"])
+Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt"])
class Script(scripts.Script):
@@ -74,19 +74,20 @@ class Script(scripts.Script): def ui(self, is_img2img):
original_prompt = gr.Textbox(label="Original prompt", lines=1)
+ original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1)
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
randomness = gr.Slider(label="randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
- return [original_prompt, cfg, st, randomness]
+ return [original_prompt, original_negative_prompt, cfg, st, randomness]
- def run(self, p, original_prompt, cfg, st, randomness):
+ def run(self, p, original_prompt, original_negative_prompt, cfg, st, randomness):
p.batch_size = 1
p.batch_count = 1
def sample_extra(x, conditioning, unconditional_conditioning):
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
- same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st and self.cache.original_prompt == original_prompt
+ same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st and self.cache.original_prompt == original_prompt and self.cache.original_negative_prompt == original_negative_prompt
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
if same_everything:
@@ -94,9 +95,9 @@ class Script(scripts.Script): else:
shared.state.job_count += 1
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
- uncond = p.sd_model.get_learned_conditioning(p.batch_size * [""])
+ uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
- self.cache = Cached(rec_noise, cfg, st, lat, original_prompt)
+ self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt)
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], [p.seed + x + 1 for x in range(p.init_latent.shape[0])])
|